
Package: FNN (via r-universe)
September 9, 2024

Version 1.1.4

Date 2023-12-31

Title Fast Nearest Neighbor Search Algorithms and Applications

Author Alina Beygelzimer, Sham Kakadet and John Langford (cover tree
library), Sunil Arya and David Mount (ANN library 1.1.2 for the
kd-tree approach), Shengqiao Li

Copyright ANN Copyright (c) 1997-2010 University of Maryland and Sunil
Arya and David Mount. All Rights Reserved.

Maintainer Shengqiao Li <lishengqiao@yahoo.com>

Depends R (>= 4.0.0)

Suggests chemometrics, mvtnorm

Description Cover-tree and kd-tree fast k-nearest neighbor search
algorithms and related applications including KNN
classification, regression and information measures are
implemented.

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-01-12 16:40:08 UTC

Contents
crossentropy . 2
entropy . 3
get.knn . 4
KL.dist . 5
KL.divergence . 6
knn . 8
knn.cv . 9
knn.dist . 10
knn.index . 11
knn.reg . 13

1

2 crossentropy

mutinfo . 14
ownn . 15
print.knnReg . 16

Index 17

crossentropy Cross Entropy

Description

KNN Cross Entropy Estimators.

Usage

crossentropy(X, Y, k=10, algorithm=c("kd_tree", "cover_tree", "brute"))

Arguments

X an input data matrix.

Y an input data matrix.

k the maximum number of nearest neighbors to search. The default value is set to
10.

algorithm nearest neighbor search algorithm.

Details

If p(x) and q(x) are two continuous probability density functions, then the cross-entropy of p and
q is defined as H(p; q) = Ep[− log q(x)].

Value

a vector of length k for crossentropy estimates using 1:k nearest neighbors, respectively.

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

References

S. Boltz, E. Debreuve and M. Barlaud (2007). “kNN-based high-dimensional Kullback-Leibler
distance for tracking”. Image Analysis for Multimedia Interactive Services, 2007. WIAMIS ’07.
Eighth International Workshop on.

entropy 3

entropy Shannon Entropy

Description

KNN Shannon Entropy Estimators.

Usage

entropy(X, k = 10, algorithm = c("kd_tree", "brute"))

Arguments

X an input data matrix.

k the maximum number of nearest neighbors to search. The default value is set to
10.

algorithm nearest neighbor search algorithm.

Value

a vector of length k for entropy estimates using 1:k nearest neighbors, respectively.

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

References

H. Singh, N. Misra, V. Hnizdo, A. Fedorowicz and E. Demchuk (2003). “Nearest neighbor estimates
of entropy”. American Journal of Mathematical and Management Sciences, 23, 301-321.

M.N. Goria, N.N.Leonenko, V.V. Mergel and P.L. Novi Inverardi (2005). “A new class of ran-
dom vector entropy estimators and its applications in testing statistical hypotheses”. Journal of
Nonparametric Statistics, 17:3, 277–297.

R.M. Mnatsakanov, N. Misra, S. Li and E.J. Harner (2008). “K_n-nearest neighbor estimators of
entropy”. Mathematical Methods of Statistics, 17:3, 261-277.

4 get.knn

get.knn Search Nearest Neighbors

Description

Fast k-nearest neighbor searching algorithms including a kd-tree, cover-tree and the algorithm im-
plemented in class package.

Usage

get.knn(data, k=10, algorithm=c("kd_tree", "cover_tree", "CR", "brute"))
get.knnx(data, query, k=10, algorithm=c("kd_tree", "cover_tree",
"CR", "brute"))

Arguments

data an input data matrix.

query a query data matrix.

algorithm nearest neighbor searching algorithm.

k the maximum number of nearest neighbors to search. The default value is set to
10.

Details

The cover tree is O(n) space data structure which allows us to answer queries in the same O(log(n))
time as kd tree given a fixed intrinsic dimensionality. Templated code from https://hunch.net/
~jl/projects/cover_tree/cover_tree.html is used.

The kd tree algorithm is implemented in the Approximate Near Neighbor (ANN) C++ library (see
http://www.cs.umd.edu/~mount/ANN/). The exact nearest neighbors are searched in this pack-
age.

The CR algorithm is the VR using distance 1-x’y assuming x and y are unit vectors. The brute
algorithm searches linearly. It is a naive method.

Value

a list contains:

nn.index an n x k matrix for the nearest neighbor indice.

nn.dist an n x k matrix for the nearest neighbor Euclidean distances.

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

https://hunch.net/~jl/projects/cover_tree/cover_tree.html
https://hunch.net/~jl/projects/cover_tree/cover_tree.html
http://www.cs.umd.edu/~mount/ANN/

KL.dist 5

References

Bentley J.L. (1975), “Multidimensional binary search trees used for associative search,” Communi-
cation ACM, 18, 309-517.

Arya S. and Mount D.M. (1993), “Approximate nearest neighbor searching,” Proc. 4th Ann. ACM-
SIAM Symposium on Discrete Algorithms (SODA’93), 271-280.

Arya S., Mount D.M., Netanyahu N.S., Silverman R. and Wu A.Y. (1998), “An optimal algorithm
for approximate nearest neighbor searching,” Journal of the ACM, 45, 891-923.

Beygelzimer A., Kakade S. and Langford J. (2006), “Cover trees for nearest neighbor,” ACM Proc.
23rd international conference on Machine learning, 148, 97-104.

See Also

nn2 in RANN, ann in yaImpute and knn in class.

Examples

data<- query<- cbind(1:10, 1:10)

get.knn(data, k=5)
get.knnx(data, query, k=5)
get.knnx(data, query, k=5, algo="kd_tree")

th<- runif(10, min=0, max=2*pi)
data2<- cbind(cos(th), sin(th))
get.knn(data2, k=5, algo="CR")

KL.dist Kullback-Leibler Divergence

Description

Compute Kullback-Leibler symmetric distance.

Usage

KL.dist(X, Y, k = 10, algorithm=c("kd_tree", "cover_tree", "brute"))
KLx.dist(X, Y, k = 10, algorithm="kd_tree")

Arguments

X An input data matrix.

Y An input data matrix.

k The maximum number of nearest neighbors to search. The default value is set
to 10.

algorithm nearest neighbor search algorithm.

6 KL.divergence

Details

Kullback-Leibler distance is the sum of divergence q(x) from p(x) and p(x) from q(x) .

KL.* versions return distances from C code to R but KLx.* do not.

Value

Return the Kullback-Leibler distance between X and Y.

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

References

S. Boltz, E. Debreuve and M. Barlaud (2007). “kNN-based high-dimensional Kullback-Leibler
distance for tracking”. Image Analysis for Multimedia Interactive Services, 2007. WIAMIS ’07.
Eighth International Workshop on.

S. Boltz, E. Debreuve and M. Barlaud (2009). “High-dimensional statistical measure for region-of-
interest tracking”. Trans. Img. Proc., 18:6, 1266–1283.

See Also

KL.divergence.

Examples

set.seed(1000)
X<- rexp(10000, rate=0.2)
Y<- rexp(10000, rate=0.4)

KL.dist(X, Y, k=5)
KLx.dist(X, Y, k=5)
#thoretical distance = (0.2-0.4)^2/(0.2*0.4) = 0.5

KL.divergence Kullback-Leibler Divergence

Description

Compute Kullback-Leibler divergence.

Usage

KL.divergence(X, Y, k = 10, algorithm=c("kd_tree", "cover_tree", "brute"))
KLx.divergence(X, Y, k = 10, algorithm="kd_tree")

KL.divergence 7

Arguments

X An input data matrix.

Y An input data matrix.

k The maximum number of nearest neighbors to search. The default value is set
to 10.

algorithm nearest neighbor search algorithm.

Details

If p(x) and q(x) are two continuous probability density functions, then the Kullback-Leibler diver-
gence of q from p is defined as Ep[log

p(x)
q(x)].

KL.* versions return divergences from C code to R but KLx.* do not.

Value

Return the Kullback-Leibler divergence from X to Y.

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

References

S. Boltz, E. Debreuve and M. Barlaud (2007). “kNN-based high-dimensional Kullback-Leibler
distance for tracking”. Image Analysis for Multimedia Interactive Services, 2007. WIAMIS ’07.
Eighth International Workshop on.

S. Boltz, E. Debreuve and M. Barlaud (2009). “High-dimensional statistical measure for region-of-
interest tracking”. Trans. Img. Proc., 18:6, 1266–1283.

See Also

KL.dist

Examples

set.seed(1000)
X<- rexp(10000, rate=0.2)
Y<- rexp(10000, rate=0.4)

KL.divergence(X, Y, k=5)
#theoretical divergence = log(0.2/0.4)+(0.4/0.2)-1 = 1-log(2) = 0.307

8 knn

knn k-Nearest Neighbour Classification

Description

k-nearest neighbour classification for test set from training set. For each row of the test set, the k
nearest (in Euclidean distance) training set vectors are found, and the classification is decided by
majority vote, with ties broken at random. If there are ties for the kth nearest vector, all candidates
are included in the vote.

Usage

knn(train, test, cl, k = 1, prob = FALSE, algorithm=c("kd_tree",
"cover_tree", "brute"))

Arguments

train matrix or data frame of training set cases.

test matrix or data frame of test set cases. A vector will be interpreted as a row
vector for a single case.

cl factor of true classifications of training set.

k number of neighbours considered.

prob if this is true, the proportion of the votes for the winning class are returned as
attribute prob.

algorithm nearest neighbor search algorithm.

Value

factor of classifications of test set. doubt will be returned as NA.

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

References

B.D. Ripley (1996). Pattern Recognition and Neural Networks. Cambridge.

M.N. Venables and B.D. Ripley (2002). Modern Applied Statistics with S. Fourth edition. Springer.

See Also

ownn, knn.cv and knn in class.

knn.cv 9

Examples

data(iris3)
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
knn(train, test, cl, k = 3, prob=TRUE)
attributes(.Last.value)

knn.cv k-Nearest Neighbour Classification Cross-Validation

Description

k-nearest neighbour classification cross-validation from training set.

Usage

knn.cv(train, cl, k = 1, prob = FALSE, algorithm=c("kd_tree",
"cover_tree", "brute"))

Arguments

train matrix or data frame of training set cases.

cl factor of true classifications of training set

k number of neighbours considered.

prob if this is true, the proportion of the votes for the winning class are returned as
attribute prob.

algorithm nearest neighbor search algorithm.

Details

This uses leave-one-out cross validation. For each row of the training set train, the k nearest
(in Euclidean distance) other training set vectors are found, and the classification is decided by
majority vote, with ties broken at random. If there are ties for the kth nearest vector, all candidates
are included in the vote.

Value

factor of classifications of training set. doubt will be returned as NA. distances and indice of k
nearest neighbors are also returned as attributes.

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

10 knn.dist

References

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

knn and knn.cv in class.

Examples

data(iris3)
train <- rbind(iris3[,,1], iris3[,,2], iris3[,,3])
cl <- factor(c(rep("s",50), rep("c",50), rep("v",50)))
knn.cv(train, cl, k = 3, prob = TRUE)
attributes(.Last.value)

knn.dist k Nearest Neighbor Distances

Description

Fast k-nearest neighbor distance searching algorithms.

Usage

knn.dist(data, k=10, algorithm=c("kd_tree", "cover_tree", "CR", "brute"))
knnx.dist(data, query, k=10, algorithm=c("kd_tree", "cover_tree",

"CR", "brute"))

Arguments

data an input data matrix.

query a query data matrix.

algorithm nearest neighbor searching algorithm.

k the maximum number of nearest neighbors to search. The default value is set to
10.

Value

return the Euclidiean distances of k nearest neighbors.

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

knn.index 11

References

Bentley J.L. (1975), “Multidimensional binary search trees used for associative search,” Communi-
cation ACM, 18, 309-517.

Arya S. and Mount D.M. (1993), “Approximate nearest neighbor searching,” Proc. 4th Ann. ACM-
SIAM Symposium on Discrete Algorithms (SODA’93), 271-280.

Arya S., Mount D.M., Netanyahu N.S., Silverman R. and Wu A.Y. (1998), “An optimal algorithm
for approximate nearest neighbor searching,” Journal of the ACM, 45, 891-923.

Beygelzimer A., Kakade S. and Langford J. (2006), “Cover trees for nearest neighbor,” ACM Proc.
23rd international conference on Machine learning, 148, 97-104.

See Also

get.knn and knn.index .

Examples

if(require(mvtnorm))
{

sigma<- function(v, r, p)
{

V<- matrix(r^2, ncol=p, nrow=p)
diag(V)<- 1
V*v

}

X<- rmvnorm(1000, mean=rep(0, 20), sigma(1, .5, 20))
print(system.time(knn.dist(X)))
print(system.time(knn.dist(X, algorithm = "kd_tree")))

}

knn.index Search Nearest Neighbors

Description

Fast k-nearest neighbor searching algorithms including a kd-tree, cover-tree and the algorithm im-
plemented in class package.

Usage

knn.index(data, k=10, algorithm=c("kd_tree", "cover_tree", "CR", "brute"))
knnx.index(data, query, k=10, algorithm=c("kd_tree", "cover_tree",

"CR", "brute"))

12 knn.index

Arguments

data an input data matrix.

query a query data matrix.

algorithm nearest neighbor searching algorithm.

k the maximum number of nearest neighbors to search. The default value is set to
10.

Value

return the indice of k nearest neighbors.

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

References

Bentley J.L. (1975), “Multidimensional binary search trees used for associative search,” Communi-
cation ACM, 18, 309-517.

Arya S. and Mount D.M. (1993), “Approximate nearest neighbor searching,” Proc. 4th Ann. ACM-
SIAM Symposium on Discrete Algorithms (SODA’93), 271-280.

Arya S., Mount D.M., Netanyahu N.S., Silverman R. and Wu A.Y. (1998), “An optimal algorithm
for approximate nearest neighbor searching,” Journal of the ACM, 45, 891-923.

Beygelzimer A., Kakade S. and Langford J. (2006), “Cover trees for nearest neighbor,” ACM Proc.
23rd international conference on Machine learning, 148, 97-104.

See Also

knn.dist and get.knn.

Examples

data<- query<- cbind(1:10, 1:10)

knn.index(data, k=5)
knnx.index(data, query, k=5)
knnx.index(data, query, k=5, algo="kd_tree")

knn.reg 13

knn.reg k Nearest Neighbor Regression

Description

k-nearest neighbor regression

Usage

knn.reg(train, test = NULL, y, k = 3, algorithm=c("kd_tree",
"cover_tree", "brute"))

Arguments

train matrix or data frame of training set cases.

test matrix or data frame of test set cases. A vector will be interpreted as a row
vector for a single case. If not supplied, cross-validataion will be done.

y reponse of each observation in the training set.

k number of neighbours considered.

algorithm nearest neighbor search algorithm.

Details

If test is not supplied, Leave one out cross-validation is performed and R-square is the predicted
R-square.

Value

knn.reg returns an object of class "knnReg" or "knnRegCV" if test data is not supplied.

The returnedobject is a list containing at least the following components:

call the match call.

k number of neighbours considered.

n number of predicted values, either equals test size or train size.

pred a vector of predicted values.

residuals predicted residuals. NULL if test is supplied.

PRESS the sums of squares of the predicted residuals. NULL if test is supplied.

R2Pred predicted R-square. NULL if test is supplied.

Note

The code for “VR” nearest neighbor searching is taken from class source

14 mutinfo

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

See Also

knn.

Examples

if(require(chemometrics)){
data(PAC);
pac.knn<- knn.reg(PAC$X, y=PAC$y, k=3);

plot(PAC$y, pac.knn$pred, xlab="y", ylab=expression(hat(y)))
}

mutinfo Mutual Information

Description

KNN Mutual Information Estimators.

Usage

mutinfo(X, Y, k=10, direct=TRUE)

Arguments

X an input data matrix.

Y an input data matrix.

k the maximum number of nearest neighbors to search. The default value is set to
10.

direct Directly compute or via entropies.

Details

The direct computation is based on the first estimator of A. Kraskov, H. Stogbauer and P.Grassberger
(2004) and the indirect computation is done via entropy estimates, i.e., I(X, Y) = H (X) + H(Y) -
H(X, Y). The direct method has smaller bias and variance but the indirect method is faster, see
Evans (2008).

Value

For direct method, one mutual information estimate; For indirect method,a vector of length k for
mutual information estimates using 1:k nearest neighbors, respectively.

ownn 15

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

References

A. Kraskov, H. Stogbauer and P.Grassberger (2004). “Estimating mutual information”. Physical
Review E, 69:066138, 1–16.

D. Evans (2008). “A Computationally efficient estimator for mutual information”. Proc. R. Soc. A,
464, 1203–1215.

ownn Optimal Weighted Nearest Neighbor Classification

Description

This function implements Samworth’s optimal weighting scheme for k nearest neighbor classifica-
tion. The performance improvement is greatest when the dimension is 4 as reported in the reference.

Usage

ownn(train, test, cl, testcl=NULL, k = NULL, prob = FALSE,
algorithm=c("kd_tree", "cover_tree", "brute"))

Arguments

train matrix or data frame of training set cases.

test matrix or data frame of test set cases. A vector will be interpreted as a row
vector for a single case.

cl factor of true classifications of training set.

testcl factor of true classifications of testing set for error rate calculation.

k number of neighbours considered, chosen by 5-fold cross-validation if not sup-
plied.

prob if this is true, the proportion of the weights for the winning class are returned as
attribute prob.

algorithm nearest neighbor search algorithm.

Value

a list includes k, predictions by ordinary knn, optimal weighted knn and bagged knn, and accuracies
if class labels of test data set are given.

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

16 print.knnReg

References

Richard J. Samworth (2012), “Optimal Weighted Nearest Neighbor Classifiers,” Annals of Statistics,
40:5, 2733-2763.

See Also

knn and knn in class.

Examples

data(iris3)
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
testcl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
out <- ownn(train, test, cl, testcl)
out

print.knnReg Print Method for KNN Regression

Description

Print method for KNN regression.

Usage

S3 method for class 'knnReg'
print(x, ...)
S3 method for class 'knnRegCV'
print(x, ...)

Arguments

x a knnReg or knnRegCV object.

... Additonal print arguments.

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: <lishengqiao@yahoo.com>

Index

∗ classif
knn, 8
knn.cv, 9
ownn, 15

∗ manip
crossentropy, 2
entropy, 3
get.knn, 4
KL.dist, 5
KL.divergence, 6
knn.dist, 10
knn.index, 11
mutinfo, 14

∗ nonparametric
knn, 8
knn.cv, 9
knn.reg, 13
ownn, 15

∗ print
print.knnReg, 16

∗ regression
knn.reg, 13

crossentropy, 2

entropy, 3

get.knn, 4, 11, 12
get.knnx (get.knn), 4

KL.dist, 5, 7
KL.divergence, 6, 6
KLx.dist (KL.dist), 5
KLx.divergence (KL.divergence), 6
knn, 5, 8, 8, 10, 14, 16
knn.cv, 8, 9, 10
knn.dist, 10, 12
knn.index, 11, 11
knn.reg, 13
knnx.dist (knn.dist), 10

knnx.index (knn.index), 11

mutinfo, 14

ownn, 8, 15

print.knnReg, 16
print.knnRegCV (print.knnReg), 16

17

	crossentropy
	entropy
	get.knn
	KL.dist
	KL.divergence
	knn
	knn.cv
	knn.dist
	knn.index
	knn.reg
	mutinfo
	ownn
	print.knnReg
	Index

