Package 'ELT'

Title: Experience Life Tables
Description: Build experience life tables.
Authors: Julien Tomas, Frederic Planchet, Wassim Youssef
Maintainer: Wassim Youssef <[email protected]>
License: GPL (>= 2)
Version: 1.7
Built: 2024-11-23 06:35:03 UTC
Source: CRAN

Help Index


ELT - A package to build Experience Life Tables

Description

Collection of functions that can be used following a pre-established procedure to build and validate actuarial life tables.

Details

Package: ELT
Type: Package
Version: 1.6
Date: 2016-04-10
License: GNU
Depends: locfit,lattice,latticeExtra,xlsx

The package is meant to be used following a pre-established procedure.

See the reference for more info.

Please notice that the package includes the following internal functions:

.BeforeAfterCompletion(); .ComparisonFitsMethods(); .ComparisonFitsMethodsLog(); .ComparisonResidualsMethods(); .ComparisonResidualsMethods(); .ComparisonTrendsMethods(); .CompletionDG2005(); .CompLevel1(); .CompLevel2(); .CompLevel3(); .DevFct(); .ExportHistoryInExcel(); .ExportPeriodicLifeExpinExcel(); .ExportSingleIndiciesinExcel(); .ExportValidationL1inExcel(); .ExportValidationL2inExcel(); .FctCohortLifeExp5(); .FctPerLifeExp(); .FctSingleIndices(); .FitPopsAfterCompletionLog(); .FittedDxtAndConfInt(); .GetCritLevel1(); .GetCritLevel2(); .GetCV(); .GetFitSim(); .GetHistory(); .GetQtiles(); .GetRelDisp(); .GetSimExp(); .PlotCrit(); .PlotCritChoice(); .PlotDIntConf(); .PlotExpQtle(); .PlotFittedYear(); .PlotFittedYearLog(); .PlotMethod(); .PlotParamCompletion(); .PlotPerExp(); .PlotRelDisp(); .PlotRes(); .ResFct(); .SimDxt(); .ValidationLevel3(); .WarningInvalidAge() .

These functions can be accessed with the prefix ELT::: using the following syntax: ELT:::[name of the function] . For example : ELT:::.GetHistory(). See technical note II1291-15 (http://www.ressources-actuarielles.net/gtmortalite) for the arguments and examples of the functions.

References

Tomas, J. , Planchet, F. , Prospective mortality tables and portfolio experience, Chapter 9 in Computational Actuarial Science, with R ; Arthur Charpentier Editor, Chapman, 2014

Tomas, J. , Planchet, F. , Constructing entity specific prospective mortality table : adjustment to a reference, Les cahiers de recherche de l'ISFA, 2013(13), pp.1-31, 2013.

Tomas, J. , Planchet, F. , Construction d'une table de mortalite par positionnement : Mode d'emploi, Institut des Actuaires, Rapport technique II1291-15, pp. 1-27, 2013

Tomas, J. , Planchet, F. , Criteres de Validation : Aspects Methodologiques, Institut des Actuaires, Rapport technique II1291-14, pp. 1-31, 2013

Tomas, J. , Planchet, F. , Methodes de positionnement : Aspects Methodologiques, Institut des Actuaires, Rapport technique II1291-12, pp. 1-12, 2013

Denuit, M. and Goderniaux, A. C. (2005). Closing and projecting life tables using log-linear models. Bulletin of the Swiss Association of Actuaries, (1), 29-48

http://www.ressources-actuarielles.net/gtmortalite for data and exemple codes.

Examples

## Not run: 
data(MyPortfolio)
data(ReferenceMale)
data(ReferenceFemale)

## ------------------------------------------------------------------------ ##
##  Initialize Age variables                                                ##
## ------------------------------------------------------------------------ ##

AgeRange <- 30:90
AgeCrit <- 30:90
AgeRef <- 30:95

History <- ReadHistory(MyPortfolio = MyPortfolio, DateBegObs = "1996/01/01",
DateEndObs = "2007/12/31", DateFormat = "

MyData <- AddReference(History = History, ReferenceMale = ReferenceMale,
ReferenceFemale = ReferenceFemale)

## ######################################################################## ##
## METHOD 1 ############################################################### ##
## ######################################################################## ##

## ------------------------------------------------------------------------ ##
##  Execute method 1                                                        ##
## ------------------------------------------------------------------------ ##

OutputMethod1 <- Method1(MyData = MyData, AgeRange = AgeRange,  Plot = T)

## ------------------------------------------------------------------------ ##
##  Validate method 1 by the 1st level citeria                              ##
## ------------------------------------------------------------------------ ##

## ---------- Execute 1st level citeria.

ValidationLevel1Method1 <- ValidationLevel1(OutputMethod = OutputMethod1, MyData = MyData,
 AgeCrit = AgeCrit, ValCrit = 0.05, Plot = T, Excel = T)

## ---------- If the criterions corresponding to the 1st level are not 
## ---------- satisfied, we can modify the age range used to compute the SMR
## ---------- and reexecute
## ---------- OutputMethod1 <- Method1(...)
## ---------- and
## ---------- ValidationLevel1Method1 <- ValidationLevel1(...).
## ---------- If the criterions corresponding to the 1st level are still not 
## ---------- satisfied, we turn to the method 2, and it is useless to
## ---------- pursue the completion of the table and the validation.
## ---------- If the criterions are satisfied, we continue the validation with
## ---------- the criterions corresponding to the 2nd level.
## ---------- We can also turn to method 3 or 4 to improve the fit at a cost 
## ---------- of a somewhat greeter complexity.

## ------------------------------------------------------------------------ ##
##  Validate method 1 by the 2nd level citeria                              ##
## ------------------------------------------------------------------------ ##

## ---------- Execute 2nd level criterions

ValidationLevel2Method1 <- ValidationLevel2(OutputMethod = OutputMethod1, MyData = MyData,
 AgeCrit = AgeCrit, ValCrit = 0.05, Excel = T)

## ---------- If the criterions corresponding to the 2nd level are not satisfied
## ---------- we turn to the method 2 and it is useless to pursue the 
## ---------- completion of the table and the validation.
## ---------- If the criterions are satisfied, we continue the validation with
## ---------- the completion of the table and the criterions corresponding to
## ---------- the 3rd level.

## ------------------------------------------------------------------------ ##
##  Completion Method 1                                                     ##
## ------------------------------------------------------------------------ ##

## ---------- Age range for the selection of the optimal starting age.

AgeRangeOptMale <- AgeRangeOptFemale <-  c(80, 80)

## ---------- In theory, we could select the optimal starting age, however 
## ---------- the optimal starting age can vary a lot with the calendar years
## ---------- leading to a relatively irregular surface. In practice, we
## ---------- select then a fixed age for the whole years.

## ---------- Starting age for which the fitted probabilities of the death are
## ---------- replaced by the values obtained from the completion model.

BegAgeCompMale <- BegAgeCompFemale <- 85

## ---------- We check if the completion is smoothed with graphical
## ---------- diagnostics.

CompletionMethod1 <- CompletionA(OutputMethod = OutputMethod1, MyData = MyData,
 AgeRangeOptMale = AgeRangeOptMale, AgeRangeOptFemale = AgeRangeOptFemale,
 BegAgeCompMale = BegAgeCompMale, BegAgeCompFemale = BegAgeCompFemale, ShowPlot = T)

## ---------- If the completion is not satisfying, we modify the values
## ---------- AgeRangeOpt and BegAgeComp, and we repeat the previous script
## ---------- CompletionA()
## ---------- If the completion is satisfying, we execute

FinalMethod1 <- CompletionB(ModCompletion = CompletionMethod1, OutputMethod = OutputMethod1,
 MyData = MyData, Plot = T, Excel = T)

## ------------------------------------------------------------------------ ##
##  Validate method 1 by the 3rd level citeria                              ##
## ------------------------------------------------------------------------ ##

## ---------- Execute 3rd level criterions

ValidationLevel3Method1 <- ValidationLevel3(FinalMethod = FinalMethod1, MyData = MyData,
 Plot = T, Excel = T)

## ------------------------------------------------------------------------ ##
##  Coef Varition, Conf int. and rel. disp. of fitted per. life exp.        ##
## ------------------------------------------------------------------------ ##

## ---------- Compute the coefficient of variation, confidence intervals and
## ---------- relative dispersion of the fitted perdiodic life expectancies

DispersionMethod1 <- Dispersion(FinalMethod = FinalMethod1, MyData = MyData, Plot = T,NbSim = 10)

## ######################################################################## ##
## METHOD 2 ############################################################### ##
## ######################################################################## ##

## ------------------------------------------------------------------------ ##
##  Execute method 2                                                        ##
## ------------------------------------------------------------------------ ##

OutputMethod2 <- Method2(MyData = MyData, AgeRange = AgeRange, Plot = T)

## ------------------------------------------------------------------------ ##
##  Validate method 2 by the 1st level citeria                              ##
## ------------------------------------------------------------------------ ##

## ---------- Execute 1st level citeria.

ValidationLevel1Method2 <- ValidationLevel1(OutputMethod = OutputMethod2, MyData = MyData,
 AgeCrit = AgeCrit, ValCrit = 0.05, Plot = T, Excel = T)

## ---------- If the criterions corresponding to the 1st level are not 
## ---------- satisfied, we turn to the method 3, and it is useless to
## ---------- pursue the completion of the table and the validation.
## ---------- If the criterions are satisfied, we continue the validation with
## ---------- the criterions corresponding to the 2nd level.
## ---------- We can also turn to method 4 to improve the fit at a cost 
## ---------- of a somewhat greeter complexity.

## ------------------------------------------------------------------------ ##
##  Validate method 2 by the 2nd level citeria                              ##
## ------------------------------------------------------------------------ ##

## ---------- Execute 2nd level criterions

ValidationLevel2Method2 <- ValidationLevel2(OutputMethod = OutputMethod2, AgeCrit = AgeCrit,
 ValCrit = 0.05, MyData = MyData, Excel = T)

## ---------- If the criterions corresponding to the 2nd level are not satisfied
## ---------- we turn to the method 3 and it is useless to pursue the 
## ---------- completion of the table and the validation.
## ---------- If the criterions are satisfied, we continue the validation with
## ---------- the completion of the table and the criterions corresponding to
## ---------- the 3rd level.

## ------------------------------------------------------------------------ ##
##  Completion Method 2                                                     ##
## ------------------------------------------------------------------------ ##

## ---------- We check if the completion is smoothed with graphical
## ---------- diqgnostics.

CompletionMethod2 <- CompletionA(OutputMethod = OutputMethod2, MyData = MyData,
 AgeRangeOptMale = AgeRangeOptMale, AgeRangeOptFemale = AgeRangeOptFemale, 
BegAgeCompMale = BegAgeCompMale, BegAgeCompFemale = BegAgeCompFemale, ShowPlot = T)

## ---------- If the completion is not satisfying, we modify the values
## ---------- AgeRangeOpt and BegAgeComp, and we repeat the previous script
## ---------- CompletionA()
## ---------- If the completion is satisfying, we execute

FinalMethod2 <- CompletionB(ModCompletion = CompletionMethod2, OutputMethod = OutputMethod2,
 MyData = MyData, Plot = T, Excel = T)

## ------------------------------------------------------------------------ ##
##  Validate method 2 by the 3rd level citeria                              ##
## ------------------------------------------------------------------------ ##

## ---------- Execute 3rd level criterions

ValidationLevel3Method2 <- ValidationLevel3(FinalMethod = FinalMethod2, MyData = MyData,
 Plot = T, Excel = T)

## ------------------------------------------------------------------------ ##
##  Coef Varition, Conf int. and rel. disp. of fitted per. life exp.        ##
## ------------------------------------------------------------------------ ##

## ---------- Compute the coefficient of variation, confidence intervals and
## ---------- relative dispersion of the fitted perdiodic life expectancies

DispersionMethod2 <- Dispersion(FinalMethod = FinalMethod2, MyData = MyData, Plot = T, NbSim = 10)

## ######################################################################## ##
## METHOD 3 ############################################################### ##
## ######################################################################## ##

## ------------------------------------------------------------------------ ##
##  Execute method 3                                                        ##
## ------------------------------------------------------------------------ ##

OutputMethod3 <- Method3(MyData = MyData, AgeRange = AgeRange, Plot = T)

## ------------------------------------------------------------------------ ##
##  Validate method 3 by the 1st level citeria                              ##
## ------------------------------------------------------------------------ ##

## ---------- Execute 1st level citeria.

ValidationLevel1Method3 <- ValidationLevel1(OutputMethod = OutputMethod3, MyData = MyData,
 AgeCrit = AgeCrit, ValCrit = 0.05, Plot = T, Excel = T)

## ---------- If the criterions corresponding to the 1st level are not 
## ---------- satisfied, we turn to the method 4, and it is useless to
## ---------- pursue the completion of the table and the validation.
## ---------- If the criterions are satisfied, we continue the validation with
## ---------- the criterions corresponding to the 2nd level.

## ------------------------------------------------------------------------ ##
##  Validate method 3 by the 2nd level citeria                              ##
## ------------------------------------------------------------------------ ##

## ---------- Execute 2nd level criterions

ValidationLevel2Method3 <- ValidationLevel2(OutputMethod = OutputMethod3, MyData = MyData,
 AgeCrit = AgeCrit, ValCrit = 0.05, Excel = T)

## ---------- If the criterions corresponding to the 2nd level are not satisfied
## ---------- we turn to the method 4 and it is useless to pursue the 
## ---------- completion of the table and the validation.
## ---------- If the criterions are satisfied, we continue the validation with
## ---------- the completion of the table and the criterions corresponding to
## ---------- the 3rd level.

## ------------------------------------------------------------------------ ##
##  Completion Method 3                                                     ##
## ------------------------------------------------------------------------ ##

## ---------- We check if the completion is smoothed with graphical
## ---------- diqgnostics.

CompletionMethod3 <- CompletionA(OutputMethod = OutputMethod3, MyData = MyData, 
AgeRangeOptMale = AgeRangeOptMale, AgeRangeOptFemale = AgeRangeOptFemale,
 BegAgeCompMale = BegAgeCompMale, BegAgeCompFemale = BegAgeCompFemale, ShowPlot = T)

## ---------- If the completion is not satisfying, we modify the values
## ---------- AgeRangeOpt and BegAgeComp, and we repeat the previous script
## ---------- CompletionA()
## ---------- If the completion is satisfying, we execute

FinalMethod3 <- CompletionB(ModCompletion = CompletionMethod3, OutputMethod = OutputMethod3,
MyData = MyData, Plot = T, Excel = T)

## ------------------------------------------------------------------------ ##
##  Validate method 3 by the 3rd level citeria                              ##
## ------------------------------------------------------------------------ ##

## ---------- Execute 3rd level criterions

ValidationLevel3Method3 <- ValidationLevel3(FinalMethod = FinalMethod3, MyData = MyData,
 Plot = T, Excel = T)

## ------------------------------------------------------------------------ ##
##  Coef Varition, Conf int. and rel. disp. of fitted per. life exp.        ##
## ------------------------------------------------------------------------ ##

## ---------- Compute the coefficient of variation, confidence intervals and
## ---------- relative dispersion of the fitted perdiodic life expectancies

DispersionMethod3 <- Dispersion(FinalMethod = FinalMethod3, MyData = MyData, Plot = T, NbSim = 10)

## ######################################################################## ##
## METHOD 4 ############################################################### ##
## ######################################################################## ##

## ------------------------------------------------------------------------ ##
##  Execute method 4                                                        ##
## ------------------------------------------------------------------------ ##

## ---------- Execute method 4 first part.

OutputMethod4PartOne <- Method4A(MyData = MyData, AgeRange = AgeRange, AgeCrit = AgeCrit,
 ShowPlot = T)

## ---------- Select the optimal smoothing parameters.

## ---------- Execute method 4 second part.

OutputMethod4 <- Method4B(PartOne, MyData = MyData, OptMale = c(1, 16),
 OptFemale = c(1, 14), Plot = T)

## ------------------------------------------------------------------------ ##
##  Validate method 4 by the 1st level citeria                              ##
## ------------------------------------------------------------------------ ##

## ---------- Execute 1st level citeria.

ValidationLevel1Method4 <- ValidationLevel1(OutputMethod = OutputMethod4, MyData = MyData,
 AgeCrit = AgeCrit, ValCrit = 0.05, Plot = T, Excel = T)

## ---------- If the criterions corresponding to the 1st level are not 
## ---------- satisfied, we turn to the method 4, and it is useless to
## ---------- pursue the completion of the table and the validation.
## ---------- If the criterions are satisfied, we continue the validation with
## ---------- the criterions corresponding to the 2nd level.

## ------------------------------------------------------------------------ ##
##  Validate method 4 by the 2nd level citeria                              ##
## ------------------------------------------------------------------------ ##

## ---------- Execute 2nd level criterions

ValidationLevel2Method4 <- ValidationLevel2(OutputMethod = OutputMethod4, MyData = MyData,
 AgeCrit = AgeCrit, ValCrit = 0.05, Excel = T)

## ---------- If the criterions corresponding to the 2nd level are not satisfied
## ---------- we turn to the method 4 and it is useless to pursue the 
## ---------- completion of the table and the validation.
## ---------- If the criterions are satisfied, we continue the validation with
## ---------- the completion of the table and the criterions corresponding to
## ---------- the 3rd level.

## ------------------------------------------------------------------------ ##
##  Completion Method 4                                                     ##
## ------------------------------------------------------------------------ ##

## ---------- We check if the completion is smoothed with graphical
## ---------- diqgnostics.

CompletionMethod4 <- CompletionA(OutputMethod = OutputMethod4, MyData = MyData,
 AgeRangeOptMale = AgeRangeOptMale, AgeRangeOptFemale = AgeRangeOptFemale, 
BegAgeCompMale = BegAgeCompMale, BegAgeCompFemale = BegAgeCompFemale, ShowPlot = T)

## ---------- If the completion is not satisfying, we modify the values
## ---------- AgeRangeOpt and BegAgeComp, and we repeat the previous script
## ---------- CompletionA()
## ---------- If the completion is satisfying, we execute

FinalMethod4 <- CompletionB(ModCompletion = CompletionMethod4, OutputMethod = OutputMethod4,
 MyData = MyData, Plot = T, Excel = T)

## ------------------------------------------------------------------------ ##
##  Validate method 4 by the 3rd level citeria                              ##
## ------------------------------------------------------------------------ ##

## ---------- Execute 3rd level criterions

ValidationLevel3Method4 <- ValidationLevel3(FinalMethod = FinalMethod4, MyData = MyData,
Plot = T, Excel = T)

## ------------------------------------------------------------------------ ##
##  Coef Varition, Conf int. and rel. disp. of fitted per. life exp.        ##
## ------------------------------------------------------------------------ ##

## ---------- Set the number of simulations

## ---------- Compute the coefficient of variation, confidence intervals and
## ---------- relative dispersion of the fitted perdiodic life expectancies

DispersionMethod4 <- Dispersion(FinalMethod = FinalMethod4, MyData = MyData, Plot = T, NbSim = 10)

## ######################################################################## ##
## COMPARISON OF THE METHODS ############################################## ##
## ######################################################################## ##

## ---------- Once we have fitted the data with a number of methods, we can
## ---------- compare them. In the following, we compare the fitted
## ---------- probabilities of death in original and log scale, the
## ---------- residuals, the fitted deaths as well as the coherence of the
## ---------- extrapolated mortality trends

## ---------- You can change the color vector for comparison, color need to
## ---------- be in html format

## ---------- Store the output into a list

ListOutputs <- list(OutputMethod1, OutputMethod2, OutputMethod3, OutputMethod4)
ListValidationLevel1 <- list(ValidationLevel1Method1, ValidationLevel1Method2,
 ValidationLevel1Method3, ValidationLevel1Method4)
ListValidationLevel2 <- list(ValidationLevel2Method1, ValidationLevel2Method2,
 ValidationLevel2Method3, ValidationLevel2Method4)
ListValidationLevel3 <- list(ValidationLevel3Method1, ValidationLevel3Method2,
 ValidationLevel3Method3, ValidationLevel3Method4)

ComparisonsMethodsLevels123 <- ComparisonMethods(ListOutputs, ListValidationLevel1,
 ListValidationLevel2, ListValidationLevel3, MyData = MyData, Plot = T, AgeCrit = AgeCrit)


## End(Not run)

AddReference function.

Description

This function imports reference tables.

Usage

AddReference(History, ReferenceMale = NULL, ReferenceFemale = NULL)

Arguments

History

History as returned by the ReadHistory function.

ReferenceMale

data.frame representing the reference table. See data(ReferenceMale) for the format.

ReferenceFemale

data.frame representing the reference table. See data(ReferenceFemale) for the format.


ComparisonMethods function

Description

This function compares two or several methods using the three groups of criteria from the validation process.

Usage

ComparisonMethods(ListOutputs, ListValidationLevel1, ListValidationLevel2,
  ListValidationLevel3, MyData = MyData, Plot = F,
  ColorComp = c("#FF6590", "#309BFF", "#AD79FC", "#3CAB5F"),
  LtyComp = rep(1, 4), AgeCrit)

Arguments

ListOutputs

For the comparisons of n methods, a list of n elements containing the returned value of the functions Methodn().

ListValidationLevel1

For the comparisons of n methods, a list of n elements containing the returned value of the function ValidationLevel1() for each of the n methods.

ListValidationLevel2

For the comparisons of n methods, a list of n elements containing the returned value of the function ValidationLevel2() for each of the n methods.

ListValidationLevel3

For the comparisons of n methods, a list of n elements containing the returned value of the function ValidationLevel3() for each of the n methods.

MyData

The list returned by the AddReference() function.

Plot

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots corresponding to the smoothed surface.

ColorComp

The color that will be used for the plots (HTML notation). For the comparisons of n methods, ColorComp is a vector of length n.

LtyComp

Vector of parameters (length n) for the lty plot parameter.

AgeCrit

Age range for the comparison of adjusted mortality and observed mortality.


CompletionA function

Description

This function executes the first part of table closure using Denuit and Goderniaux (2005)

Usage

CompletionA(OutputMethod, MyData, AgeRangeOptMale, AgeRangeOptFemale,
  BegAgeCompMale, BegAgeCompFemale, Color = MyData$Param$Color,
  ShowPlot = T)

Arguments

OutputMethod

The list returned by one of these functions : Method1(), Method2(), Method3() or Method4B().

MyData

The list returned by the AddReference() function.

AgeRangeOptMale

Age range from which the optimal starting age is selected for males

AgeRangeOptFemale

Age range from which the optimal starting age is selected for females

BegAgeCompMale

For ages after BegAgeCompMale, observed death probabilitiy is replaced by the model output.

BegAgeCompFemale

For ages after BegAgeCompFemale, observed death probabilitiy is replaced by the model output.

Color

The color that will be used for the plots (HTML notation).

ShowPlot

If true, create graphics comparing Before/After the completion create graphics of the completed surfaces.


CompletionB function

Description

This function executes the second part of table closure

Usage

CompletionB(ModCompletion, OutputMethod, MyData, Color = MyData$Param$Color,
  Plot = F, Excel = F)

Arguments

ModCompletion

Output of the function CompletionA().

OutputMethod

The list returned by one of these functions : Method1(), Method2(), Method3() or Method4B().

MyData

The list returned by the AddReference() function.

Color

The color that will be used for the plots (HTML notation).

Plot

If true, create graphics.

Excel

If true, create Excel files.


Dispersion function

Description

This function allows to calculate confidence intervals for period life expectancies.

Usage

Dispersion(FinalMethod, MyData, NbSim, CompletionTable = T, Plot = F,
  Color = MyData$Param$Color)

Arguments

FinalMethod

The list returned by the CompletionB() function.

MyData

The list returned by the AddReference() function.

NbSim

The number of simulations for the Dispersion.

CompletionTable

If TRUE, apply completion

Plot

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots describing the validation analysis.

Color

The color that will be used for the plots (HTML notation).


FctMethod1 function

Description

FctMethod1() is an alternative to Method1(). It allows to process the smoothing without using a "Data" object and by defining all the needed parameters independently.

Usage

FctMethod1(d, e, qref, x1, x2, t1, t2)

Arguments

d

Number of deaths.

e

Exposure to risk.

qref

Mortality rates in Reference Table.

x1

Age range used for calculation.

x2

Age range of reference table.

t1

Calendar years used for the calculation. It corresponds to the common years among observations and the reference table.

t2

Calendar years of the reference.


FctMethod2 function

Description

FctMethod2() is an alternative to Method2(). It allows to process the smoothing without using a "Data" object and by defining all the needed parameters independently.

Usage

FctMethod2(d, e, qref, x1, x2, t1, t2)

Arguments

d

Number of deaths.

e

Exposure to risk.

qref

Mortality rates in Reference Table.

x1

Age range used for calculation.

x2

Age range of reference table.

t1

Calendar years used for the calculation. It corresponds to the common years among observations and the reference table.

t2

Calendar years of the reference.


FctMethod3 function

Description

FctMethod3() is an alternative to Method3(). It allows to process the smoothing without using a "Data" object and by defining all the needed parameters independently.

Usage

FctMethod3(d, e, qref, x1, x2, t1, t2)

Arguments

d

Number of deaths.

e

Exposure to risk.

qref

Mortality rates in Reference Table.

x1

Age range used for calculation.

x2

Age range of reference table.

t1

Calendar years used for the calculation. It corresponds to the common years among observations and the reference table.

t2

Calendar years of the reference.


FctMethod4_1stPart function

Description

FctMethod4_1stPart() is an alternative to Method4A(). It allows to process the smoothing without using a "Data" object and by defining all the needed parameters independently.

Usage

FctMethod4_1stPart(d, e, qref, x1, x2, t1)

Arguments

d

Number of deaths.

e

Exposure to risk.

qref

Mortality rates in Reference Table.

x1

Age range used for calculation.

x2

Age range of reference table.

t1

Calendar years used for the calculation. It corresponds to the common years among observations and the reference table.


FctMethod4_2ndPart function

Description

FctMethod4_2ndPart() is an alternative to Method4B(). It allows to process the smoothing without using a "Data" object and by defining all the needed parameters independently.

Usage

FctMethod4_2ndPart(d, e, qref, x1, x2, t1, t2, P.Opt, h.Opt)

Arguments

d

Number of deaths.

e

Exposure to risk.

qref

Mortality rates in Reference Table.

x1

Age range used for calculation.

x2

Age range of reference table.

t1

Calendar years used for the calculation. It corresponds to the common years among observations and the reference table.

t2

Calendar years of the reference table.

P.Opt

Degree of approximation.

h.Opt

Window width.


Method1 function

Description

This function fits the Qxt using method 1 (SMR method, see reference).

Usage

Method1(MyData, AgeRange, Plot = F, Color = MyData$Param$Color)

Arguments

MyData

The list returned by the AddReference() function.

AgeRange

Age range used for the calculation of the SMR.

Plot

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots corresponding to the smoothed surface.

Color

The color that will be used for the plots (HTML notation).


Method2 function

Description

This function fits the Qxt using method 2 (two parameters relational method, see reference).

Usage

Method2(MyData, AgeRange, Plot = F, Color = MyData$Param$Color)

Arguments

MyData

The list returned by the AddReference() function.

AgeRange

Age range used for the calculation of the parameters.

Plot

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots corresponding to the smoothed surface.

Color

The color that will be used for the plots (HTML notation).


Method3 function

Description

This function fits the Qxt using method 3 (Poisson GLM, see reference).

Usage

Method3(MyData, AgeRange, Plot = F, Color = MyData$Param$Color)

Arguments

MyData

The list returned by the AddReference() function.

AgeRange

Age range used for the calculation of the parameters of the Poisson model.

Plot

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots corresponding to the smoothed surface.

Color

The color that will be used for the plots (HTML notation).


Method4A function

Description

This function fits the Qxt using method 4 (first step) (non-parametric smoothing, see reference).

Usage

Method4A(MyData, AgeRange, AgeCrit, ShowPlot = F)

Arguments

MyData

The list returned by the AddReference() function.

AgeRange

Age range used for the construction of the life table.

AgeCrit

Age range for the comparison of adjusted mortality and observed mortality.

ShowPlot

AIC plots and plots allowing to judge about the fit.


Method4B function

Description

This function fits the Qxt using method 4 (second step) (non-parametric smoothing, see reference).

Usage

Method4B(PartOne, MyData, OptMale, OptFemale, Plot = F, ShowPlot = F,
  Color = MyData$Param$Color)

Arguments

PartOne

The list returned by the Method4A() function.

MyData

The list returned by the AddReference() function.

OptMale

Optimal smoothing parameters, obtained from the graphics generated by Method4A() for the male population.

OptFemale

Optimal smoothing parameters, obtained from the graphics generated by Method4A() for the female population.

Plot

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots corresponding to the smoothed surface.

ShowPlot

If true, show plots.

Color

The color that will be used for the plots (HTML notation).


MyPortfolio used for the exemple.

Description

Artificial Portfolio data exemple.

Usage

data(MyPortfolio)

Examples

data(MyPortfolio)

NoCompletion function

Description

This function allows to keep the adjustment used by the locating method for high ages (for methods 1, 2 or 3).

Usage

NoCompletion(OutputMethod, MyData, Color = MyData$Param$Color, Plot = F,
  Excel = F)

Arguments

OutputMethod

The list returned by one of these functions : Method1(), Method2(), Method3() or Method4B().

MyData

The list returned by the AddReference() function.

Color

The color that will be used for the plots (HTML notation).

Plot

If TRUE, final mortality surfaces will be saved in Results/Graphics/FinalTables

Excel

If TRUE, final tables will be saved in Results/Excel/FinalTables.xlsx


readHistory function

Description

This function reads a data.frame and calculates exposure and number of deaths. This is the first function the user must call to build a mortality table.

Usage

ReadHistory(MyPortfolio, DateBegObs, DateEndObs, DateFormat, Plot = F,
  Color = "#A4072E", Excel = F)

Arguments

MyPortfolio

MyPortfolio is a data.frame of 6 columns as follows : -Id : Id for the line ; -Gender : Male or Female ; -DateOfBirth : aaaa/mm/jj ; -DateIn : aaaa/mm/jj ; -DateOut : aaaa/mm/jj ; -Status : "other" or "deceased".

DateBegObs

Date for the beginning of the observations.

DateEndObs

Date for the end of the observations.

DateFormat

Date format as expected by the as.Date R function.

Plot

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots corresponding to the smoothed surface.

Color

The color that will be used for the plots (HTML notation).

Excel

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains excel files corresponding to the smoothed surface.


ReferenceFemale used for the exemple.

Description

This data corresponds to an adjusted version of the French national demographic projections INSEE 2060 for the female population.

Usage

data(ReferenceFemale)

Examples

data(ReferenceFemale)

ReferenceMale used for the exemple.

Description

This data corresponds to an adjusted version of the French national demographic projections INSEE 2060 for the male population.

Usage

data(ReferenceMale)

Examples

data(ReferenceMale)

SurfacePlot function

Description

Allows to plot a surface.

Usage

SurfacePlot(xx, zexpr, mainexpr, axis, cc)

Arguments

xx

data as matrix.

zexpr

Title of z axis.

mainexpr

Name for the graphic.

axis

c(min(abscissa), max(abscissa), min(ordinate), max(ordinate)).

cc

Color.


ValidationLevel1 function

Description

This function performs the first level of validation on the returned value of one of these functions : Method1(), Method2(), Method3() or Method4B().

Usage

ValidationLevel1(OutputMethod, MyData, ValCrit, AgeCrit, Plot = F,
  Color = MyData$Param$Color, Excel = F)

Arguments

OutputMethod

The list returned by one of these functions : Method1(), Method2(), Method3() or Method4B().

MyData

The list returned by the AddReference() function.

ValCrit

Critical value for the comparison of adjusted mortality and observed mortality.

AgeCrit

Age range for the comparison of adjusted mortality and observed mortality.

Plot

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots describing the validation analysis.

Color

The color that will be used for the plots (HTML notation).

Excel

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains excel files describing the validation analysis.


ValidationLevel2 function

Description

This function performs the second level of validation on the returned value of one of these functions : Method1(), Method2(), Method3() or Method4B() (see reference).

Usage

ValidationLevel2(OutputMethod, MyData, ValCrit, AgeCrit, Excel = F)

Arguments

OutputMethod

The list returned by one of these functions : Method1(), Method2(), Method3() or Method4B().

MyData

The list returned by the AddReference() function.

ValCrit

Critical value for the comparison of adjusted mortality and observed mortality.

AgeCrit

Age range for the comparison of adjusted mortality and observed mortality.

Excel

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains excel files describing the validation analysis.


ValidationLevel3 function

Description

This function performs the third level of validation on the returned value of one of these functions : Method1(), Method2(), Method3() or Method4B().

Usage

ValidationLevel3(FinalMethod, MyData, Plot = F, Color = MyData$Param$Color,
  Excel = F)

Arguments

FinalMethod

The list returned by the CompletionB() function.

MyData

The list returned by the AddReference() function.

Plot

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots describing the validation analysis.

Color

The color that will be used for the plots (HTML notation).

Excel

If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains excel files describing the validation analysis.