ExactCIone

Introduction

This vignette serves an introduction to the R package ‘ExactCIone’, which is aimed at constructing the admissible exact confidence intervals (CI) for the binomial proportion, the poisson mean and the total number of subjects with a certain attribute or the total number of the subjects for the hypergeometric distribution. Both one-sided and two-sided CI are of interest. This package can be used to calculate the intervals constructed methods developed by Wang (2014) and Wang (2015).

library(ExactCIone)

Admissible exact CI for binomial proportion p

Suppose X ∼ bino(n, p), the sample space of X is {0, 1, ..., n}. Wang (2014) proposed an admissible interval for p which is obtained by uniformly shrinking the initial 1 − α Clopper-Pearson interval from the middle to both sides of the sample space iteratively. This interval is admissible so that any proper sub-interval of it cannot assure the confidence coefficient. So the interval cannot be shortened anymore.

# Compute the 95% confidence interval when x=2, n=5.
WbinoCI(x=2,n=5,conf.level=0.95)
#> $CI
#>      x     lower     upper
#> [1,] 2 0.0764403 0.8107447

Use “details=TRUE” to show the CIs of the whole sample space.

WbinoCI(x=2,n=5,conf.level=0.95,details=TRUE)
#> $CI
#>      x     lower     upper
#> [1,] 2 0.0764403 0.8107447
#> 
#> $CIM
#>      x      lower     upper
#> [1,] 0 0.00000000 0.5000000
#> [2,] 1 0.01020614 0.6574084
#> [3,] 2 0.07644030 0.8107447
#> [4,] 3 0.18925530 0.9235597
#> [5,] 4 0.34259163 0.9897939
#> [6,] 5 0.49999997 1.0000000
#> 
#> $icp
#> [1] 0.95

The one-sided intervals are the one-sided 1 − α Clopper-Pearson intervals (Clopper and Pearson, 1934). Also show all the CIs when “details=TRUE”.

WbinoCI_lower(x=2,n=5,conf.level=0.95)
#> $CI
#>      sample      lower upper
#> [1,]      2 0.07644039     1
WbinoCI_lower(x=2,n=5,conf.level=0.95,details=TRUE)
#> $CI
#>      sample      lower upper
#> [1,]      0 0.00000000     1
#> [2,]      1 0.01020622     1
#> [3,]      2 0.07644039     1
#> [4,]      3 0.18925538     1
#> [5,]      4 0.34259168     1
#> [6,]      5 0.54928027     1
WbinoCI_upper(x=2,n=5,conf.level=0.95)
#> $CI
#>      sample lower     upper
#> [1,]      2     0 0.8107446
WbinoCI_upper(x=2,n=5,conf.level=0.95,details=TRUE)
#> $CI
#>      sample lower     upper
#> [1,]      0     0 0.4507197
#> [2,]      1     0 0.6574083
#> [3,]      2     0 0.8107446
#> [4,]      3     0 0.9235596
#> [5,]      4     0 0.9897938
#> [6,]      5     0 1.0000000

Admissible exact CI for the poisson mean λ

Suppose X ∼ poi(λ), the sample space of X is {0, 1, ...}. Wang (2014) proposed an admissible interval for λ which is obtained by uniformly shrinking the initial 1 − α Clopper-Pearson interval one by one from 0 to the sample point of interest. This interval is admissible so that any proper sub-interval of it cannot assure the confidence coefficient, which means the interval cannot be shortened anymore.

# The admissible CI for poisson mean when the observed sample is x=3. 
WpoisCI(x=3,conf.level = 0.95)
#> $CI
#>      x     lower    upper
#> [1,] 3 0.8176914 8.395386
#We show the intervals from 0 to the sample of interest when "details=TRUE".
WpoisCI(x=3,conf.level = 0.95,details = TRUE)
#> $CI
#>      x     lower    upper
#> [1,] 3 0.8176914 8.395386
#> 
#> $CIM
#>      x      lower    upper
#> [1,] 0 0.00000000 3.453832
#> [2,] 1 0.05129329 5.491160
#> [3,] 2 0.35536150 6.921952
#> [4,] 3 0.81769144 8.395386
#> 
#> $icp
#> [1] 0.95

The one-sided intervals are the one-sided 1 − α Clopper-Pearson intervals which is givend by Garwood (1936). Also shows all the CIs when “details=TRUE”.

WpoisCI_lower(x=3,conf.level = 0.95)
#> $CI
#>      sample              
#> [1,]      3 0.8176914 Inf
WpoisCI_lower(x=3,conf.level = 0.95,details = TRUE)
#> $CI
#>      x     lower upper
#> [1,] 3 0.8176914   Inf
#> 
#> $CIM
#>      sample      lower upper
#> [1,]      0 0.00000000   Inf
#> [2,]      1 0.05129329   Inf
#> [3,]      2 0.35536151   Inf
#> [4,]      3 0.81769145   Inf
WpoisCI_upper(x=3,conf.level = 0.95)
#> $CI
#>      sample           
#> [1,]      3 0 7.753657
WpoisCI_upper(x=3,conf.level = 0.95,details = TRUE)
#> $CI
#>      x lower    upper
#> [1,] 3     0 7.753657
#> 
#> $CIM
#>      sample lower    upper
#> [1,]      0     0 2.995732
#> [2,]      1     0 4.743865
#> [3,]      2     0 6.295794
#> [4,]      3     0 7.753657

Admissible exact confidence intervals for N, the number of balls in an urn.

Suppose X ∼ Hyper(M, N, n). The sample space is {0, …, min (M, n)}. When M and n are known, Wang (2015) construct an admissible confidence interval for N by uniformly shrinking the initial 1 − α Clopper-Pearson type interval from 0 to min (M, n). Also this interval cannot be shortened more.

# For hyper(M,N,n), construct 95% CI for N on the observed sample x when n,M are known.
WhyperCI_N(x=5,n=10,M=800,conf.level = 0.95)
#> $CI
#>      x lower upper
#> [1,] 5  1031  3591
# It shows CIs for all the sample point When "details=TRUE".
WhyperCI_N(x=5,n=10,M=800,conf.level = 0.95,details=TRUE)
#> $CI
#>      x lower upper
#> [1,] 5  1031  3591
#> 
#> $CIM
#>        x lower  upper
#>  [1,]  0  3003    Inf
#>  [2,]  1  1837 156370
#>  [3,]  2  1459  21746
#>  [4,]  3  1295   9160
#>  [5,]  4  1151   5326
#>  [6,]  5  1031   3591
#>  [7,]  6   943   3002
#>  [8,]  7   878   2096
#>  [9,]  8   831   1779
#> [10,]  9   805   1411
#> [11,] 10   800   1150
#> 
#> $icp
#> [1] 0.9500001

The one-sided 1 − α CI for N is the one-sided Clopper-Pearson type interval (Konijn, 1973).

WhyperCI_N_lower(x=0,n=10,M=800,conf.level = 0.95)
#> $CI
#>      x         
#> [1,] 0 3095 Inf
WhyperCI_N_lower(x=0,n=10,M=800,conf.level = 0.95,details=TRUE)
#> $CI
#>      sample lower upper
#> [1,]      0  3095   Inf
#> 
#> $CIM
#>       sample lower upper
#>  [1,]      0  3095   Inf
#>  [2,]      1  2033   Inf
#>  [3,]      2  1581   Inf
#>  [4,]      3  1321   Inf
#>  [5,]      4  1151   Inf
#>  [6,]      5  1031   Inf
#>  [7,]      6   943   Inf
#>  [8,]      7   878   Inf
#>  [9,]      8   831   Inf
#> [10,]      9   805   Inf
#> [11,]     10   800   Inf
WhyperCI_N_upper(x=0,n=10,M=800,conf.level = 0.95)
#> $CI
#>      x      
#> [1,] 0 0 Inf
WhyperCI_N_upper(x=0,n=10,M=800,conf.level = 0.95,details=TRUE)
#> $CI
#>      sample lower upper
#> [1,]      0     0   Inf
#> 
#> $CIM
#>       sample lower  upper
#>  [1,]      0     0    Inf
#>  [2,]      1     0 156370
#>  [3,]      2     0  21746
#>  [4,]      3     0   9160
#>  [5,]      4     0   5326
#>  [6,]      5     0   3591
#>  [7,]      6     0   2631
#>  [8,]      7     0   2030
#>  [9,]      8     0   1619
#> [10,]      9     0   1318
#> [11,]     10     0   1077

Admissible exact CI for M, the number of white balls in an urn

Suppose X ∼ Hyper(M, N, n). When N and n are known, Wang (2015) construct an admissible confidence interval for N by uniformly shrinking the initial 1 − α Clopper-Pearson type interval from the mid-point of the sample space to 0. This interval is admissible so that any proper sub-interval of it cannot assure the confidence coefficient. This means the interval cannot be shortened anymore.

# For Hyper(M,N,n), construct the CI for M on the observed sample x when n, N are known. 
# Also output CI for p=M/N.
WhyperCI_M(x=0,n=10,N=2000,conf.level = 0.95)
#> $CI
#>      x lower upper
#> [1,] 0     0   608
#> 
#> $CI_p
#>      p lower upper
#> [1,] 0     0 0.304
WhyperCI_M(x=0,n=10,N=2000,conf.level = 0.95,details = TRUE)
#> $CI
#>      X lower upper
#> [1,] 0     0   608
#> 
#> $CIM
#>        x lower upper
#>  [1,]  0     0   608
#>  [2,]  1    11   873
#>  [3,]  2    74  1102
#>  [4,]  3   176  1236
#>  [5,]  4   301  1391
#>  [6,]  5   446  1554
#>  [7,]  6   609  1699
#>  [8,]  7   764  1824
#>  [9,]  8   898  1926
#> [10,]  9  1127  1989
#> [11,] 10  1392  2000
#> 
#> $CIM_p
#>         p lower_p upper_p
#>  [1,] 0.0  0.0000  0.3040
#>  [2,] 0.1  0.0055  0.4365
#>  [3,] 0.2  0.0370  0.5510
#>  [4,] 0.3  0.0880  0.6180
#>  [5,] 0.4  0.1505  0.6955
#>  [6,] 0.5  0.2230  0.7770
#>  [7,] 0.6  0.3045  0.8495
#>  [8,] 0.7  0.3820  0.9120
#>  [9,] 0.8  0.4490  0.9630
#> [10,] 0.9  0.5635  0.9945
#> [11,] 1.0  0.6960  1.0000
#> 
#> $icp
#> [1] 0.9500005

The one-sided 1 − α CI for M is the one-sided Clopper-Pearson type interval (Konijn, 1973).

WhyperCI_M_lower(X=0,n=10,N=2000,conf.level = 0.95)
#> $CI
#>      X      N
#> [1,] 0 0 2000
WhyperCI_M_lower(X=0,n=10,N=2000,conf.level = 0.95,details = TRUE)
#> $CI
#>      X      N
#> [1,] 0 0 2000
#> 
#> $CIM
#>       sample lower upper
#>  [1,]      0     0  2000
#>  [2,]      1    11  2000
#>  [3,]      2    74  2000
#>  [4,]      3   176  2000
#>  [5,]      4   301  2000
#>  [6,]      5   446  2000
#>  [7,]      6   609  2000
#>  [8,]      7   788  2000
#>  [9,]      8   988  2000
#> [10,]      9  1213  2000
#> [11,]     10  1484  2000
WhyperCI_M_upper(X=0,n=10,N=2000,conf.level = 0.95)
#> $CI
#>      X      
#> [1,] 0 0 516
WhyperCI_M_upper(X=0,n=10,N=2000,conf.level = 0.95,details = TRUE)
#> $CI
#>      X      
#> [1,] 0 0 516
#> 
#> $CIM
#>       sample lower upper
#>  [1,]      0     0   516
#>  [2,]      1     0   787
#>  [3,]      2     0  1012
#>  [4,]      3     0  1212
#>  [5,]      4     0  1391
#>  [6,]      5     0  1554
#>  [7,]      6     0  1699
#>  [8,]      7     0  1824
#>  [9,]      8     0  1926
#> [10,]      9     0  1989
#> [11,]     10     0  2000

Reference

Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits in the case of the binomial. “Biometrika” 26: 404-413.

Garwood, F. (1936). Fiducial Limits for the Poisson Distribution. “Biometrika” 28: 437-442.

Konijn, H. S. (1973). Statistical Theory of Sample Survey Design and Analysis, Amsterdam: North-Holland.

Wang, W. (2014). An iterative construction of confidence intervals for a proportion. “Statistica Sinica” 24: 1389-1410.

Wang, W. (2015). Exact Optimal Confidence Intervals for Hypergeometric Parameters. “Journal of the American Statistical Association” 110 (512): 1491-1499.