
Package: FamilyRank (via r-universe)
August 22, 2024

Type Package

Title Algorithm for Ranking Predictors Using Graphical Domain
Knowledge

Version 1.0

Date 2021-01-24

Author Michelle Saul

Maintainer Michelle Saul <msaul@carisls.com>

Description Grows families of features by selecting features that
maximize a weighted score calculated from empirical feature
scores and graphical knowledge. The final weighted score for a
feature is determined by summing a feature's family-weighted
scores across all families in which the feature appears.

License GPL

Imports Rcpp (>= 1.0.6), plyr (>= 1.8.6), stats (>= 3.6.0)

LinkingTo Rcpp, RcppArmadillo

LazyData true

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-02-05 08:50:08 UTC

Contents
FamilyRank-package . 2
createCase . 3
createControl . 4
createData . 6
createGraph . 7
familyRank . 8
grow . 10
indexFeats . 12
rbinorm . 13

Index 14

1

2 FamilyRank-package

FamilyRank-package Algorithm for Ranking Predictors Using Graphical Domain Knowl-
edge

Description

Grows families of features by selecting features that maximize a weighted score calculated from
empirical feature scores and graphical knowledge. The final weighted score for a feature is de-
termined by summing a feature’s family-weighted scores across all families in which the feature
appears.

Details

The DESCRIPTION file:

Package: FamilyRank
Type: Package
Title: Algorithm for Ranking Predictors Using Graphical Domain Knowledge
Version: 1.0
Date: 2021-01-24
Author: Michelle Saul
Maintainer: Michelle Saul <msaul@carisls.com>
Description: Grows families of features by selecting features that maximize a weighted score calculated from empirical feature scores and graphical knowledge. The final weighted score for a feature is determined by summing a feature’s family-weighted scores across all families in which the feature appears.
License: GPL
Imports: Rcpp (>= 1.0.6), plyr (>= 1.8.6), stats (>= 3.6.0)
LinkingTo: Rcpp, RcppArmadillo
LazyData: true

Index of help topics:

FamilyRank-package Algorithm for Ranking Predictors Using
Graphical Domain Knowledge

createCase Simulate Cases
createControl Simulate Control
createData Simulate Data
createGraph Simulate Graph
familyRank Feature Ranking with Family Rank
grow Grow Families
indexFeats Re-index features
rbinorm Bimodal Normal Distribution

The main function is familyRank.

Author(s)

Michelle Saul

Maintainer: Michelle Saul <msaul@carisls.com>

createCase 3

References

ADD REFERENCE

createCase Simulate Cases

Description

Numerical feature simulation for positive samples. Called by createData.

Usage

createCase(subtype, upper.mean, lower.mean, upper.sd, lower.sd, n.features,
subtype1.feats = 1:5, subtype2.feats = 6:10, subtype3.feats = 11:15)

Arguments

subtype Numeric number indicating which subtype to simulate. Currently supports three
subtype: 1, 2 or 3.

upper.mean The mean of the upper component of the bimodal Gaussian distribution from
which features are simulated.

lower.mean The mean of the lower component of the bimodal Gaussian distribution from
which features are simulated.

upper.sd The standard deviation of the upper component of the bimodal Gaussian distri-
bution from which features are simulated.

lower.sd The standard deviation of the lower component of the bimodal Gaussian distri-
bution from which features are simulated.

n.features Number of features to simulate.

subtype1.feats Numeric vector representing the indices of features that define subtype 1.

subtype2.feats Numeric vector representing the indices of features that define subtype 2.

subtype3.feats Numeric vector representing the indices of features that define subtype 3.

Details

Simulations support 3 subtypes, each defined by 5 different features.

Subtype 1 is defined as having the first 3 subtype1.feats and at least one of the next 2 subtype1.feats
simulated from the upper component of the bimodal Gaussian distribution.

Subtype 2 is defined as having all 5 subtype2.feats simulated from the upper component.

Subtype 3 is defined as having the first 4 subtype3.feats simulated from the upper component
and and the last subtype3.feats simulated from the lower component.

Value

Returns a vector of simulated features

4 createControl

Note

createCase is not meant to be called alone. It is designed as a helper function for createData.

Author(s)

Michelle Saul

References

ADD REFERENCE

See Also

createData

Examples

Toy Example
case <- createCase(subtype = 1, upper.mean = 13, lower.mean = 5,
upper.sd = 1, lower.sd = 1, n.features = 20,

subtype1.feats = 1:5,
subtype2.feats = 6:10,
subtype3.feats = 11:15)

createControl Simulate Control

Description

Numerical feature simulation for negative samples. Called by createData.

Usage

createControl(upper.mean, lower.mean, upper.sd, lower.sd, n.features,
subtype1.feats = 1:5, subtype2.feats = 6:10, subtype3.feats = 11:15)

Arguments

upper.mean The mean of the upper component of the bimodal Gaussian distribution from
which features are simulated.

lower.mean The mean of the lower component of the bimodal Gaussian distribution from
which features are simulated.

upper.sd The standard deviation of the upper component of the bimodal Gaussian distri-
bution from which features are simulated.

lower.sd The standard deviation of the lower component of the bimodal Gaussian distri-
bution from which features are simulated.

n.features Number of features to simulate.

createControl 5

subtype1.feats Numeric vector representing the indices of features that define subtype 1.

subtype2.feats Numeric vector representing the indices of features that define subtype 2.

subtype3.feats Numeric vector representing the indices of features that define subtype 3.

Details

Simulates data such that none of the 3 subtypes defined in createCase are represented.

To ensure subtype 1 is not represented, at least one of the first three subtype1.feats and/or both of
the next 2 subtype1.feats are simulated from the lower component of the Gaussian distribution.

To ensure subtype 2 is not represented, at least one of the five subtype2.feats is simulated from
the lower component.

To ensure subtype 3 is not represented, at least one of the first 4 subtype3.feats is simulated from
the lower component and/or the last subtype3.feats is simulated from the upper component.

Value

Returns a vector of simulated features

Note

createControl is not meant to be called alone. It is designed as a helper function for createData.

Author(s)

Michelle Saul

References

ADD REFERENCE

See Also

createData

Examples

Toy Example
control <- createControl(upper.mean = 13, lower.mean = 5,
upper.sd = 1, lower.sd = 1, n.features = 20,

subtype1.feats = 1:5,
subtype2.feats = 6:10,
subtype3.feats = 11:15)

6 createData

createData Simulate Data

Description

Simulate data sets meant to emulate gene expression data in oncology.

Usage

createData(n.case, n.control, mean.upper = 13, mean.lower = 5,
sd.upper = 1, sd.lower = 1, n.features = 10000,
subtype1.feats = 1:5, subtype2.feats = 6:10, subtype3.feats = 11:15)

Arguments

n.case Number of cases to simulate.

n.control Number of controls to simulate

mean.upper Mean of upper component of bimodal Gaussian distribution from which features
are simulated.

mean.lower Mean of lower component of bimodal Gaussian distribution from which features
are simulated.

sd.upper Standard deviation of upper component of bimodal Gaussian distribution from
which features are simulated.

sd.lower Standard deviation of lower component of bimodal Gaussian distribution from
which features are simulated.

n.features Number of features to simulate

subtype1.feats Index of features used to define subtype 1.

subtype2.feats Index of features used to define subtype 2.

subtype3.feats Index of features used to define subtype 3.

Details

Simulates case/control data as described in createCase and createControl, and graphical domain
knowledge as described in createGraph.

Value

Returns a named list with a simulated feature matrix (x), simulated binary response vector (y),
vector of subtype labels (subtype), and simulated domain knowledge graph (graph).

Author(s)

Michelle Saul

createGraph 7

References

ADD REFERENCE

See Also

createCase, createControl, createGraph

Examples

Toy Example
Simulate data set
10 samples
20 features
Features 1 through 15 perfectly define response
All other features are random noise.
data <- createData(n.case = 5, n.control = 5, mean.upper=13, mean.lower=5,

sd.upper=1, sd.lower=1, n.features = 20,
subtype1.feats = 1:5, subtype2.feats = 6:10,
subtype3.feats = 11:15)

x <- data$x
y <- data$y
graph <- data$graph

createGraph Simulate Graph

Description

Simulate domain knowledge graph.

Usage

createGraph(subtype1.feats = 1:5, subtype2.feats = 6:10, subtype3.feats = 11:15,
n.interactions = 1e+06, n.features = 10000)

Arguments

subtype1.feats Index of features used to define subtype 1.

subtype2.feats Index of features used to define subtype 2.

subtype3.feats Index of features used to define subtype 3.

n.interactions Number of pairwise interactions to simulate.

n.features Number of features to simulate

8 familyRank

Value

Returns a data frame representation of a graph. The first two columns represent graph nodes and
the third column represents the edge weights between nodes.
All pairwise combinations of subtype1.feats have an edge weight of 1.
All pairwise combinations of subtype2.feats have an edge weight of 1.
All pairwise combinations of subtype3.feats have an edge weight of 1.
All other pairwise combinations have an edge weight uniformly distributed between 0 and 1.

Author(s)

Michelle Saul

References

ADD REFERENCE

See Also

createData

Examples

Toy Example
graph <- createGraph(subtype1.feats = 1:5, subtype2.feats = 6:10, subtype3.feats = 11:15,
n.interactions = 100, n.features = 20)

familyRank Feature Ranking with Family Rank

Description

Ranks features by incorporating graphical knowledge to weight empirical feature scores. This is
the main function of the FamilyRank package.

Usage

familyRank(scores, graph, d = 0.5, n.rank = min(length(scores), 1000),
n.families = min(n.rank, 1000), tol = 0.001)

Arguments

scores A numeric vector of empirical feature scores. Higher scores should indicate a
more predictive feature.

graph A matrix or data frame representation of a graph object.
d Damping factor
n.rank Number of features to rank.
n.families Number of families to grow.
tol Tolerance

familyRank 9

Details

The scores vector should be generated using an existing statistical method. Higher scores should
correspond to more predictive features. It is up to the user to adjust accordingly. For example, if the
user wishes to use p-values as the empirical score, the user should first adjust the p-values, perhaps
by subtracting all p-values from 1, so that a higher value corresponds to a more predictive feature.

The graph must be supplied in matrix form, where the first two columns represent graph nodes and
the third column represents the edge weights between nodes. The graph nodes must be represented
by the index of the feature that corresponds with the index in the score vector. For example, a node
corresponding to the first value of the score vector should be indicated by a 1 in the graph object,
the second by a 2, etc. It is not necessary that every feature in the score vector appear in the graph.
Missing pairwise interactions will be considered to have interaction scores of 0.

The damping factor, d, represents the percentage of weight given to the interaction scores. The
damping factor must be between 0 and 1. Higher values give more weight to the interaction score
while lower values give more weight to the empirical score.

The value for n.rank must be less than or equal to the number of scored features. The algorithm
will include only the top n.rank features in the ranking process (e.g. the n.rank features with the
highest values in the score vector will be used to grow families). Higher values of n.rank require
longer compute times.

The value for n.families must be less than or equal to the value of n.rank. This is the number
of families the algorithm will grow. If n.families is less than n.rank, the algorithm will initate
families using the n.families highest scoring features. Higher values of n.families require
longer compute times.

The tolerance variable, tol, tells the algorithm when to stop growing a family. Features are added
to families until the weighted score is less than the tolerance level, or until all features have been
added.

Value

Returns a vector of the weighted feature scores.

Author(s)

Michelle Saul

References

ADD REFERENCE

Examples

Toy Example
scores <- c(.6, .2, .9)
graph <- cbind(c(1,1), c(2,3), c(.4, .8))
familyRank(scores = scores, graph = graph, d = .5)

Simulate data set
100 samples
1000 features

10 grow

Features 1 through 15 perfectly define response
All other features are random noise
simulatedData <- createData(n.case = 50, n.control = 50, mean.upper=13, mean.lower=5,

sd.upper=1, sd.lower=1, n.features = 10000,
subtype1.feats = 1:5, subtype2.feats = 6:10,
subtype3.feats = 11:15)

x <- simulatedData$x
y <- simulatedData$y
graph <- simulatedData$graph

Score simulated features using absolute difference in group means
scores <- apply(x, 2, function(col){

splt <- split(col, y)
group.means <- unlist(lapply(splt, mean))
score <- abs(diff(group.means))
names(score) <- NULL
return(score)

})

Display top 15 features using emprical score
order(scores, decreasing = TRUE)[1:15]

Rank scores using familyRank
scores.fr <- familyRank(scores = scores, graph = graph, d = .5)
Display top 15 features using emprical scores with Family Rank
order(scores.fr, decreasing = TRUE)[1:15]

grow Grow Families

Description

Call to the C++ function that grows the families.

Usage

grow(n, f, d, graph, scores, feat_mat, score_mat, tol, weight_mat, selected)

Arguments

n Number of features to rank.

f Number of families to grow.

d Damping factor

graph A matrix or data frame representation of a graph object.

scores A numeric vector of empirical feature scores.

feat_mat Matrix to store selected features.

score_mat Matrix to store weighted scores of selected features.

grow 11

tol Tolerance

weight_mat A matrix to store the cumulative weighted scores of selected futures across all
families.

selected Vector indicating whether a feature has been selected yet.

Details

This is the workhorse function for the Family Rank algorithm.

Value

Returns a matrix with 1+2xn.families columns and n.rank rows. The first column is the cumu-
lative feature score for each of the ranked features 1:n.rank. The row number corresponds to the
re-indexed feature index. The next n.families columns contain the indices of selected features for
each iteration of feature selection. The last n.families columns contain the weigthed scores of
selected features for each iteration.

Author(s)

Michelle Saul

References

ADD REFERENCE

Examples

Toy Example
scores <- c(.6, .2, .9)
graph <- cbind(c(1,1), c(2,3), c(.4, .8))

initialize matrices
n <- n.families <- length(scores)
feat.mat <- score.mat <- matrix(0, nrow = n, ncol = n.families)
feat.mat[1,] <- order(scores, decreasing = TRUE)
score.mat[1,] <- sort(scores, decreasing = TRUE)

Grow families
mats <- grow(n = n, f = n.families, d = 0.5, graph = as.matrix(graph),

scores = scores,
feat_mat = feat.mat, score_mat = score.mat, tol = 0,
weight_mat = as.matrix(scores), selected = rep(1, n))

Selected Feature Matrix
columns represent familes
rows represent iterations
values indicate indices of selected features
feat.mat <- mats[, 2:(n.families+1)]
feat.mat
Corresponding Score Matrix
columns represent familes
rows represent iterations

12 indexFeats

values indicate max weighted score of selected features
score.mat <- mats[, (n.families+2):(1+2*n.families)]
score.mat

indexFeats Re-index features

Description

Re-index features based on number to rank. Called by familyRank.

Usage

indexFeats(scores, graph, n.rank = NULL)

Arguments

scores A numeric vector of empirical feature scores.
graph A matrix or data frame representation of a graph object.
n.rank Number of features to rank.

Details

This function is used to re-index features for the Family Rank algorithm. The function takes in the
scores for all features, and returns scores for the top n.rank features. It also takes in the full domain
knowledge graph and returns the subgraph that only includes interactions between the top n.rank
features. Finally, it re-indexes the top features in both the score vector and domain knowledge graph
to 1:n.rank.

Value

Returns a named list with re-indexed domain knowledge graph (graph.w), re-indexed scores (score.w),
a mapping between original and new indices (loc.map), and the number of features to rank (n.rnak).

Note

indexFeats is not meant to be called alone. It is designed as a helper function for familyRank.

Author(s)

Michelle Saul

References

ADD REFERENCE

See Also

familyRank

rbinorm 13

rbinorm Bimodal Normal Distribution

Description

Simulates random data from a bimodal Gaussian distribution.

Usage

rbinorm(n, mean1, mean2, sd1, sd2, prop)

Arguments

n Number of observations to simulate

mean1 Mean of mode 1

mean2 Mean of mode 2

sd1 Standard deviation of mode 1

sd2 Standard deviation of mode 2

prop Probability of being in mode 1. 1 - prop is the probability of being in mode 2.

Details

This function is modeled off of the rnorm function.

Value

Generates random deviates

Author(s)

Michelle Saul

Examples

Generate 100 samples from a two component Guassian curve
samples <- rbinorm(n=100, mean1=10, mean2=20, sd1=1, sd2=2, prop=.5)

Plot distribution of simulated data
plot(density(samples))

Index

∗ package
FamilyRank-package, 2

createCase, 3, 5–7
createControl, 4, 6, 7
createData, 3–5, 6, 8
createGraph, 6, 7, 7

FamilyRank (FamilyRank-package), 2
familyRank, 2, 8, 12
FamilyRank-package, 2

grow, 10

indexFeats, 12

rbinorm, 13
rnorm, 13

14

	FamilyRank-package
	createCase
	createControl
	createData
	createGraph
	familyRank
	grow
	indexFeats
	rbinorm
	Index

