Title: | Functions Based on Entropic Statistics |
---|---|
Description: | Contains methods for data analysis in entropic perspective. These entropic perspective methods are nonparametric, and perform better on non-ordinal data. Currently, the package has a function HeatMap() for visualizing distributional characteristics among multiple populations (groups). |
Authors: | Jialin Zhang (JZ) [aut, cph, cre] |
Maintainer: | Jialin Zhang (JZ) <[email protected]> |
License: | GPL-3 |
Version: | 0.1.0 |
Built: | 2024-11-20 06:51:51 UTC |
Source: | CRAN |
Returns a heatmap to display characteristic information from selected groups.
HeatMap( data_frequency_list, orders = seq(0.50, 3, by = 0.01), selection = 1:length(data_frequency_list), plot_order = selection, RowNames = names(data_frequency_list)[plot_order], title = "HeatMap", x_ticks = round(stats::quantile(orders, c(0,0.25, 0.5, 0.75, 1)), 2), plot_margin = margin(0.5,0.2,0.2,1, "cm"), text_face = 1, fill_colors = c("blue4", "white", "red3"), title_text_size = 25, label_text_size = 25 )
HeatMap( data_frequency_list, orders = seq(0.50, 3, by = 0.01), selection = 1:length(data_frequency_list), plot_order = selection, RowNames = names(data_frequency_list)[plot_order], title = "HeatMap", x_ticks = round(stats::quantile(orders, c(0,0.25, 0.5, 0.75, 1)), 2), plot_margin = margin(0.5,0.2,0.2,1, "cm"), text_face = 1, fill_colors = c("blue4", "white", "red3"), title_text_size = 25, label_text_size = 25 )
data_frequency_list |
A list contains the frequency of data. Each sublist herein is a frequency counts of a group. |
orders |
Orders of Generalized Shannon's Entropy used in the heatmap. |
selection |
Indexes of sublist in |
plot_order |
The order of selected groups in the heatmap, from bottom to top. |
RowNames |
The display names of the selected groups in the heatmap. |
title |
The title of the heatmap. |
x_ticks |
The location of x-axis ticks on the heatmap. |
plot_margin |
The plot margins of the final heatmap. |
text_face |
The text style in the heatmap. |
fill_colors |
Three colors in the heatmap that represent lower, medium, and upper values. |
title_text_size |
Title text size in the heatmap. |
label_text_size |
Labels text size in the heatmap. |
This is a preliminary tool to identify distributional information from multiple groups simultaneuously without any parametric assumptions.
A heatmap plot made with ggplot2
.
Jialin Zhang (JZ) at jzhang at math.msstate.edu.
## Creating data binom_n <- 10 sample_size <- 1000 sample_1 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.1)) sample_2 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.2)) sample_3 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.3)) sample_4 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.4)) sample_5 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.5)) sample_6 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.6)) sample_7 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.7)) sample_8 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.8)) sample_9 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.9)) sample_poisson_1 <- stats::rpois(sample_size, 1) sample_poisson_2 <- stats::rpois(sample_size, 2) sample_poisson_3 <- stats::rpois(sample_size, 3) sample_poisson_4 <- stats::rpois(sample_size, 4) sample_poisson_5 <- stats::rpois(sample_size, 5) sample_poisson_6 <- stats::rpois(sample_size, 6) sample_poisson_7 <- stats::rpois(sample_size, 7) sample_poisson_8 <- stats::rpois(sample_size, 8) sample_poisson_9 <- stats::rpois(sample_size, 9) data_samples <- list(binom_0.1 = sample_1, binom_0.2 = sample_2, binom_0.3 = sample_3, binom_0.4 = sample_4, binom_0.5 = sample_5, binom_0.6 = sample_6, binom_0.7 = sample_7, binom_0.8 = sample_8, binom_0.9 = sample_9, Poisson_1 = sample_poisson_1, Poisson_2 = sample_poisson_2, Poisson_3 = sample_poisson_3, Poisson_4 = sample_poisson_4, Poisson_5 = sample_poisson_5, Poisson_6 = sample_poisson_6, Poisson_7 = sample_poisson_7, Poisson_8 = sample_poisson_8, Poisson_9 = sample_poisson_9) ## Obtain the heatmap for all sublists in the data. HeatMap(data_samples) ## Obtain the heatmap for six random sublists in the data. HeatMap(data_samples, selection = c(sample(1:length(data_samples), 6))) ## Obtain the heatmap for the binomial sublists in the data. HeatMap(data_samples, selection = 1:9) ## Obtain the heatmap for the first 4 poisson sublists in the data. HeatMap(data_samples, selection = 10:13) ## Obtain the heatmap for the last 5 poisson sublists in the data. HeatMap(data_samples, selection = 14:18)
## Creating data binom_n <- 10 sample_size <- 1000 sample_1 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.1)) sample_2 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.2)) sample_3 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.3)) sample_4 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.4)) sample_5 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.5)) sample_6 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.6)) sample_7 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.7)) sample_8 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.8)) sample_9 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.9)) sample_poisson_1 <- stats::rpois(sample_size, 1) sample_poisson_2 <- stats::rpois(sample_size, 2) sample_poisson_3 <- stats::rpois(sample_size, 3) sample_poisson_4 <- stats::rpois(sample_size, 4) sample_poisson_5 <- stats::rpois(sample_size, 5) sample_poisson_6 <- stats::rpois(sample_size, 6) sample_poisson_7 <- stats::rpois(sample_size, 7) sample_poisson_8 <- stats::rpois(sample_size, 8) sample_poisson_9 <- stats::rpois(sample_size, 9) data_samples <- list(binom_0.1 = sample_1, binom_0.2 = sample_2, binom_0.3 = sample_3, binom_0.4 = sample_4, binom_0.5 = sample_5, binom_0.6 = sample_6, binom_0.7 = sample_7, binom_0.8 = sample_8, binom_0.9 = sample_9, Poisson_1 = sample_poisson_1, Poisson_2 = sample_poisson_2, Poisson_3 = sample_poisson_3, Poisson_4 = sample_poisson_4, Poisson_5 = sample_poisson_5, Poisson_6 = sample_poisson_6, Poisson_7 = sample_poisson_7, Poisson_8 = sample_poisson_8, Poisson_9 = sample_poisson_9) ## Obtain the heatmap for all sublists in the data. HeatMap(data_samples) ## Obtain the heatmap for six random sublists in the data. HeatMap(data_samples, selection = c(sample(1:length(data_samples), 6))) ## Obtain the heatmap for the binomial sublists in the data. HeatMap(data_samples, selection = 1:9) ## Obtain the heatmap for the first 4 poisson sublists in the data. HeatMap(data_samples, selection = 10:13) ## Obtain the heatmap for the last 5 poisson sublists in the data. HeatMap(data_samples, selection = 14:18)