
Package: FMStable (via r-universe)
September 2, 2024

Type Package

Title Finite Moment Stable Distributions

Version 0.1-4

Date 2022-06-03

Author Geoff Robinson

Maintainer Daniel Wilson <hmp.R.package@gmail.com>

Description Some basic procedures for dealing with log maximally skew
stable distributions, which are also called finite moment log
stable distributions.

License GPL-3

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-06-06 20:10:26 UTC

Contents

Estable . 2
FMstable . 4
Gstable . 5
impliedVolatility . 8
moments . 9
optionValues . 10
stableParameters . 13

Index 15

1

2 Estable

Estable Extremal or Maximally Skew Stable Distributions

Description

Density function, distribution function, quantile function and random generation for stable distribu-
tions which are maximally skewed to the right. These distributions are called Extremal by Zolotarev
(1986).

Usage

dEstable(x, stableParamObj, log=FALSE)
pEstable(x, stableParamObj, log=FALSE, lower.tail=TRUE)
qEstable(p, stableParamObj, log=FALSE, lower.tail=TRUE)
tailsEstable(x, stableParamObj)

Arguments

x Vector of quantiles.

stableParamObj An object of class stableParameters which describes a maximally skew stable
distribution. It may, for instance, have been created by setParam or setMomentsFMstable.

p Vector of tail probabilities.

log Logical; if TRUE, the log density or log tail probability is returned by functions
dEstable and pEstable; and logarithms of probabilities are input to function
qEstable.

lower.tail Logical; if TRUE, the lower tail probability is returned. Otherwise, the upper tail
probability.

Details

The values are worked out by interpolation, with several different interpolation formulae in various
regions.

Value

dEstable gives the density function; pEstable gives the distribution function or its complement;
qEstable gives quantiles; tailsEstable returns a list with the following components which are
all the same length as x:

density The probability density function.

F The probability distribution function. i.e. the probability of being less than or equal to x.

righttail The probability of being larger than x.

logdensity The probability density function.

logF The logarithm of the probability of being less than or equal to x.

logrighttail The logarithm of the probability of being larger than x.

Estable 3

References

Chambers, J.M., Mallows, C.L. and Stuck, B.W. (1976). A method for simulating stable random
variables. Journal of the American Statistical Association, 71, 340–344.

See Also

If x has an extremal stable distribution then exp(−x) has a finite moment log stable distribution.
The left hand tail probability computed using pEstable should be the same as the coresponding
right hand tail probability computed using pFMstable.

Aspects of extremal stable distributions may also be computed (though more slowly) using tailsGstable
with beta=1.

Functions for generation of random variables having stable distributions are available in package
stabledist.

Examples

tailsEstable(-2:3, setMomentsFMstable(mean=1, sd=1.5, alpha=1.7))

Compare Estable and FMstable
obj <- setMomentsFMstable(1.7, mean=.5, sd=.2)
x <- c(.001, 1, 10)
pFMstable(x, obj, lower.tail=TRUE, log=TRUE)
pEstable(-log(x), obj, lower.tail=FALSE, log=TRUE)

x <- seq(from=-5, to=10, length=30)
plot(x, dEstable(x, setMomentsFMstable(alpha=1.5)), type="l", log="y",

ylab="Log(density) for stable distribution",
main="log stable distribution with alpha=1.5, mean=1, sd=1")

x <- seq(from=-2, to=5, length=30)
plot(x, x, ylim=c(0,1), type="n", ylab="Distribution function")
for (i in 0:2)lines(x, pEstable(x,

setParam(location=0, logscale=-.5, alpha=1.5, pm=i)), col=i+1)
legend("bottomright", legend=paste("S", 0:2, sep=""), lty=rep(1,3), col=1:3)

p <- c(1.e-10, .01, .1, .2, .5, .99, 1-1.e-10)
obj <- setMomentsFMstable(alpha=1.95)
result <- qEstable(p, obj)
pEstable(result, obj) - p

Plot to illustrate continuity near alpha=1
y <- seq(from=-36, to=0, length=30)
logprob <- -exp(-y)
plot(0, 0, type="n", xlim=c(-25,0), ylim=c(-35, -1),

xlab="x (M parametrization)", ylab="-log(-log(distribution function))")
for (oneminusalpha in seq(from=-.2, to=0.2, by=.02)){

obj <- setParam(oneminusalpha=oneminusalpha, location=0, logscale=0, pm=0)
type <- if(oneminusalpha==0) 2 else 1
lines(qEstable(logprob, obj, log=TRUE), y, lty=type, lwd=type)

}

4 FMstable

FMstable Finite Moment Log Stable Distributions

Description

Density function, distribution function, and quantile function for a log stable distribution with loca-
tion, scale and shape parameters. For such families of distributions all moments are finite. Carr and
Wu (2003) refer to such distributions as “finite moment log stable processes”.

The finite moment log stable distribution is well-defined for α = 0, when the distribution is discrete
with probability concentrated at x=0 and at one other point. The distribution function may be
computed by pFMstable.alpha0.

Usage

dFMstable(x, stableParamObj, log=FALSE)
pFMstable(x, stableParamObj, log=FALSE, lower.tail=TRUE)
pFMstable.alpha0(x, mean=1, sd=1, lower.tail=TRUE)
qFMstable(p, stableParamObj, lower.tail=TRUE)
tailsFMstable(x, stableParamObj)

Arguments

x Vector of quantiles.

stableParamObj An object of class stableParameters which describes a maximally skew stable
distribution. It may, for instance, have been created by setMomentsFMstable
or fitGivenQuantile.

mean Mean of logstable distribution.

sd Standard deviation of logstable distribution.

p Vector of tail probabilities.

log Logical; if TRUE, the log density or log tail probability is returned by functions
dFMstable and pFMstable; and logarithms of probabilities are input to function
qFMstable.

lower.tail Logical; if TRUE, the lower tail probability is returned. Otherwise, the upper tail
probability.

Details

The values are worked out by interpolation, with several different interpolation formulae in various
regions.

Value

dFMstable gives the density function; pFMstable gives the distribution function or its complement;
qFMstable gives quantiles; tailsFMstable returns a list with the following components which are
all the same length as x:

Gstable 5

density The probability density function.

F The probability distribution function. i.e. the probability of being less than or equal to x.

righttail The probability of being larger than x.

logdensity The probability density function.

logF The logarithm of the probability of being less than or equal to x.

logrighttail The logarithm of the probability of being larger than x.

References

Carr, P. and Wu, L. (2003). The Finite Moment Log Stable Process and Option Pricing. Journal of
Finance, American Finance Association, vol. 58(2), pages 753-778

See Also

If a random variable X has a finite moment stable distribution then log(X) has the corresponding
extremal stable distribution. The density of log(X) can be found using dEstable. Option prices
can be found using callFMstable and putFMstable.

Examples

tailsFMstable(1:10, setMomentsFMstable(3, 1.5, alpha=1.7))

x <- c(-1, 0, 1.e-5, .001, .01, .03, seq(from=.1, to=4.5, length=100))
plot(x, pFMstable(x, setMomentsFMstable(1, 1.5, 2)), type="l" ,xlim=c(0, 4.3),

ylim=c(0,1), ylab="Distribution function")
for (alpha in c(.03, 1:19/10)) lines(x, pFMstable(x,

setMomentsFMstable(1, 1.5, alpha)), col=2)
lines(x, pFMstable.alpha0(x, mean=1, sd=1.5), col=3)

p <- c(1.e-10, .01, .1, .2, .5, .99, 1-1.e-10)
obj <- setMomentsFMstable(alpha=1.95)
result <- qFMstable(p, obj)
OK <- result > 0
pFMstable(result[OK], obj) - p[OK]

Gstable General Stable Distributions

Description

A procedure based on the R function integrate for computing the distribution function for stable
distributions which may be skew but have standard location and scale parameters. This computation
is not fast.

It is not designed to work for alpha near to 1.

6 Gstable

Usage

tailsGstable(x, logabsx, alpha, oneminusalpha, twominusalpha,
beta, betaplus1, betaminus1, parametrization, lower.tail=TRUE)

Arguments

x Value (scalar).

logabsx Logarithm of absolute value of x. Must be used when x is outside the range over
which numbers can be stored. (e.g. 1.e-5000)

alpha Value of parameter of stable distribution.

oneminusalpha Value of alpha. This should be specified when alpha is near to 1 so that the
difference from 1 is specified accurately.

twominusalpha Value of 2 - alpha. This should be specified when alpha is near to 2 so that the
difference from 2 is specified accurately.

beta Value of parameter of stable distribution.

betaplus1 Value of beta + 1. This should be specified when beta is near to -1 so that the
difference from -1 is specified accurately.

betaminus1 Value of beta - 1. This should be specified when beta is near to 1 so that the
difference from 1 is specified accurately.

parametrization

Parametrization: 0 for Zolotarev’s M = Nolan S0, 1 for Zolotarev’s A = Nolan
S1 and 2 for Zolotarev’s C = Chambers, Mallows and Stuck.

lower.tail Logical: Whether the lower tail of the distribution is of primary interest. This
parameter affects whether numerical integration is used for the lower or upper
tail. The other tail is computed by subtraction.

Value

Returns a list with the following components:

left.tail.prob The probability distribution function. I.e. the probability of being less than or equal
to x.

right.tail.prob The probability of being larger than x.

est.error An estimate of the computational error in the previous two numbers.

message A message produced by R’s standard integrate routine.

Note

This code is included mainly as an illustration of a way to deal with the problem that different
parametrizations are useful in different regions. It is also of some value for checking other code,
particularly since it was not used as the basis for the interpolation tables.

For the C parametrization for alpha greater than 1, the parameter beta needs to be set to -1 for the
distribution to be skewed to the right.

Gstable 7

References

Chambers, J.M., Mallows, C.L. and Stuck, B.W. (1976) A method for simulating stable random
variables. Journal of the American Statistical Association 71, 340–344.

Examples

Check relationship between maximally skew and other stable distributions
in paper by J.M. Chambers, C.L. Mallows and B.W. Stuck
alpha <- 1.9
beta <- -.5
k <- 1- abs(1-alpha)
denom <- sin(pi*k)
p <- (sin(.5*pi*k * (1+beta))/denom)^(1/alpha)
q <- (sin(.5*pi*k * (1-beta))/denom)^(1/alpha)
Probability that p S1 - q S2 < x
S1 <- setParam(alpha=1.9, location=0, logscale =log(p), pm="C")
S2 <- setParam(alpha=1.9, location=0, logscale =log(q), pm="C")
S3 <- setParam(alpha=1.9, location=0, logscale =0, pm="C")
xgiven <- 1
f <- function(x) dEstable(x, S1) * pEstable(xgiven + x, S2)
print(integrate(f, lower=-Inf, upper=Inf, rel.tol=1.e-12)$value, digits=16)
f <- function(x) dEstable(x, S3) * pEstable((xgiven + p*x)/q, S3)
print(integrate(f, lower=-Inf, upper=Inf, rel.tol=1.e-8)$value, digits=16)
direct <- tailsGstable(x=xgiven, logabsx=log(xgiven),alpha=alpha,

beta=beta, parametrization=2)
print(direct$left.tail.prob, digits=16)

Compare Estable and Gstable
List fractional discrepancies
disc <- function(tol){

for(pm in pms) for (a in alphas) for(x in xs) {
lx <- log(abs(x))
beta <- if(pm==2 && a > 1) -1 else 1
if(x > 0 || a > 1){

a1 <- pEstable(x, setParam(alpha=a, location=0, logscale=0, pm=pm))
a2 <- tailsGstable(x=x, logabsx=lx, alpha=a, beta=beta,

parametrization=pm)$left.tail.prob
print(paste("parametrization=", pm, "alpha=", a,"x=", x,

"Frac disc=", a1/a2-1), quote=FALSE)
}

}
}

alphas <- c(.3, .8, 1.1, 1.5, 1.9)
pms <- 0:2
xs <- c(-2, .01, 4.3)
disc()

8 impliedVolatility

impliedVolatility Computations Regarding Value of Options for Log Normal Distribu-
tions

Description

Computes values of European-style call and put options over assets whose future price is expected
to follow a log normal distribution.

Usage

BSOptionValue(spot, strike, expiry, volatility,
intRate=0, carryCost=0, Call=TRUE)

ImpliedVol(spot, strike, expiry, price, intRate=0, carryCost=0,
Call=TRUE, ImpliedVolLowerBound=.01, ImpliedVolUpperBound=1, tol=1.e-9)

lnorm.param(mean, sd)

Arguments

spot The current price of a security.

strike The strike price for an option.

expiry The time when an option may be exercised. (We are only dealing with European
options which have a single date on which they may be exercised.)

volatility The volatility of the price of a security per unit time. This is the standard devia-
tion of the logarithm of price.

price The price for an option. This is used as an input parameter when computing the
implied volatility.

intRate The interest rate.

carryCost The carrying cost for a security. This may be negative when a security is ex-
pected to pay a dividend.

Call Logical: Whether the option for which a price is given is a call option.

ImpliedVolLowerBound

Lower bound used when searching for the inplied volatility.

ImpliedVolUpperBound

Upper bound used when searching for the inplied volatility.

tol Tolerance specifying accuracy of search for implied volatility.

mean The mean of a quantity which has a lognormal distribution.

sd The standard deviation of a quantity which has a lognormal distribution.

moments 9

Details

The lognormal distribution is the limit of finite moment log stable distributions as alpha tends to
2. The function lnorm.param finds the mean and standard deviation of a lognormal distribution on
the log scale given the mean and standard deviation on the raw scale. The function BSOptionValue
finds the value of a European call or put option. The function ImpliedVol allows computation of
the implied volatility, which is the volatility on the logarithmic scale which matches the value of an
option to a specified price.

Value

impVol returns the implied volatility when the value of options is computed using a finite mo-
ment log stable distribution. approx.impVol returns an approximation to the implied volatility.
lnorm.param returns the mean and standard deviation of the underlying normal distribution.

See Also

Option prices computed using the log normal model can be compared to those computed for the
finite moment log stable model using putFMstable and callFMstable.

Examples

lnorm.param(mean=5, sd=.8)
BSOptionValue(spot=4, strike=c(4, 4.5), expiry=.5, volatility=.15)
ImpliedVol(spot=4, strike=c(4, 4.5), expiry=.5, price=c(.18,.025))

moments Convolutions of Finite Moment Log Stable Distributions and the Mo-
ments of such Distributions

Description

If X1, . . . , Xn are independent random variables with the same stable distribution then X1 + · · ·+
Xn has a stable distribution with the same alpha. The function iidcombine allows the parameters of
the resulting stable distribution to be computed. Because stable distributions are infinitely divisible,
it is also easy to find the parameters describing the distribution of X1 from the parameters describing
the distribution of X1 + · · ·+Xn.

Convolutions of maximally skew stable distributions correspond to products of logstable distribu-
tions. The raw moments of these distributions (i.e. moments about zero, not moments about the
mean) can be readily computed using the function moments. Note that the raw moments of the
convolution of two independent distributions are the products of the corresponding moments of the
component distributions, so the accuracy of iidcombine can be checked by using moments.

Usage

iidcombine(n, stableParamObj)
moments(powers, stableParamObj, log=FALSE)

10 optionValues

Arguments

n Number of random variables to be convoluted. May be any positive number.

powers Raw moments of logstable distributions to be computed.

stableParamObj An object of class stableParameters which describes a maximally skew stable
distribution.

log Logical; if TRUE, the logarithms of moments are returned.

Value

The value returned by iidcombine is another object of class stableParameters. The value re-
turned by moments is a numeric vector giving the values of the specified raw moments.

See Also

Objects of class stableParameters can be created using functions such as setParam. The taking
of convolutions is sometimes associated with the computing of values of options using functions
such as callFMstable.

Examples

yearDsn <- fitGivenQuantile(mean=1, sd=2, prob=.7, value=.1)
upper <- exp(-yearDsn$location) # Only sensible for alpha<.5
x <- exp(seq(from=log(.0001), to=log(upper), length=50))
plot(x, pFMstable(x, yearDsn), type="l", ylim=c(.2,1), lwd=2, xlab="Price",

ylab="Distribution function of future price")
half <- iidcombine(.5, yearDsn)
lines(x, pFMstable(x, half), lty=2, lwd=2)
quarter <- iidcombine(.25, yearDsn)
lines(x, pFMstable(x, quarter), lty=3, lwd=2)
legend("bottomright", legend=paste(c("1","1/2","1/4"),"year"), lty=c(1,2,3),

lwd=c(2,2,2))
moments(1:2, yearDsn)
moments(1:2, half)
moments(1:2, quarter)

Check logstable against lognormal
iidcombine(2, setMomentsFMstable(.5, .2, alpha=2))
p <- lnorm.param(.5, .2)
2*p$meanlog # Gives the mean
log(p$sdlog) # Gives the logscale

optionValues Values of Options over Finite Moment Log Stable Distributions

Description

Computes values of European-style call and put options over assets whose future price is expected
to follow a finite moment log stable distribution.

optionValues 11

Usage

putFMstable(strike, paramObj, rel.tol=1.e-10)
callFMstable(strike, paramObj, rel.tol=1.e-10)
optionsFMstable(strike, paramObj, rel.tol=1.e-10)

Arguments

strike The strike price for an option.

paramObj An object of class stableParameters which describes a maximally skew sta-
ble distribution. This is the distribution which describes possible prices for the
underlying security at the time of expiry.

rel.tol The relative tolerance used for numerical integration for finding option values.

Value

optionsFMstable returns a list containing the values of put options and the values of call options.

Note

When comparing option values based on finite moment log stable distributions with ones based on
log normal distributions, remember that the interest rate and holding cost have been ignored here.

Rather than using functions putFMstable and callFMstable for options that are extremely in-
the-money (i.e. the options are almost certain to be exercised), the values of such options can be
computed more accurately by first computing the value of the out-of-the-money option and then
using the relationship spot + put = call + strike. This is done by function optionsFMstable.

See Also

An example of how an object of class stableParameters may be created is by setParam. Proce-
dures for dealing with the log normal model for options pricing include BSOptionValue.

Examples

paramObj <- setMomentsFMstable(mean=10, sd=1.5, alpha=1.8)
putFMstable(c(10,7), paramObj)
callFMstable(c(10,7), paramObj)
optionsFMstable(8:12, paramObj)
Note that call - put = mean - strike

Values of some extreme put options
paramObj <- setMomentsFMstable(mean=1, sd=1.5, alpha=0.02)
putFMstable(1.e-200, paramObj)
putFMstable(1.e-100, paramObj)
pFMstable(1.e-100, paramObj)
putFMstable(1.e-50, paramObj)

Asymptotic behaviour
logmlogx <- seq(from=2, to=6, length=30)
logx <- -exp(logmlogx)

12 optionValues

x <- exp(logx)
plot(logmlogx , putFMstable(x, paramObj)/(x*pFMstable(x, paramObj)), type="l")

Work out the values of some options using FMstable model
spot <- 20
strikes <- c(15,18:20, 20:24, 18:20, 20:23)
isCall <- rep(c(FALSE,TRUE,FALSE,TRUE), c(4,5,3,4))
expiry <- rep(c(.2, .5), c(9,7))
Distributions for 0.2 and 0.5 of a year given distribution describing
multiplicative change in price over a year:
annual <- fitGivenQuantile(mean=1, sd=.2, prob=2.e-4, value=.01)
timep2 <- iidcombine(.2, annual)
timep5 <- iidcombine(.5, annual)
imp.vols <- prices <- rep(NA, length(strikes))
use <- isCall & expiry==.2
prices[use] <- callFMstable(strikes[use]/spot, timep2) * spot
use <- !isCall & expiry==.2
prices[use] <- putFMstable(strikes[use]/spot, timep2) * spot
use <- isCall & expiry==.5
prices[use] <- callFMstable(strikes[use]/spot, timep5) * spot
use <- !isCall & expiry==.5
prices[use] <- putFMstable(strikes[use]/spot, timep5) * spot
Compute implied volatilities.
imp.vols[isCall] <- ImpliedVol(spot=spot, strike=strikes[isCall],

expiry=expiry[isCall], price=prices[isCall], Call=TRUE)
imp.vols[!isCall] <- ImpliedVol(spot=spot, strike=strikes[!isCall],

expiry=expiry[!isCall], price=prices[!isCall], Call=FALSE)

List values of options
cbind(strikes, expiry, isCall, prices, imp.vols)

Can the distribution be recovered from the values of the options?
discrepancy <- function(alpha, cv){

annual.fit <- setMomentsFMstable(mean=1, sd=cv, alpha=alpha)
timep2.fit <- iidcombine(.2, annual.fit)
timep5.fit <- iidcombine(.5, annual.fit)
prices.fit <- rep(NA, length(strikes))
use <- isCall & expiry==.2
prices.fit[use] <- callFMstable(strikes[use]/spot, timep2.fit) * spot
use <- !isCall & expiry==.2
prices.fit[use] <- putFMstable(strikes[use]/spot, timep2.fit) * spot
use <- isCall & expiry==.5
prices.fit[use] <- callFMstable(strikes[use]/spot, timep5.fit) * spot
use <- !isCall & expiry==.5
prices.fit[use] <- putFMstable(strikes[use]/spot, timep5.fit) * spot
return(sum((prices.fit - prices)^2))

}
Search on scales of log(2-alpha) and log(cv)
d <- function(param) discrepancy(2-exp(param[1]), exp(param[2]))
system.time(result <- nlm(d, p=c(-2,-1.5)))
Estimated alpha
2-exp(result$estimate[1])
Estimated cv

stableParameters 13

exp(result$estimate[2])

Searching just for best alpha
d <- function(param) discrepancy(param, .2)
system.time(result <- optimize(d, lower=1.6, upper=1.98))
Estimated alpha
result$minimum

stableParameters Setting up Parameters to Describe both Extremal Stable Distributions
and Finite Moment Log Stable Distributions

Description

Functions which create stable distributions having specified properties. Each of these functions
takes scalar arguments and produces a description of a single stable distribution.

Usage

setParam(alpha, oneminusalpha, twominusalpha, location, logscale, pm)
setMomentsFMstable(mean=1, sd=1, alpha, oneminusalpha, twominusalpha)
fitGivenQuantile(mean, sd, prob, value, tol=1.e-10)
matchQuartiles(quartiles, alpha, oneminusalpha, twominusalpha, tol=1.e-10)

Arguments

alpha Stable distribution parameter which must be a single value satisfying 0 < α <=
2.

oneminusalpha Alternative specification of stable distribution parameter: Specify 1-alpha.

twominusalpha Alternative specification of stable distribution parameter: Specify 2-alpha.

location Location parameter of stable distribution.

logscale Logarithm of scale parameter of stable distribution.

pm Parametrization used in specifying stable distribution which is maximally skewed
to the right. Allowable values are 0, "S0", "M", 1, "S1", "A", 2, "CMS" or "C"
for some common parametrizations.

mean Mean of logstable distribution.

sd Standard deviation of logstable distribution.

value, prob Required probability distribution function (> 0) for a logstable distribution at a
value (> 0).

quartiles Vector of two quartiles to be matched by a logstable distribution.

tol Tolerance for matching of quantile or quartiles.

14 stableParameters

Details

The parametrizations used internally by this package are Nolan’s "S0" (or Zolotarev’s "M") parametriza-
tion when alpha >= 0.5, and the Zolotarev’s "C" parametrization (which was used by Chambers,
Mallows and Struck (1976) when alpha < 0.5.

By using objects of class stableParameters to store descriptions of stable distributions, it will
generally be possible to write code in a way which is not affected by the internal representation.
Such usage is encouraged.

Value

Each of the functions described here produces an object of class stableParameters which de-
scribes a maximally skew stable distribution. Its components include at least the shape parameter
alpha, a location parameter referred to as location and the logarithm of a scale parameter referred
to as logscale.

Currently objects of this class also store information about how they were created, as well as storing
the numbers 1-alpha and 2-alpha in order to improve computational precision.

References

Chambers, J.M., Mallows, C.L. and Stuck, B.W. (1976). A method for simulating stable random
variables. Journal of the American Statistical Association, Vol. 71, 340–344.

Nolan, J.P. (2012). Stable Distributions. ISBN 9780817641597

Zolotarev, V.M. (1986). One-Dimensional Stable Distributions. Amer. Math. Soc. Transl. of Math.
Monographs, Vol. 65. Amer Math. Soc., Providence, RI. (Original Russian version was published
in 1983.)

See Also

Extremal stable distributions with parameters set up using these procedures can be used by functions
such as dEstable. The corresponding finite moment log stable distributions can be dealt with using
functions such as dFMstable.

Examples

setParam(alpha=1.5, location=1, logscale=-.6, pm="M")
setParam(alpha=.4, location=1, logscale=-.6, pm="M")
setMomentsFMstable(alpha=1.7, mean=.5, sd=.2)
fitGivenQuantile(mean=5, sd=1, prob=.001, value=.01, tol=1.e-10)
fitGivenQuantile(mean=20, sd=1, prob=1.e-20, value=1, tol=1.e-24)
matchQuartiles(quartiles=c(9,11), alpha=1.8)

Index

∗ distribution
Estable, 2
FMstable, 4
Gstable, 5
impliedVolatility, 8
moments, 9
optionValues, 10
stableParameters, 13

BSOptionValue, 11
BSOptionValue (impliedVolatility), 8

callFMstable, 5, 9, 10
callFMstable (optionValues), 10

dEstable, 5, 14
dEstable (Estable), 2
dFMstable, 14
dFMstable (FMstable), 4

Estable, 2

fitGivenQuantile, 4
fitGivenQuantile (stableParameters), 13
FMstable, 4

Gstable, 5

iidcombine (moments), 9
ImpliedVol (impliedVolatility), 8
impliedVolatility, 8
integrate, 6

lnorm.param (impliedVolatility), 8

matchQuartiles (stableParameters), 13
moments, 9

optionsFMstable (optionValues), 10
optionValues, 10

pEstable (Estable), 2

pFMstable, 3
pFMstable (FMstable), 4
print.stableParameters

(stableParameters), 13
putFMstable, 5, 9
putFMstable (optionValues), 10

qEstable (Estable), 2
qFMstable (FMstable), 4

setMomentsFMstable, 2, 4
setMomentsFMstable (stableParameters),

13
setParam, 2, 10, 11
setParam (stableParameters), 13
stable (stableParameters), 13
stableParameters, 2, 13

tailsEstable (Estable), 2
tailsFMstable (FMstable), 4
tailsGstable, 3
tailsGstable (Gstable), 5

15

	Estable
	FMstable
	Gstable
	impliedVolatility
	moments
	optionValues
	stableParameters
	Index

