Title: | Truncated Functional Generalized Linear Models |
---|---|
Description: | An implementation of the methodologies described in Xi Liu, Afshin A. Divani, and Alexander Petersen (2022) <doi:10.1016/j.csda.2022.107421>, including truncated functional linear and truncated functional logistic regression models. |
Authors: | Xi Liu [aut], Chau Tran [aut, cre], Alexander Petersen [aut] |
Maintainer: | Chau Tran <[email protected]> |
License: | GPL-2 |
Version: | 0.1.0 |
Built: | 2024-10-30 07:44:49 UTC |
Source: | CRAN |
Fit a truncated functional linear or logistic regression model using nested group lasso penalty.
The solution path is computed efficiently using active set algorithm with warm start. Optimal tuning parameters ()
are chosen by Bayesian information criterion (BIC).
fglm_trunc( Y, X.curves, S = NULL, grid = NULL, family = c("gaussian", "binomial"), degree = 3, nbasis = NULL, knots = NULL, nlambda.s = 10, lambda.s.seq = NULL, precision = 1e-05, parallel = FALSE )
fglm_trunc( Y, X.curves, S = NULL, grid = NULL, family = c("gaussian", "binomial"), degree = 3, nbasis = NULL, knots = NULL, nlambda.s = 10, lambda.s.seq = NULL, precision = 1e-05, parallel = FALSE )
Y |
|
X.curves |
|
S |
(optional) |
grid |
A sequence of |
family |
Choice of exponential family for the model. The function then uses corresponding canonical link function to fit model. |
degree |
Degree of the piecewise polynomial. Default 3 for cubic splines. |
nbasis |
Number of B-spline basis.
If |
knots |
|
nlambda.s |
(optional) Length of sequence of smoothing regularization parameters. Default 10. |
lambda.s.seq |
(optional) Sequence of smoothing regularization parameters. |
precision |
(optional) Error tolerance of the optimization. Default 1e-5. |
parallel |
(optional) If TRUE, use parallel |
For an order q
B-splines (q = degree + 1
since an intercept is used) with k
internal knots 0 < t_1
<...< t_k
< T,
the number of B-spline basis equals q + k
. Without truncation (_t=0), the function returns smoothing estimate that is
equivalent to the method of Cardot and Sarda (2005), and optimal smoothing parameter is chosen by Generalized Cross Validation (GCV).
family
The model can work with Gaussian or Bernoulli responses. If family="gaussian"
, identity link is used. If family="binomial"
, logit link is used.
FGLMtrunc
allows using scalar predictors together with functional predictors. If scalar predictors are used, their estimated coefficients
are included in alpha
form fitted model.
A list with components:
grid |
The |
knots |
The |
degree |
The degree of the piecewise polynomial used. |
eta.0 |
Estimate of B-spline coefficients |
beta.0 |
Estimate of functional parameter |
eta.truncated |
Estimate of B-spline coefficients |
beta.truncated |
Estimate of functional parameter |
lambda.s0 |
Optimal smoothing regularization parameter without truncation chosen by GCV. |
lambda.s |
Optimal smoothing regularization parameter with truncation chosen by BIC. |
lambda.t |
Optimal truncation regularization parameter chosen by BIC. |
trunc.point |
Truncation point |
alpha |
Intercept (and coefficients of scalar predictors if used) of truncated model. |
scalar.pred |
Logical variable indicating whether any scalar predictor was used. |
call |
Function call of fitted model. |
family |
Choice of exponential family used. |
Xi Liu, Afshin A. Divani, and Alexander Petersen. "Truncated estimation in functional generalized linear regression models" (2022). Computational Statistics & Data Analysis.
Hervé Cardot and Pacal Sarda. "Estimation in generalized linear models for functional data via penalized likelihood" (2005). Journal of Multivariate Analysis.
bSpline from splines2 R package for usage of B-spline basis.
# Gaussian response data(LinearExample) Y_linear = LinearExample$Y Xcurves_linear = LinearExample$X.curves fit1 = fglm_trunc(Y_linear, Xcurves_linear, nbasis = 20, nlambda.s = 1) print(fit1) plot(fit1)
# Gaussian response data(LinearExample) Y_linear = LinearExample$Y Xcurves_linear = LinearExample$X.curves fit1 = fglm_trunc(Y_linear, Xcurves_linear, nbasis = 20, nlambda.s = 1) print(fit1) plot(fit1)
Randomly generated data with Gaussian responses for functional linear regression example follows Case I from Liu et. al. (2022).
data(LinearExample)
data(LinearExample)
List containing the following elements:
200 by 101 matrix of functional predictors.
200 by 1 numeric vector of Gaussian responses.
The true functional parameter .
Xi Liu, Afshin A. Divani, and Alexander Petersen. "Truncated estimation in functional generalized linear regression models" (2022). Computational Statistics & Data Analysis.
Randomly generated data with Bernoulli responses for functional logistic regression example follows Case I from Liu et. al. (2022).
data(LogisticExample)
data(LogisticExample)
List containing the following elements:
200 by 101 matrix of functional predictors.
200 by 1 numeric vector of Bernoulli responses.
The true functional parameter .
Xi Liu, Afshin A. Divani, and Alexander Petersen. "Truncated estimation in functional generalized linear regression models" (2022). Computational Statistics & Data Analysis.
from a FGLMtrunc
objectPlot functional parameters as a function of
for a fitted
FGLMtrunc
object.
## S3 method for class 'FGLMtrunc' plot(x, include_smooth = TRUE, ...)
## S3 method for class 'FGLMtrunc' plot(x, include_smooth = TRUE, ...)
x |
fitted |
include_smooth |
If TRUE, smoothing estimate without truncation of |
... |
additional plot arguments |
No return value.
FGLMtrunc
fitted modelThis function returns truncated estimate of linear predictors, fitted values, and functional parameter
for a fitted
FGLMtrunc
object.
## S3 method for class 'FGLMtrunc' predict( object, newX.curves, newS = NULL, type = c("link", "response", "coefficients"), ... )
## S3 method for class 'FGLMtrunc' predict( object, newX.curves, newS = NULL, type = c("link", "response", "coefficients"), ... )
object |
fitted |
newX.curves |
Matrix of new values for functional predictors |
newS |
Matrix of new values for scalar predictors |
type |
Type of prediction. For logistic regression ( |
... |
additional predict arguments (Not applicable for FGLMtrunc) |
Predictions depends on chosen type
.
FGLMtrunc
objectPrint a summary of truncation point of the fitted FGLMtrunc
model.
## S3 method for class 'FGLMtrunc' print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'FGLMtrunc' print(x, digits = max(3, getOption("digits") - 3), ...)
x |
fitted |
digits |
significant digits in printout |
... |
additional print arguments |
Truncation point estimate of is printed.
The fitted object is silently return.