****
The cointegration based support vector regression model
is a combination of error correction model and support vector regression
(http://krishi.icar.gov.in/jspui/handle/123456789/72361).
This hybrid model allows the researcher to make use of the information
extracted by the cointegrating vector as an input in the support vector
regression model.
****
# Examples: How The cointegration based support vector regression model can be applied
library(ECTSVR)
#> Loading required package: urca
#> Loading required package: vars
#> Loading required package: MASS
#> Loading required package: strucchange
#> Loading required package: zoo
#>
#> Attaching package: 'zoo'
#> The following objects are masked from 'package:base':
#>
#> as.Date, as.Date.numeric
#> Loading required package: sandwich
#> Loading required package: lmtest
#> Loading required package: WeightSVM
#taking data finland from the r library
data(finland)
#takaing the two cointegrated variables (4th and 3rd) from the data set
data_example <- finland[,4:3]
#application of ECTSVR model with radial basis kernel function of Epsilon support vector regression model
ECTSVR(data_example,"trace",0.8,2, "radial","eps-regression",verbose = FALSE)
#> [[1]]
#> RMSE_In_ECTSVR RMSE_out_ECTSVR MAD_In_ECTSVR MAD_out_ECTSVR MAPE_In_ECTSVR
#> [1,] 0.01304091 0.01417917 0.00989117 0.01153408 Inf
#> MAPE_out_ECTSVR
#> [1,] 0.5173204
#>
#> [[2]]
#> 85 86 87 88 89 90
#> 0.012426742 0.020971765 0.030655433 0.012891586 0.012619640 0.015938489
#> 91 92 93 94 95 96
#> 0.017869280 0.012626914 0.013114684 0.018508984 0.012290294 0.011249274
#> 97 98 99 100 101 102
#> 0.012151010 0.012443587 0.024382713 0.013082742 0.013358263 0.009541306
#> 103 104
#> 0.012512494 0.013151691