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Abstract

This introduction to the R package DAKS is based on the paper by Ünlü and Sargin
(2010b) published in the Journal of Statistical Software.

Knowledge space theory is part of psychometrics and provides a theoretical framework
for the modeling, assessment, and training of knowledge. It utilizes the idea that some
pieces of knowledge may imply others, and is based on order and set theory. We introduce
the R package DAKS for performing basic and advanced operations in knowledge space
theory. This package implements three inductive item tree analysis algorithms for deriving
quasi orders from binary data, the original, corrected, and minimized corrected algorithms,
in sample as well as population quantities. It provides functions for computing population
and estimated asymptotic variances of and one and two sample Z-tests for the diff fit
measures, and for switching between test item and knowledge state representations. Other
features are a function for computing response pattern and knowledge state frequencies,
a data (based on a finite mixture latent variable model) and quasi order simulation tool,
and a Hasse diagram drawing device. We describe the functions of the package and
demonstrate their usage by real and simulated data examples.

Keywords: knowledge space theory, psychometrics, exploratory data analysis, maximum like-
lihood asymptotic theory, R.

1. Introduction
More than 50 years ago, Louis Guttman introduced his scalogram technique (Guttman 1944).
The deterministic scalogram technique allows for linear orderings of persons (e.g., regarding
their abilities) and items (e.g., regarding their difficulties). Since then, the Guttman model
has been generalized in at least two directions. On the one hand, in a probabilistic and
statistical direction, based on the Rasch (1960) model and generalized by Mokken (1971)’s
monotone homogeneity model, a family of linear probabilistic models (item response theory,
IRT; e.g., Van der Linden and Hambleton 1997) has emerged, retaining the linearity of person
and item orderings. On the other hand, in a deterministic and order-theoretic direction,
starting with Airasian and Bart (1973) and Bart and Krus (1973), a family of nonlinear
deterministic models (knowledge space theory, KST; e.g., Doignon and Falmagne 1985, see
Section 2) has been developed, weakening the linearity of person and item orderings to allow
for incomparabilities among persons and items. In KST, persons are represented by collections
of items of a domain they are capable of mastering.1 Persons can be incomparable with

1Throughout this paper, mastery of an item stands for a subject’s true, unobservable knowledge of the
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respect to set-inclusion. Items, in turn, are assumed to be ordered, for instance, with respect
to a hierarchy of mastery dependencies. Items can be incomparable with respect to that
hierarchy. In IRT, on the other hand, persons and items are, for instance, represented by
single real numbers, ability and difficulty parameters, respectively. Persons and items are
linearly ordered with respect to the natural ordering of the real numbers. Conceptually
speaking, KST may be viewed as a more ‘qualitative, behavioral’ approach, unlike IRT, as a
‘quantitative, statistical’ approach.
KST and IRT are split directions of psychological test theories, and there is a major interest
in trying to conflate these test theories. What one ideally would like to have is a unified
framework keeping the strengths and at the same time avoiding the drawbacks of both theo-
ries. In Section 5, we describe what the KST models can do that the IRT models cannot do,
and vice versa (cf. Ünlü 2007). KST and IRT have been partly compared at a theoretical level
(Stefanutti 2006; Stefanutti and Robusto 2009; Ünlü 2006, 2007). Using the R (R Develop-
ment Core Team 2010) language and environment for statistical computing and graphics as an
interface between these theories may prove valuable in comparing them at a computational
level. R gives users the possibility to include own software packages for handling specific
tasks. There are a number of R packages available for IRT; for instance, ltm (Rizopoulos
2006) or mokken (Van der Ark 2007). But there aren’t for KST, and the present R package
DAKS aims at providing a basis for computational work in the so far combinatorial theory of
knowledge spaces. Implementing KST procedures in R can help to bring together KST and
IRT.
KST was introduced by Doignon and Falmagne (1985). Most of the theory is presented in a
monograph by Doignon and Falmagne (1999); for applications see Albert and Lukas (1999),
and for survey articles see Doignon and Falmagne (1987), Falmagne (1989b), and Falmagne,
Koppen, Villano, Doignon, and Johannesen (1990). A comprehensive bibliography on KST,
including many references on empirical applications of KST, by C. Hockemeyer (University
of Graz, Austria) can be retrieved from http://wundt.kfunigraz.ac.at/kst.php. KST
provides a theoretical framework for the modeling, assessment, and training of knowledge.
This theory utilizes the idea that some pieces of knowledge may imply others. For instance,
the mastery of a test question may imply the mastery of other test questions. Implications
between pieces of knowledge are modeled in KST by order and set theoretic structures. Based
on such a framework, KST has been successfully applied for computerized adaptive assessment
and training; for example, see the ALEKS system (http://www.aleks.com/), a Web-based,
artificially intelligent assessment and learning system.
However, KST models can only be successfully applied if the latent implications underlying the
items are sufficiently known. Therefore a crucial problem in KST is the empirical derivation
of the implications between items using the data. Three inductive item tree analysis (IITA)
algorithms have been proposed for deriving implications from dichotomous data: the original
IITA algorithm (Schrepp 2003), and the corrected and minimized corrected IITA algorithms
(Sargin and Ünlü 2009; Ünlü and Sargin 2010a). These methods constitute the main part of
the package DAKS and are implemented in sample and population quantities. Besides the
three IITA algorithms, the package DAKS also provides functions for computing population
and estimated asymptotic variances of and one and two sample Z-tests for the fit measures,
and for switching between test item and knowledge state representations. Other features are

solution to the item (latent level); solving an item stands for the observed response of a subject to the item
(manifest level).

http://wundt.kfunigraz.ac.at/kst.php
http://www.aleks.com/
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a function for computing response pattern and knowledge state frequencies, a data and quasi
order simulation tool, and a Hasse diagram (see Footnote 6) drawing device.
Currently available software implementing the original IITA algorithm is ITA 2.0 by Schrepp
(2006). Compared to this stand-alone software that runs only on Windows, the package
DAKS is embedded in the comprehensive R computing environment and provides much more
functionalities such as more flexible input/output features. In particular, the corrected and
minimized corrected IITA algorithms are only implemented in the package DAKS.
In Section 2, the basic deterministic and probabilistic concepts of KST and the three IITA
algorithms are reviewed. In Section 3, the package DAKS is presented and its functions are
explained. In Section 4, the package DAKS is demonstrated using real and simulated data.
In Section 5, we conclude with a summary, some suggestions for future implementations of
the package, and general remarks about the interplay between KST and IRT.

2. Knowledge space theory and data analysis methods
We briefly recapitulate the basic concepts of KST relevant for this work and the three IITA
algorithms. Details can be found in the respective references afore mentioned.

2.1. Basic concepts of knowledge space theory

Assume a set Q of m dichotomous items. Mastering an item j ∈ Q may imply mastering
another item i ∈ Q. If no response errors are made, these implications, j → i, entail that
only certain response patterns (represented by subsets of Q) are possible. Those response
patterns are called knowledge states, and the set of all knowledge states (including ∅ and
Q) is called a knowledge structure, and denoted by K. The knowledge structure K is a
subset of 2Q, the power set of Q. Implications are assumed to form a quasi order, that is, a
reflexive, transitive binary relation, ⊑ on the item set Q. In other words, an implication j → i
stands for the pair (i, j) ∈ ⊑, also denoted by i ⊑ j. Quasi orders are referred to as surmise
relations in KST. Theoretically, a surmise relation can even consist of only the reflexive item
pairs. No item then implies another, and any response pattern is consistent with the surmise
relation. The IITA algorithms do cover this case as well, because this is a special type of
surmise relation. Practically, however, having no implications between, for a specific purpose,
reasonably constructed items is virtually impossible. In general, items measure some common
latent traits and so they do correlate to some degree. Moreover, the special case of a chain
hierarchy (see Footnote 3) among the test items is covered by the IITA procedures as well.
A possible application is an aptitude test, where participants can solve (coded 1) or fail to
solve (coded 0) a question. In this paper, the latter interpretation is used to illustrate the
IITA algorithms.
Implications are latent and not directly observable, due to random response errors. A person
who is actually unable to solve an item, but does so, makes a lucky guess. On the other hand,
a person makes a careless error, if he fails to solve an item which he masters. A probabilistic
extension of the knowledge structure model covering random response errors is the basic local
independence model.2

2The basic local independence model is assumed to hold throughout this paper. In Section 4.2, we use that
probability model with prespecified/known parameter values for simulating the data. Based on the simulated
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Basic local independence model

A quadruple (Q, K, p, r) is called a basic local independence model (BLIM) if and only if

1. (Q, K) is a knowledge structure,

2. p is a probability distribution on K, that is, p : K → ]0, 1[ , K 7→ p(K), with p(K) > 0
for any K ∈ K, and

∑
K∈K p(K) = 1,

3. r is a response function for (Q, K, p), that is, r : 2Q × K → [0, 1], (R, K) 7→ r(R, K),
with r(R, K) ≥ 0 for any R ∈ 2Q and K ∈ K, and

∑
R∈2Q r(R, K) = 1 for any K ∈ K,

4. r satisfies local independence, that is,

r(R, K) =
∏

q∈K\R

βq ·
∏

q∈K∩R

(1 − βq) ·
∏

q∈R\K

ηq ·
∏

q∈Q\(R∪K)
(1 − ηq),

with two constants βq, ηq ∈ [0, 1[ for each q ∈ Q, respectively called careless error and
lucky guess probabilities at q.

Here, K \ R := {q ∈ Q : q ∈ K and q ̸∈ R}, K ∩ R := {q ∈ Q : q ∈ K and q ∈ R},
R \ K := {q ∈ Q : q ∈ R and q ̸∈ K}, and Q \ (R ∪ K) := {q ∈ Q : q ̸∈ R and q ̸∈ K}.
The items in K \ R, K ∩ R, R \ K, and Q \ (R ∪ K) are mastered but not solved (careless
error), mastered and solved (no careless error), solved but not mastered (lucky guess), and
not solved and not mastered (no lucky guess), respectively.
Let n be the sample size. The data are the observed absolute counts of response patterns
R ⊂ Q. Let D denote the corresponding n × m data matrix of 0/1 item scores. The data
are assumed to be multinomially distributed over 2Q. Let ρ(R) denote the (unknown) true
probability of occurrence of a response pattern R. The BLIM is based on the following
assumptions. To each knowledge state K ∈ K is attached a probability p(K) measuring the
likelihood that a respondent is in state K. For a manifest response pattern R ⊂ Q and
a latent knowledge state K ∈ K, r(R, K) specifies the conditional probability of response
pattern R for a respondent in state K. The item responses of a respondent are assumed to be
independent given the knowledge state of the respondent (local independence). The response
error, that is, careless error and lucky guess, probabilities βq and ηq are attached to the items
and do not vary with the knowledge states.
The BLIM allows expressing the occurrence probabilities ρ(R) of response patterns R by
means of the model parameters p(K) and βq, ηq:

ρ(R) =
∑

K∈K


 ∏

q∈K\R

βq

 ·

 ∏
q∈K∩R

(1 − βq)

 ·

 ∏
q∈R\K

ηq

 ·

 ∏
q∈Q\(R∪K)

(1 − ηq)

 p(K).

data, we can check and compare the IITA algorithms. In particular, we do not estimate the latent parameters
(probabilities) of and assess model fit for the basic local independence model. The focus and advantage of the
exploratory IITA methods lies in the data-analytic derivation of a knowledge structure solely based on the
manifest parameters (probabilities) of the multinomial sampling distribution for the data. The multinomial
distribution is the true saturated model, and its parameters can easily be estimated using the corresponding
sample analogs.
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Remarks regarding the basic local independence model

The BLIM is fundamental in KST, in the sense that most of the KST probabilistic models
are special cases of this model (Doignon and Falmagne 1999). Viewing the knowledge states
as the latent classes, the BLIM can be seen as a constrained latent class model with |K|
latent classes (|K|, the size of K) and two conditional response probabilities per test item. It
is important to note that the latent classes K ∈ K possess an inner structure composed of
the indicators, which determines the constraints imposed on the conditional class probabil-
ities. The idea expressed in the definition of the BLIM is not a new one and goes back to
traditional latent class measurement or scaling models such as the Proctor (1970) model, the
Dayton and Macready (1976) intrusion–omission model, and more generally, the Lazarsfeld
and Henry (1968) latent distance model. They originated as probabilistic generalizations of
the deterministic, linear Guttman (1944) model. The BLIM is a de-linearized latent distance
model. De-linearized here means that the knowledge structure K is not necessarily linearly
ordered with respect to set-inclusion (cf. Footnote 3), as is the case for the traditional latent
class scaling models. For a description of the relationships of these models, and more gen-
erally, for a description of the connection between KST and latent class analysis (including
inference methodologies), see Ünlü (2010) (cf. also Schrepp 2005).

The BLIM is a restricted latent class model and the most general model used in KST. The
dynamic, based on stochastic processes, KST stochastic learning paths systems are special
cases of the BLIM (Doignon and Falmagne 1999; Falmagne 1989a; Falmagne et al. 1990).
They are obtained by further restricting, besides combinatorial constraints on the knowledge
structure, the state/class probabilities of the BLIM based on postulated learning mechanisms
describing successive transitions of subjects, over time, from the state ∅ to the state Q. The
models considered in Schrepp (2005) and Stefanutti and Robusto (2009) are the BLIM with
the error parameters being a priori restricted to sub-intervals of the unit interval. In the
current version of the package DAKS, these special cases of the BLIM are not supported and
represent useful features that may be added in future improvements of the package.

The number of independent parameters of the BLIM is 2|Q| + (|K| − 1). Since |K| generally
tends to be prohibitively large in practice, parameter estimation and model testing based
on classical maximum likelihood methodology are not feasible in general (for details, see
Ünlü 2006, 2007). For instance, in an experiment by Kambouri (1991) (see also Kambouri,
Koppen, Villano, and Falmagne 1994), reviewed in Doignon and Falmagne (1999), the number
of knowledge states ranges from several hundreds to several thousands (for 50 items). In such
cases, without any restrictions, it may be infeasible to obtain reliable estimates of the several
hundreds to several thousands of model parameters, given a specific knowledge structure. This
is why exploratory methods such as the IITA algorithms are important in KST. Exploratory
methods can be applied without having to estimate the latent parameters of and assess model
fit for the BLIM (cf. also Footnote 2).

Birkhoff’s theorem

A knowledge structure closed under union and intersection is called a quasi ordinal knowledge
space. Quasi ordinal knowledge spaces and surmise relations are equivalent formulations.
According to Birkhoff (1937)’s theorem, there exists a one-to-one correspondence between
the collection of all quasi ordinal knowledge spaces K on a domain Q, and the collection of
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all surmise relations ⊑ on Q. Such a correspondence is defined through the two equivalences:

p ⊑ q :⇐⇒ [∀K ∈ K : {q ∈ K =⇒ p ∈ K}] ,

K ∈ K :⇐⇒ [∀(p ⊑ q) : {q ∈ K =⇒ p ∈ K}] .

This theorem is important from a practical point of view. Though the quasi ordinal knowledge
space and surmise relation models are empirically interpreted at the different levels of persons
and items, they are connected with each other mathematically, through Birkhoff’s theorem.
This theorem is realized in the package DAKS using two functions for switching between test
item and knowledge state representations (see Section 3.2).

2.2. Inductive item tree analysis algorithms

The functions of the package DAKS realizing the IITA algorithms in sample and population
quantities are described in Section 3.2. Their usage by real and simulated data examples is
demonstrated in Section 4.

Inductive item tree analysis algorithms in sample values

The three IITA algorithms are exploratory methods for extracting surmise relations from data.
In each algorithm, competing binary relations are generated, and a fit measure is computed
for every relation in order to find the quasi order that fits the data best. In the following, the
methods are briefly reviewed.

Algorithms. For the original IITA version (Schrepp 2003) the algorithm is:

1. For two items i, j, the value bij := |{R ∈ D|i ̸∈ R ∧ j ∈ R}| is the number of coun-
terexamples, that is, the number of observed response patterns in the data matrix D
contradicting j → i. Based on these values, binary relations ⊑L for L = 0, . . . , n are
defined as follows.

1a. Let i ⊑0 j :⇔ bij = 0. The relation ⊑0 is a quasi order.

1b. Construct inductively: Assume ⊑L is transitive. Define the set S
(0)
L+1 := {(i, j)|bij ≤

L + 1 ∧ i ̸⊑L j}. This set consists of all item pairs that are not already contained
in the relation ⊑L and have at most L + 1 counterexamples. From S

(0)
L+1, exclude

those item pairs that cause an intransitivity in ⊑L∪ S
(0)
L+1; the remaining item pairs

(of S
(0)
L+1) are referred to as S

(1)
L+1. Then, from the item pairs in S

(1)
L+1, those are

excluded that cause an intransitivity in ⊑L∪ S
(1)
L+1, and the remaining item pairs

(of S
(1)
L+1) are referred to as S

(2)
L+1. This process continues iteratively, say k times,

until no intransitivity is caused.

1c. The generated relation ⊑L+1 := ⊑L∪ S
(k)
L+1 is a quasi order by construction. Hence

⊑L for L = 0, . . . , n are quasi orders. They constitute the selection set of the IITA
procedure.

2. The coefficient diffo(⊑L , D) is used to assess the fit of each quasi order ⊑L to the binary
data matrix D (see below).
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3. Choose the quasi order with minimum diffo(⊑L , D) value.

For the corrected and minimized corrected IITA versions (Sargin and Ünlü 2009) the algo-
rithms are:

1. The generation of the selection set of quasi orders is the same as in the original IITA
version.

2. The coefficients diffc(⊑L , D) and diffmc(⊑L , D) are used to assess the fit of each quasi
order ⊑L to the binary data matrix D (see below), respectively.

3. Choose the quasi orders with minimum diffc(⊑L , D) and diffmc(⊑L , D) values, respec-
tively.

Fit measures. The diff fit measures diffo, diffc, and diffmc are defined by

diff (⊑, D) = 1
m(m − 1)

∑
i ̸=j

(bij − b∗
ij)2,

where corresponding estimates b∗
ij are used, varying from algorithm to algorithm. We describe

the computation of these estimates. The estimates b∗
ij are obtained based on a single error

probability.
In the original IITA version this single error rate is given by

γ⊑ = 1
|⊑| − m

∑
i⊑j,i̸=j

bij

pjn
.

If (i, j) ∈ ⊑, the expected number of counterexamples is estimated by b∗
ij = γ⊑pjn. If (i, j) ̸∈

⊑, no dependency between the two items is assumed, and the estimate b∗
ij = (1−pi)pjn(1−γ⊑)

is used. In this formula, (1 − pi)pjn is the usual probability for two independent items, and
the factor 1 − γ⊑ is assumed to state that no random error occurred. As discussed in Sargin
and Ünlü (2009), the main criticism on the original algorithm is on the used estimates b∗

ij .
In Sargin and Ünlü (2009), it is shown that this estimation scheme leads to methodological
inconsistencies, and corrected estimators avoiding the inconsistencies of the original algorithm
are proposed. Two problems arise in the calculation of the estimates of the original algorithm.
For (i, j) ̸∈ ⊑, the estimate used in the original algorithm is b∗

ij = (1 − pi)pjn(1 − γ⊑). But
the original algorithm does not take two different cases into account, namely (j, i) ̸∈ ⊑ and
(j, i) ∈ ⊑. In the first case, independence holds, and a corrected estimator is b∗

ij = (1−pi)pjn.
In the second case, independence cannot be assumed, as j ⊑ i. A corrected estimator b∗

ij in
this case is (pj − pi + γ⊑pi)n (see Sargin and Ünlü 2009), instead of (1 − pi)pjn(1 − γ⊑).
In the corrected IITA version the same γ⊑ and b∗

ij = γ⊑pjn for (i, j) ∈ ⊑ are used. The choice
for b∗

ij in the case of (i, j) ̸∈ ⊑ now depends on whether (j, i) ̸∈ ⊑ or (j, i) ∈ ⊑. If (i, j) ̸∈ ⊑
and (j, i) ̸∈ ⊑, set b∗

ij = (1 − pi)pjn. If (i, j) ̸∈ ⊑ and (j, i) ∈ ⊑, set b∗
ij = (pj − pi + γ⊑pi)n.

In the minimized corrected IITA version the corrected estimators b∗
ij as in the diffc coefficient

are used. Minimizing the diff expression as a function of the error probability γ⊑ gives
γ⊑ = −x1+x2

x3+x4
, where

x1 =
∑

i ̸⊑j ∧ j⊑i

−2bijpin + 2pipjn2 − 2p2
i n2,
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x2 =
∑
i⊑j

−2bijpjn,

x3 =
∑

i ̸⊑j ∧ j⊑i

2p2
i n2,

x4 =
∑
i⊑j

2p2
jn2

(for details, see Sargin and Ünlü 2009). This error probability can now be used for an
alternative IITA procedure, in which a minimized diff value is computed for every quasi
order. The idea underlying the minimized corrected IITA version is to use the corrected
estimators and to optimize the fit criterion. The fit measure then favors quasi orders that
lead to smallest minimum discrepancies, or equivalently, largest maximum matches, between
the observed and expected numbers of counterexamples.

General remarks. Mathematical considerations and comparisons based on simulated and
real data examples reported by Sargin and Ünlü (2009) and Ünlü and Sargin (2010a) based
on sample and population values, respectively, suggest using the minimized corrected IITA
version as the prior choice. For instance, in the extensive simulation studies in Sargin and
Ünlü (2009) and Ünlü and Sargin (2010a), overall the minimized corrected IITA algorithm
performs best, second comes the corrected IITA algorithm, and worst is the original IITA
algorithm, with respect to all of the considered summary statistics. The summary statistics
according to which the IITA algorithms have been compared are, for example, the sample
and population symmetric differences at the levels of items and knowledge states, and the
ranks of the underlying quasi orders in the ordered lists of population diff values. Moreover,
similar results are obtained for the corrected and minimized corrected algorithms, with a slight
advantage for the latter. For each of the considered summary statistics, the original IITA
algorithm shows considerably bad results for larger error probabilities. The original IITA
algorithm should only be used specifically for datasets with very few underlying knowledge
states and when the error rates are very low. See also the “General remarks” in “IITA analyses
of the PISA data” of Section 4.1.

Inductive item tree analysis algorithms in population values

In Ünlü and Sargin (2010a), we introduce the population analogs of the diff fit measures,
interpret the coefficients as maximum likelihood estimators (MLEs) for the corresponding
population values, and show for the estimators the quality properties of asymptotic efficiency,
asymptotic normality, asymptotic unbiasedness, and consistency. This is briefly reviewed
next.

Cautionary notes. Why do we need population variants of the diff coefficients? What is
the BLIM for? What is the connection between the fit of a quasi order to the data assessed
in terms of the diff coefficients on the one hand and the BLIM and parameters ρ(R) on the
other?
The original, corrected, and minimized corrected IITA algorithms with their respective diff
fit measures have been proposed for building quasi orders from dichotomous data. So far,
they have been treated descriptively, without examining a theory that may underlie these
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procedures. A statistical theory, however, requires a population based approach. Theoretical
considerations in population quantities are important. Supposing the population completely
to be known is the way to begin with in constructing sound fit measures for quasi orders.
After having provided justification for a measure in a known population, one has to consider
sampling problems concerning estimation and testing (Goodman and Kruskal 1979). For
instance, based on the package DAKS (see Section 3.2) we now can perform an approximate
significance test to test whether the population diff value for one quasi order is greater than
the population value obtained for another, which is the crucial hypothesis to be tested when
choosing among competing quasi orders. Literature on the IITA algorithms has dealt with
samples rather than a population. For a purely descriptive approach, however, statistical
estimation and testing do not make sense.

The BLIM is a fairly general and realistic probability model, which explains the responses to
test items of individuals in certain knowledge states. It is the probabilistic generalization of
the knowledge structure model that is used in KST. A knowledge structure, more precisely
a quasi ordinal knowledge space, corresponds to a surmise relation (cf. Birkhoff’s theorem).
In this sense, the BLIM is a fairly realistic probabilistic generalization of the surmise relation
model, which takes into account deviations from the latent true implications between the
items according to random response errors (careless errors and lucky guesses). Therefore the
BLIM is the probability model assumed to hold throughout this paper.

As mentioned in Section 2.1, the advantage of the exploratory IITA methods and the diff
coefficients lies in their computation, which is solely based on the manifest probabilities of the
multinomial sampling distribution for the data. The population diff coefficients are functions
of the multinomial cell probabilities ρ(R) (R ⊂ Q) (see below). These probabilities can easily
be estimated using the corresponding sample analogs. In this way, one avoids having to
estimate the latent parameters of the BLIM, which is not feasible in general (Section 2.1).
This is the reason why exploratory methods such as the IITA algorithms are important in
KST. Although they are only indirectly related to the latent parameters of the BLIM—they
are exploratory procedures operating on the manifest probabilities ρ(R), and theoretically
at least, they can be computed under any model for ρ(R)—the IITA methods provide good
results when applied to response data arising from such a realistic response model as the
BLIM and hence represent a different approach to solving the problem of deriving a knowledge
structure data-analytically (for details, see Sargin and Ünlü 2009; Ünlü and Sargin 2010a).

The occurrence probabilities ρ(R) of response patterns R ⊂ Q provide the connection between
the BLIM and the diff coefficients. The BLIM expresses the occurrence probabilities ρ(R)
by means of the model parameters p(K) (K ∈ K) and βq, ηq (q ∈ Q). Having specified the
parameters of the BLIM as the data generating model in simulations, as a consequence the
probabilities ρ(R) (R ⊂ Q) are determined as well. By calculating the diff coefficients based
on these true values we obtain the population values of the coefficients.

Population coefficients. Consider the transformed sample diff coefficients diff := diff /n2.
The division is necessary to cancel out sample size n in replacements of sample quantities
with population quantities. Given the multinomial probability distribution on the set of all
response patterns (see Section 2.1), make the following replacements in the arguments, bij
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and pi, of the sample diff coefficients:
bij

n
→ P (i = 0, j = 1) =

∑
R∈2Q,i ̸∈R ∧ j∈R

ρ(R),

pi → P (i = 1) =
∑

R∈2Q,i∈R

ρ(R).

This gives three population diff coefficients corresponding to the sample diff coefficients.
The population diff coefficients are functions of the cell probabilities ρ(R) (R ⊂ Q) of the
multinomial distribution.
The formulations of the population diff coefficients are straightforward. We have

diff (⊑, {ρ(R)}R∈2Q) = 1
m(m − 1)

∑
i ̸=j

(P (i = 0, j = 1) − P ∗(i = 0, j = 1))2,

where corresponding theoretical probabilities P ∗(i = 0, j = 1) are used, varying from algo-
rithm to algorithm. In the population corrected IITA version, for instance, the population
error rate is given by

γ⊑ = 1
|⊑| − m

∑
i⊑j,i̸=j

P (i = 0, j = 1)
P (j = 1) ,

and if (i, j) ∈ ⊑ for example, the theoretical probability is P ∗(i = 0, j = 1) = γ⊑P (j = 1).
As defined above, P (i = 0, j = 1) =

∑
R∈2Q,i ̸∈R ∧ j∈R ρ(R) and P (j = 1) =

∑
R∈2Q,j∈R ρ(R).

Since the BLIM expresses the cell probabilities ρ(R) by means of the model parameters,
having specified the parameters of the BLIM, these probabilities are also determined. The
population values of the diff coefficients are based on these true values.

Maximum likelihood estimators. The sample diff coefficients, as defined in sample values
before,

diff (⊑, D) = 1
m(m − 1)

∑
i ̸=j

(bij − b∗
ij)2

are the obvious sample analogs of these population fit measures. They are reobtained by
replacing the arguments ρ(R) of the population diff measures with the MLEs n(R)/n of the
multinomial distribution, where n(R) are the absolute counts of response patterns R ∈ 2Q.
That is, the sample diff coefficients are equal to the respective population diff coefficients
evaluated at the MLEs n(R)/n. Therefore, according to the invariance property of MLEs (e.g.,
Casella and Berger 2002), the sample diff coefficients (as defined in sample values before) are
the MLEs for the corresponding population diff coefficients.

Asymptotic properties. The MLE for the multinomial distribution fulfills required regularity
conditions and is asymptotically efficient (e.g., Casella and Berger 2002). The population diff
coefficients are differentiable functions of the multinomial cell probabilities ρ(R); therefore the
sample diff coefficients are asymptotically efficient, asymptotically normal, asymptotically
unbiased, and consistent estimators for the population values (Ünlü and Sargin 2010a).

3. Implementation in the package DAKS



Ali Ünlü, Anatol Sargin 11

In this section, we describe how surmise relations and knowledge structures are implemented,
and discuss the functions of this package.

3.1. Surmise relations and knowledge structures in DAKS
A quasi order is a set of tuples, where each tuple is a pair (i, j) representing the implication
j → i. This is implemented in DAKS using the package sets (Meyer and Hornik 2009).
The latter, in combination with the package relations (Hornik and Meyer 2010), are utilized
in DAKS, because they provide useful functions for operating with surmise relations and
knowledge structures. The following R output shows an example quasi order:

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

or

{(1L, 2L), (1L, 3L), (1L, 4L), (2L, 3L), (2L, 4L), (3L, 4L)}

This code is to be read: item 1 is implied by items 2, 3, and 4, item 2 is implied by items 3
and 4, and item 3 is implied by item 4. This gives the chain 4 → 3 → 2 → 1.3 Note that in
the second code line an item i is represented by iL. This transformation takes place internally
in the packages sets or relations, but it does not have any influence. Both representations
are equal (see pp. 306–307 in R Development Core Team 2010, for how R parses numeric
constants):

R> 1 == 1L

[1] TRUE

Note that reflexive pairs are not shown in order to reveal implications between different items
only, and to save computing time. Surmise relations always contain all reflexive pairs, and
these are included whenever required by the package DAKS.
A knowledge structure is implemented as a binary matrix, where rows and columns stand
for knowledge states and items, respectively. Each entry of the matrix, 1 or 0, represents
mastering or not mastering an item in a corresponding state. The following R output shows
the knowledge structure corresponding to the above quasi order:

[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 1 0 0 0
[3,] 1 1 0 0
[4,] 1 1 1 0
[5,] 1 1 1 1

3.2. Functions of the package DAKS
3A chain or linearly ordered set is any partially ordered set (reflexive, transitive, and antisymmetric binary

relation) (P, P) satisfying the property of “linearity,” that is, for all p1, p2 ∈ P , p1Pp2 or p2Pp1.
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We introduce the functions of the package DAKS. The main functions are for performing
the IITA algorithms, in sample and population values. We also present more minor auxiliary
(used for implementing the IITA algorithms) and utility functions of the package. Examples
of how to use the functions are given in Section 4, where we also illustrate the connections
between the functions.

Main functions for performing the IITA algorithms in sample values

Generating automatically the set of competing quasi orders. The main function of the pack-
age DAKS that can be used to perform one of the original, corrected, and minimized corrected
IITA procedures selectively (Section 2.2) is:

iita(dataset, v)

Whereas for the three IITA functions orig_iita, corr_iita, and mini_iita described subse-
quently selection sets of competing quasi orders have to be passed via an argument manually,
the function iita automatically generates a selection set from the dataset using the induc-
tive generation procedure implemented in the auxiliary function ind_gen (see below). The
parameter v specifies the IITA algorithm to be performed: v = 1 (minimized corrected), v =
2 (corrected), and v = 3 (original). The function iita returns, besides the diff values cor-
responding to the inductively generated quasi orders, the derived solution quasi order (with
minimum diff value) under the selected algorithm, the estimated error rate corresponding to
the best fitting quasi order, the index of the solution quasi order in the selection set, and an
index specifying the used algorithm. In case of ties in minimum diff value, a quasi order with
smallest size is returned. In general, the minimized corrected version gives the best results,
hence it is suggested to use this version.
The function iita automatically generates a selection set from the data using the inductive
generation procedure implemented in ind_gen (see below), and calls one of the following
three IITA functions for computing the diff values. The approach using iita is common so
far in KST, where the inductive data analysis methods have been utilized for exploratory
derivations of quasi orders from data. The functions orig_iita, corr_iita, and mini_iita,
on the other hand, can be used to select among surmise relations for instance obtained from
querying experts or from competing psychological theories.

Passing manually the set of competing quasi orders. Three functions of the package DAKS
realizing the original, corrected, and minimized corrected IITA algorithms separately (Section
2.2) are, in respective order:

orig_iita(dataset, A)
corr_iita(dataset, A)
mini_iita(dataset, A)

These functions perform the respective IITA procedures using the dataset and the list A of
prespecified competing quasi orders. The set of competing quasi orders must be passed via
the argument A manually, so any selection set of surmise relations can be used. In all three
functions, the number of estimated counterexamples (according to each algorithm) and the
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number of observed counterexamples using the auxiliary function ob_counter (see below) are
computed, and the vectors of the diff values

diff (⊑, D) = 1
m(m − 1)

∑
i ̸=j

(bij − b∗
ij)2

and of the error rates (computed within each algorithm) corresponding to the competing quasi
orders in A are returned (cf. Section 2.2).

Main functions for performing the IITA algorithms in population values

The package DAKS also contains functions which provide the basis for statistical inference
methodology (cf. Section 5).

Population IITA algorithms. The population analog of the previous function that can be
used to perform one of the three IITA algorithms in population quantities (in a known pop-
ulation) selectively is:

pop_iita(imp, ce, lg, items, dataset = NULL, A = NULL, v)

Compared to iita, this function implements the three IITA algorithms in population, not
sample, quantities: v = 1 (minimized corrected), v = 2 (corrected), and v = 3 (original).
See “Inductive item tree analysis algorithms in population values” in Section 2.2 for details.
The argument imp specifies a surmise relation, and items gives the number of items of the
domain taken as basis for imp. The knowledge structure corresponding to imp is equipped
with the careless error ce and lucky guess lg probabilities and the uniform distribution on
the knowledge states, and is the known BLIM underlying the population. From this BLIM
the occurrence probabilities ρ(R) of response patterns R ⊂ Q can be computed, and the
algorithms can be performed in population values. If dataset = NULL and A = NULL, a set
of competing quasi orders is constructed based on a population analog of the inductive gen-
eration procedure implemented in sample quantities in ind_gen (see below). If the dataset
is specified explicitly, that data are used to generate the set of competing quasi orders based
on the sample version of the inductive generation procedure. If the selection set A of quasi
orders is specified explicitly, this is used as the set of competing quasi orders. (Specifying both
dataset and A gives an error.) This function returns the population diff values corresponding
to the inductively generated quasi orders, all possible response patterns with their popula-
tion probabilities of occurrence, the population γ⊑ rates corresponding to the inductively
generated quasi orders, the selection set, and an index specifying the used algorithm.

Computing population asymptotic variances. The function for computing population asymp-
totic variances of the MLEs diff (Section 2.2; Ünlü and Sargin 2010a) is:

pop_variance(pop_matrix, imp, error_pop, v)

Subject to the selected version to be performed in population quantities, v = 1 (minimized
corrected) and v = 2 (corrected), this function computes the population asymptotic variance
of the MLE diff , which is formulated for the relation and error rate specified in imp and
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error_pop, respectively. This population variance, which is a function of the true multi-
nomial probabilities ρ(R), is obtained using the delta method (e.g., see Casella and Berger
2002), which requires calculating the Jacobian matrix of the diff coefficient and the inverse
of the expected Fisher information matrix for the multinomial distribution.4 Both matrices,
functions of the true multinomial probabilities ρ(R), are implemented analytically in closed
form. The cell probabilities of that distribution are specified in pop_matrix, a matrix of
all possible response patterns and their population occurrence probabilities. Note that the
arguments pop_matrix and error_pop can be obtained from a call to the function pop_iita
(see above), and that the current version of the package DAKS does not support computing
population asymptotic variances for the original IITA algorithm. This function returns a
single value, the population asymptotic variance of the MLE diff .

Computing estimated asymptotic variances. The function for computing estimated asymp-
totic variances of the MLEs diff (Section 2.2; Ünlü and Sargin 2010a) is:

variance(dataset, imp, v)

Subject to the selected version to be performed in sample quantities, v = 1 (minimized cor-
rected) and v = 2 (corrected), this function computes a consistent estimator for the popula-
tion asymptotic variance of the MLE diff , which is formulated for the relation and the data
specified in imp and dataset, respectively. This estimated asymptotic variance is obtained
using the delta method (cf. pop_variance; see above). In the expression for the population
asymptotic variance (see Footnote 4), a function of the true probabilities ρ(R), the true pa-
rameter vector of the multinomial probabilities is estimated and substituted in the expression
by its MLE of the relative frequencies of the response patterns. Note that the two types
of estimators for the population asymptotic variances of the diff coefficients obtained based
on the expected Fisher information matrix and the observed Fisher information matrix yield
the same result, in the case of the multinomial distribution. Since computation based on the
expected Fisher information matrix is faster, this is implemented in variance. Note that
the current version of the package DAKS does not support computing estimated asymptotic
variances for the original IITA algorithm. This function returns the estimated asymptotic
variance of the MLE diff .

Performing a Z-test. The function for performing a Z-test for the diff values is:

z_test(dataset, imp, imp_alt = NULL, alternative =
c("two.sided", "less", "greater"), mu = 0, conf.level = 0.95, v)

For a given dataset a one or two sample Z-test for the diff values can be performed. The
quasi order is specified by imp in the case of a one sample test, and an optional set of

4The population asymptotic variance of the MLE diff is

V ar(diff ) = ∂ diff /∂ θ|θ=θt ·
{( 1

n
Eθt (−I)

)−1
· ∂ diff /∂ θT

|θ=θt

}
,

where θt is the true parameter vector of multinomial probabilities. Note that ( 1
n

Eθt (−I))−1 =
(δijθti − θtiθtj)

i,j
, where I =

(
∂2 ln L/∂ θi ∂ θj

)
i,j

is the Hessian matrix of the log likelihood function of
the multinomial distribution, and δij is the Kronecker delta. Here, AT denotes the transpose of a matrix A.
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implications representing the alternative quasi order is specified by imp_alt in the case of a
two sample test. The true value of the mean, or of the difference in means if a two sample test
is performed, is given by mu. The alternative hypothesis is specified by alternative. For a
one sample test, conf.level gives the level of the confidence interval for the single diff value.
For a two sample test, conf.level is the level of the confidence interval for the difference of
the two diff values. The function z_test returns the Z- and p-values, the values and level of
the confidence interval, the diff values of the specified quasi orders, the specified alternative
hypothesis, and the assumed true value of the mean or difference in means.

Auxiliary functions used for implementing the IITA algorithms

Two auxiliary functions used for implementing the IITA algorithms are:

ob_counter(dataset)
ind_gen(b)

The main function iita (see above) calls ob_counter for computation of the numbers of
observed counterexamples, and ind_gen for the inductive generation procedure.

Computation of the numbers of observed counterexamples. The function ob_counter com-
putes from a binary dataset for any item pair (i, j) the corresponding number bij of observed
counterexamples, that is, the number of observed response patterns contradicting the item
pair’s interpretation as j → i. These values are crucial in the formulations of the IITA algo-
rithms (see Section 2.2 for details). This function returns a matrix of the numbers of observed
counterexamples for all pairs of items.

Inductive generation procedure. The function ind_gen can be used to generate inductively
from a matrix b of the numbers of observed counterexamples for all pairs of items, for instance
obtained from a call to the previous function ob_counter, a set of quasi orders. The induc-
tive generation of the selection set of competing quasi orders is a prime component of the
IITA algorithms (see Section 2.2 for details). This function returns a list of the inductively
generated surmise relations.

Utility functions

Two functions for switching between test item and knowledge state representations (cf. Birkhoff’s
theorem in Section 2.1) are:

state2imp(P)
imp2state(imp, items)

Transformation from knowledge states to implications. The function state2imp transforms a
set of knowledge states (ought to be a quasi ordinal knowledge space) P to the corresponding
set of implications (the surmise relation). Note that for any set of knowledge states the
returned binary relation is a surmise relation. The number of items of the domain taken as
basis for P is determined from the number of columns of the matrix P.
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Transformation from implications to knowledge states. The function imp2state transforms
a set of implications (ought to be a surmise relation) imp to the corresponding set of knowledge
states (the quasi ordinal knowledge space). Note that for any set of implications the returned
knowledge structure is a quasi ordinal knowledge space. The number of items of the domain
taken as basis for imp, the argument items, must be specified explicitly; because some of the
items may not be comparable with any other.

Computing absolute frequencies of response patterns and knowledge states. A function for
computing the absolute frequencies of the occurring response patterns, and optionally, the
absolute frequencies of a collection of knowledge states in a dataset (see Section 2.1) is:

pattern(dataset, n = 5, P = NULL)

Argument n refers to response patterns. If n is specified, the response patterns with the n
highest frequencies are returned (along with their frequencies). If pattern is called without
specifying n explicitly, by default n = 5 is used. If n is larger than the number of different
response patterns in the dataset, n is set the number of different response patterns. The
optional matrix P gives the knowledge states to be used; pattern then additionally returns in-
formation about how often the knowledge states occur in the dataset. The default P = NULL
corresponds to no knowledge states being specified; pattern then only returns information
about response patterns (as described previously).5

Data and quasi order simulation tool. A data (based on the BLIM; Section 2.1) and quasi
order simulation tool is included in the package:

simu(items, size, ce, lg, imp = NULL, delta)

The number of response patterns to be simulated (the sample size) is specified by size, the
careless error and lucky guess noise parameters are given by ce and lg, respectively. The single
careless error ce and lucky guess lg probabilities are assumed to be constant over all items,
and the underlying knowledge states are assumed to be equiprobable. (The general form of
the BLIM allows for varying careless error and lucky guess rates from item to item and for
a general distribution of the knowledge states, which is not identifiable in general, however.)
The argument items gives the number of items of the domain taken as basis for the quasi
order underlying the simulation. A specific underlying quasi order can be passed manually
via imp, or it can be generated randomly. If a quasi order is specified manually, Birkhoff’s
theorem (Section 2.1) is used to derive the corresponding quasi ordinal knowledge space. The
latter is equipped with the error probabilities ce and lg and the uniform distribution on
the set of knowledge states to give the BLIM that is used for simulating the data. From
this corresponding knowledge structure K, a 0/1-pattern K ∈ K is drawn randomly, that
is, with probability p(K) = 1/|K|. For this drawn pattern, all entries are changed from 1
to 0 or from 0 to 1 with the prespecified careless error and lucky guess probabilities ce and
lg, respectively. This is repeated size times to generate a data matrix. Note that this is

5Although throughout this paper all discussion is centered around dichotomously scored items, we want to
mention that the function pattern even works with polytomous items, but such main functions as iita of the
package do not.
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simulating with a specific BLIM, for which the underlying knowledge states are equiprobable.
If imp = NULL, the underlying quasi order is generated randomly as follows. All reflexive
pairs are added to the relation. The constant delta is utilized as the probability for adding
each of the remaining non-reflexive item pairs to the relation. The transitive closure of this
relation is computed, and the resulting quasi order then is the surmise relation underlying
the simulation.
This simulation tool returns the simulated binary dataset and the surmise relation and its
corresponding quasi ordinal knowledge space used for simulating the data. The probability
specified by delta does not necessarily correspond to the portion of implications added to
the randomly generated quasi order, because the transitive closure is formed. In Sargin and
Ünlü (2009), a normal sampling scheme for drawing delta values is proposed. This sampling
scheme provides far better representative samples of quasi orders than simply drawing delta
values uniformly from the unit interval. (Surmise relations or knowledge structures, and the
representativeness of samples of these, are very important in simulation studies investigating
IITA type data analysis methods. The IITA algorithms are sensitive to the underlying surmise
relation that is used, and to test their performances objectively, a representative sample of
the collection of all quasi orders is needed.)

Plotting the Hasse diagram of a surmise relation. Another basic function of the package
DAKS is a Hasse diagram drawing device:6

hasse(imp, items)

This function plots the Hasse diagram of a surmise relation imp (more precisely, of the cor-
responding quotient set) using the package Rgraphviz (Gentry, Long, Gentleman, Falcon,
Hahne, Sarkar, and Hansen 2010) from Bioconductor (http://www.bioconductor.org/), an
interface between R and Graphviz (Graph Visualization Software, http://graphviz.org/).
Users must install Graphviz on their computers to plot such a diagram. The argument items
gives the number of items of the domain taken as basis for imp. The function hasse cannot
plot equally informative items. Two items i and j are called equally informative if and only
if j → i and i → j. Only one, the one with the smallest index, of the equally informative
items is drawn, and the equally informative items are returned (as tuples) in a list. The
plotted Hasse diagram uses as item labels iL, a transformation that takes place internally in
the packages sets or relations.
Table 1 summarizes the functions of the package DAKS (print and summary methods are
not listed).

6The Hasse diagram of a partially ordered set (P, P) is defined as the relation consisting of all pairs p1Pp2
such that p1 is covered by p2, that is, p1 ̸= p2 and there is no p ∈ P , p ̸= p1 and p ̸= p2, such that p1Pp and
pPp2. When P is finite, the Hasse diagram of (P, P) provides an efficient summary of P, in the sense that the
Hasse diagram of (P, P) is the smallest relation whose (reflexo-)transitive closure is equal to P. When P is a
small set, the Hasse diagram of P can be conveniently displayed by a graph drawn according to the following
conventions: the elements of P are represented by points on a page, with an ascending edge from p1 ∈ P to
p2 ∈ P if p1 is covered by p2 (e.g., Doignon and Falmagne 1999, pp. 14–15). Hasse diagrams are named after
Helmut Hasse (1898–1979), a German mathematician. When being told that such a type of mathematical
diagram was named after him, Helmut Hasse himself did not like that, something so “trivial” being attributed
to him.

http://www.bioconductor.org/
http://graphviz.org/
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Function Short description
corr_iita Computing diff values for the corrected IITA algorithm
hasse Plotting a Hasse diagram
iita Computing sample diff values and the best fitting quasi order

for one of the three IITA algorithms selectively
imp2state Transforming from implications to knowledge states
ind_gen Inductively generating a selection set
mini_iita Computing diff values for the minimized corrected IITA algorithm
ob_counter Computing numbers of observed counterexamples
orig_iita Computing diff values for the original IITA algorithm
pattern Computing frequencies of response patterns and knowledge states
pop_iita Computing population diff values and the selection set

for one of the three IITA algorithms selectively
pop_variance Computing population asymptotic variances
simu Data and quasi order simulation tool
state2imp Transforming from knowledge states to implications
variance Computing estimated asymptotic variances
z_test Performing one and two sample Z-tests for diff values

Table 1: Summary of the DAKS functions.

The interdependencies among the functions of the package are as follows. The function iita
calls the functions ob_counter and ind_gen, and depending on the value specified for v,
one of the three IITA functions orig_iita, corr_iita, and mini_iita. Moreover, each of
the three functions orig_iita, corr_iita, and mini_iita calls the function ob_counter.
If the argument dataset is specified explicitly, the function pop_iita calls the functions
ob_counter and ind_gen. The function pattern is called by the function variance. The
function z_test calls the function variance, and depending on the value specified for v, the
function corr_iita or the function mini_iita.

4. Demonstrating the package DAKS

4.1. An example with real data

We illustrate usage of the package DAKS with part of the 2003 Programme for International
Student Assessment (PISA; http://www.pisa.oecd.org/) data.7

The dataset

The dataset consists of the item responses by 340 German students on a 5-item dichotomously
scored mathematical literacy test. This is the pisa dataset accompanying the package DAKS.
This dataset resulted from dichotomizing the original multiple-choice or open format test data.

7Real applications of KST in a wide range of fields are systematically presented in Albert and Lukas (1999).
For a non-technical review of KST including examples as well, see Falmagne et al. (1990). A comprehensive
bibliography on KST including many references on real applications of KST can be retrieved from http:
//wundt.kfunigraz.ac.at/kst.php.

http://www.pisa.oecd.org/
http://wundt.kfunigraz.ac.at/kst.php
http://wundt.kfunigraz.ac.at/kst.php
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The scores are 1 or 0 for a correct or incorrect response, respectively; there are no missing
values in the data. Wordings of the test items used in the assessment are not known (not
publicly available).
The first six response patterns of the dataset and the five response patterns with largest
absolute frequencies in the data:

R> head(pisa)

a b c d e
1 1 0 0 0 0
2 0 0 0 0 0
3 1 0 0 0 0
4 1 0 0 0 0
5 0 1 0 0 0
6 1 1 0 0 0

R> pat <- pattern(pisa)
R> pat

5 largest response patterns in the data:
11100 11000 10000 11110 00000

67 61 41 40 20

R> sum(pat$response.patterns)

[1] 229

We see that the five most frequent response patterns make up for 229 out of the 340 patterns.
These are the Guttman patterns of the chain (Footnote 3) d → c → b → a that can likely be
assumed to underlie the data. This is also indicated by the following code:

R> apply(pisa, 2, table)

a b c d e
0 51 91 167 261 293
1 289 249 173 79 47

From items a to e, the sample item popularities (proportions-correct) are well-differentiated
and strictly decreasing. For instance, item a is most popular (most frequently solved), item e
is least popular (least frequently solved). Since we do not know whether the underlying quasi
order may or may not be a chain, we next perform IITA analyses of the PISA data.

IITA analyses of the PISA data
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IITA algorithms. We start with running the three IITA algorithms on these data. The
results are assigned to variables for later analyses.

R> mini <- iita(pisa, v = 1)
R> corr <- iita(pisa, v = 2)
R> orig <- iita(pisa, v = 3)
R> summary(mini)

Inductive Item Tree Analysis

Algorithm: minimized corrected IITA
diff values: 143.533 137.399 132.133 115.377 120.168 110.487 82.542 38.976 27.566 107.39 242.373 1079.054 2887.721
quasi order: {(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 3L), (2L, 4L),
(2L, 5L), (3L, 4L), (3L, 5L)}

error rate: 0.116
index in the selection set: 9

R> summary(corr)

Inductive Item Tree Analysis

Algorithm: corrected IITA
diff values: 143.533 137.408 132.214 115.385 121.099 113.423 86.066 40.938 33.319 179.645 361.257 1161.384 3192.946
quasi order: {(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 3L), (2L, 4L),
(2L, 5L), (3L, 4L), (3L, 5L)}

error rate: 0.136
index in the selection set: 9

R> summary(orig)

Inductive Item Tree Analysis

Algorithm: original IITA
diff values: 82.156 80.6 78.63 74.668 134.345 122.664 150.889 141.516 133.269 384.97 822.495 1853.682 3192.946
quasi order: {(1L, 4L), (1L, 5L), (2L, 4L), (2L, 5L)}
error rate: 0.081
index in the selection set: 4

Inductively generated selection set. We additionally present the inductively generated selec-
tion set of competing quasi orders, because that helps investigating the results obtained from
applying the IITA algorithms. (Note that this is practicable when the selection set or the
number of items are not too large.) For this purpose, the numbers of observed counterex-
amples for all pairs of items are computed using the function ob_counter, and the function
ind_gen is applied to inductively generate from the returned matrix of the numbers of ob-
served counterexamples a set of quasi orders. The function ind_gen returns a list of the
inductively generated surmise relations.
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R> sel_set <- ind_gen(ob_counter(pisa))
R> sel_set

[[1]]
{(1L, 5L)}

[[2]]
{(1L, 4L), (1L, 5L)}

[[3]]
{(1L, 4L), (1L, 5L), (2L, 5L)}

[[4]]
{(1L, 4L), (1L, 5L), (2L, 4L), (2L, 5L)}

[[5]]
{(1L, 4L), (1L, 5L), (2L, 4L), (2L, 5L), (3L, 5L)}

[[6]]
{(1L, 3L), (1L, 4L), (1L, 5L), (2L, 4L), (2L, 5L), (3L, 5L)}

[[7]]
{(1L, 3L), (1L, 4L), (1L, 5L), (2L, 4L), (2L, 5L), (3L, 4L), (3L, 5L)}

[[8]]
{(1L, 3L), (1L, 4L), (1L, 5L), (2L, 3L), (2L, 4L), (2L, 5L), (3L, 4L),
(3L, 5L)}

[[9]]
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 3L), (2L, 4L), (2L, 5L), (3L, 4L),
(3L, 5L)}

[[10]]
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 3L), (2L, 4L), (2L, 5L), (3L, 4L),
(3L, 5L), (4L, 5L)}

[[11]]
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 1L), (2L, 3L), (2L, 4L), (2L, 5L),
(3L, 4L), (3L, 5L), (4L, 5L), (5L, 4L)}

[[12]]
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 1L), (2L, 3L), (2L, 4L), (2L, 5L),
(3L, 4L), (3L, 5L), (4L, 3L), (4L, 5L), (5L, 3L), (5L, 4L)}

[[13]]
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 1L), (2L, 3L), (2L, 4L), (2L, 5L),
(3L, 1L), (3L, 2L), (3L, 4L), (3L, 5L), (4L, 1L), (4L, 2L), (4L, 3L), (4L, 5L),
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(5L, 1L), (5L, 2L), (5L, 3L), (5L, 4L)}

The quasi order with tenth index in the selection set is a chain (Footnote 3), that is, the items
form a Guttman scale. The neighboring quasi orders with indices eight, nine, and eleven are
very close to a chain. Therefore we expect the underlying quasi order to be one of these four,
most likely. Note that inspecting the selection set for specific quasi orders can be useful in
general, because the selection set only contains a small fraction of all possible quasi orders.

General remarks. The corrected and minimized corrected IITA algorithms yield the same
solution quasi order, which is close to a chain (cf. Figure 1). The original IITA algorithm
selects a quasi order which is clearly different from that returned by the other two algorithms,
and which is far from being a chain (cf. Footnote 8). This is also reflected by the corresponding
diff values. They are similar for the corrected and minimized corrected IITA algorithms,
and considerably smaller than the diff value obtained for the original algorithm. There is
evidence that the original IITA algorithm fails in revealing underlying “close-to-chain” quasi
orders. Furthermore, fitting the classical Rasch model to this dataset corroborates the chain
hierarchy among the five mathematical literacy test items. Since the Rasch model assumes
unidimensionality of the latent trait, the items can be ordered linearly along the continuum
in terms of their difficulties (with respect to the natural ordering in the reals), resulting
in a deterministic Guttman scale; in this regard, see also Ünlü (2007). Due to the highly
confirmatory fit statistics obtained for this dataset, the items most likely form a chain. For
details on comparing the different data analysis methods and psychometric approaches, see
Sargin and Ünlü (2009) and Ünlü and Sargin (2010a). See also the “General remarks” in
“Inductive item tree analysis algorithms in sample values” of Section 2.2. The present paper
rather is on introducing the R package DAKS.

Comparing and plotting the solution quasi orders obtained from IITA analyses

Comparing using functions of the package sets. One can use functions of the package sets, for
example when comparing the solution quasi orders obtained from different IITA algorithms.
The next two functions that we describe are from the package sets. (Of course, other functions
of the package sets can be helpful and used as well.)
The symmetric set difference between the solutions of the original and minimized corrected
IITA algorithms can be computed by:

R> set_symdiff(orig$implications, mini$implications)

{(1L, 2L), (1L, 3L), (2L, 3L), (3L, 4L), (3L, 5L)}

The symmetric set difference gives the implications in which the two relations differ.
In the example here we see that all implications of the original IITA algorithm solution are
contained in the quasi order derived using the minimized corrected IITA algorithm:

R> set_is_proper_subset(orig$implications, mini$implications)

[1] TRUE
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Plotting the Hasse diagram. Graphics are convenient to use and they can present information
effectively. The graphic that is used throughout KST is the Hasse diagram (see Footnote 6).
It is utilized for presenting information, not for exploring data. For approaches to graphically
exploring KST data based on mosaic plots for instance, see Ünlü and Sargin (2009). A Hasse
diagram can be plotted by:

R> hasse(mini$implications, 5)

list()

This gives the Hasse diagram of the solution quasi order of the minimized corrected algorithm
shown in Figure 1. From Figure 1 we see that, for example, item 3 implies items 1 and 2, and
that item 3 is implied by items 4 and 5. Note that the returned list of equally informative
items is empty; therefore the diagram faithfully represents the quasi order. The plotted Hasse
diagram uses as item labels iL (cf. Section 3.2).8

1L

2L

3L

4L 5L

Figure 1: Hasse diagram of the quasi order obtained for the PISA dataset under the minimized
corrected IITA algorithm.

Comparing using the Z-test. We perform a Z-test to check whether the quasi order obtained
by the corrected and minimized corrected IITA algorithms has a smaller diff value than the

8Note that the solution quasi order obtained for the PISA dataset under the original IITA algorithm is
given by {(1L, 4L), (1L, 5L), (2L, 4L), (2L, 5L)}. If we denote this quasi order on Q = {a, b, c, d, e} by
⊑, then a ⊑ d, a ⊑ e, b ⊑ d, and b ⊑ e. In particular, item c is ⊑-incomparable with any of the other items
a, b, d, e, items a and b are ⊑-incomparable, and items d and e are ⊑-incomparable. Here we call q1, q2 ∈ Q
⊑-incomparable if and only if q1 ̸⊑ q2 and q2 ̸⊑ q1.
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quasi order forming a chain. If this is not the case, we cannot say with certainty whether the
derived quasi order is significantly better than the chain hierarchy.

R> z_test(pisa, sel_set[[10]], sel_set[[9]], alternative = "less", v = 1)

Two sample Z-test

z = 2.2666 p-value = 0.0117
alternative hypothesis: true mean is less 0
95 percent confidence interval:

0.0001894101 Inf
sample estimates:

mean in imp mean in imp_alt
0.00093 0.00024

The p-value is 0.0117, hence it can be assumed that the diff value of the derived quasi order is
significantly smaller than the diff value of the chain. According to the diff criterion, therefore
the obtained quasi order has a distinctly better fit to the data.
Through previous analyses we have gained information about the dependencies between the
test items of the PISA dataset. We have seen that, for instance, items 4 and 5 imply all other
items. Therefore we can surmise from a student’s solving the items 4 or 5 that this student
will also be able to solve items 1, 2, and 3. Such information can be used in computerized
adaptive testing, in order to reduce the number of items administered to the student.

4.2. An example with simulated data

To illustrate the other functions of the package DAKS, we start with simulating a quasi order
and a dataset. Note that every simulation is individual, in the sense that different results are
obtained from simulation to simulation.9

Data and quasi order simulation

Since imp = NULL, a quasi order is generated randomly using a probability of delta = 0.15
for adding an implication to the relation. Based on this underlying surmise relation, a binary
dataset consisting of 9 items and 1500 examinees is simulated using a same careless error
and lucky guess rate of 0.1 over all items. The simulated binary dataset and the simulated
surmise relation and its corresponding quasi ordinal knowledge space are returned.

R> ex_data <- simu(9, 1500, 0.1, 0.1, delta = 0.15)

The randomly generated quasi order underlying the simulated data is:

R> ex_data$implications
9The following simulation is meant for demonstrating the functions of the package DAKS. Extensive sim-

ulation studies based on or investigating the BLIM in KST are presented, for instance, in Sargin and Ünlü
(2009), Schrepp (2003, 2005), Stefanutti and Robusto (2009), Ünlü (2006), and Ünlü and Sargin (2010a). For
example, Stefanutti and Robusto (2009), among other things, assess goodness-of-fit of the BLIM to simulated
data via Pearson’s X2. The comprehensive bibliography on KST at http://wundt.kfunigraz.ac.at/kst.php
includes many more references on theoretical and simulation studies in KST.

http://wundt.kfunigraz.ac.at/kst.php
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{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (1L, 6L), (1L, 7L), (1L, 8L), (1L, 9L),
(2L, 1L),
(2L, 3L), (2L, 4L), (2L, 5L), (2L, 6L), (2L, 7L), (2L, 8L), (2L, 9L), (3L, 1L),
(3L, 2L),
(3L, 4L), (3L, 5L), (3L, 6L), (3L, 7L), (3L, 8L), (3L, 9L), (4L, 1L), (4L, 2L),
(4L, 3L),
(4L, 5L), (4L, 6L), (4L, 7L), (4L, 8L), (4L, 9L), (5L, 1L), (5L, 2L), (5L, 3L),
(5L, 4L),
(5L, 6L), (5L, 7L), (5L, 8L), (5L, 9L), (6L, 1L), (6L, 2L), (6L, 3L), (6L, 4L),
(6L, 5L),
(6L, 7L), (6L, 8L), (6L, 9L), (7L, 1L), (7L, 2L), (7L, 3L), (7L, 4L), (7L, 5L),
(7L, 6L),
(7L, 8L), (7L, 9L), (9L, 1L), (9L, 2L), (9L, 3L), (9L, 4L), (9L, 5L), (9L, 6L),
(9L, 7L), (9L, 8L)}

Corrected IITA analyses of the simulated data

In the following, analyses are performed under the corrected IITA algorithm only; under the
other two algorithms the analyses are analogous. We run the corrected IITA procedure on
the simulated dataset.

R> ex_corr <- iita(ex_data$dataset, v = 2)
R> ex_corr

Inductive Item Tree Analysis

Algorithm: corrected IITA

quasi order: {(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (1L, 6L), (1L, 7L), (1L, 8L),
(1L, 9L), (2L, 1L),
(2L, 3L), (2L, 4L), (2L, 5L), (2L, 6L), (2L, 7L), (2L, 8L), (2L, 9L), (3L, 1L),
(3L, 2L),
(3L, 4L), (3L, 5L), (3L, 6L), (3L, 7L), (3L, 8L), (3L, 9L), (4L, 1L), (4L, 2L),
(4L, 3L),
(4L, 5L), (4L, 6L), (4L, 7L), (4L, 8L), (4L, 9L), (5L, 1L), (5L, 2L), (5L, 3L),
(5L, 4L),
(5L, 6L), (5L, 7L), (5L, 8L), (5L, 9L), (6L, 1L), (6L, 2L), (6L, 3L), (6L, 4L),
(6L, 5L),
(6L, 7L), (6L, 8L), (6L, 9L), (7L, 1L), (7L, 2L), (7L, 3L), (7L, 4L), (7L, 5L),
(7L, 6L),
(7L, 8L), (7L, 9L), (9L, 1L), (9L, 2L), (9L, 3L), (9L, 4L), (9L, 5L), (9L, 6L),
(9L, 7L), (9L, 8L)}

The quasi order obtained by data analysis is the true quasi order underlying the data. (This
of course may not always be the case.)

R> ex_corr$implications == ex_data$implications
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[1] TRUE

Corrected IITA analyses in the population
Next we discuss the functions which provide the basis for statistical inference methodology.

Corrected IITA algorithm. The corrected IITA algorithm can be performed in population
quantities, yielding information about the population diff values, population occurrence prob-
abilities of response patterns, population error rates, and the inductively generated selection
set:

R> pop <- pop_iita(ex_data$implications, 0.1, 0.1, 9, dataset = ex_data$dataset,
+ v = 2)
attributes(pop)

$names
[1] "pop.diff" "pop.matrix" "error.pop" "selection.set" "v"

$class
[1] "popiita"

For the argument imp we use the simulated surmise relation ex_data$implications, with
9 items of the domain for this quasi order. The knowledge structure corresponding to
ex_data$implications is equipped with a same careless error and lucky guess rate of 0.1
over all items. Since dataset = ex_data$dataset (and A = NULL), the simulated binary
data are used to generate the set of competing quasi orders based on the sample version of
the inductive generation procedure (cf. Section 3.2).

Sample and population diff values. To compare sample with population diff values, the
sample diff coefficient is transformed to become the MLE for the corresponding population
diff coefficient (see Section 2.2 for the definition of diff ):

R> round(ex_corr$diff / 1500^2, 4)

[1] 0.0160 0.0159 0.0156 0.0155 0.0153 0.0.0152 0.0151 0.0145 0.0133 0.0133 0.0127
[12] 0.0116 0.0094 0.0083 0.0079 0.0068 0.0053 0.0037 0.0016 0.0011 0.0011 0.0000
[23] 0.0000 0.0058

R> round(pop$pop.diff, 4)

[1] 0.0167 0.0166 0.0163 0.0162 0.0160 0.0159 0.0157 0.0152 0.0141 0.0141 0.0135
[12] 0.0124 0.0101 0.0090 0.0085 0.0073 0.0056 0.0040 0.0017 0.0012 0.0012 0.0000
[23] 0.0000 0.0056

The respective sample and population values are quite similar, already for a sample size of
1500. This is obvious given the fact that the sample diff values converge in probability (and
expectation) to the population diff values (see Section 2.2).
The quasi order with minimum population diff value can be queried:
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R> mp <- which.min(pop$pop.diff)
R> pop$selection.set[[mp]]

{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (1L, 6L), (1L, 7L), (1L, 8L),
(1L, 9L), (2L, 1L), (2L, 3L), (2L, 4L), (2L, 5L), (2L, 6L), (2L, 7L), (2L, 8L),
(2L, 9L), (3L, 1L), (3L, 2L), (3L, 4L), (3L, 5L), (3L, 6L), (3L, 7L),
(3L, 8L), (3L, 9L), (4L, 1L), (4L, 2L), (4L, 3L), (4L, 5L), (4L, 6L), (4L, 7L),
(4L, 8L), (4L, 9L), (5L, 1L), (5L, 2L), (5L, 3L), (5L, 4L), (5L, 6L),
(5L, 7L), (5L, 8L), (5L, 9L), (6L, 1L), (6L, 2L), (6L, 3L), (6L, 4L), (6L, 5L),
(6L, 7L), (6L, 8L), (6L, 9L), (7L, 1L), (7L, 2L), (7L, 3L), (7L, 4L),
(7L, 5L), (7L, 6L), (7L, 8L), (7L, 9L), (9L, 1L), (9L, 2L), (9L, 3L), (9L, 4L),
(9L, 5L), (9L, 6L), (9L, 7L), (9L, 8L)}

This quasi order is the true quasi order underlying the simulated dataset. Of course this may
not always be the case, especially for smaller sample sizes or higher response error rates.
The population analogs are useful for comparing the IITA algorithms (Ünlü and Sargin 2010a).
In Ünlü and Sargin (2010a), a thorough simulation study is performed. It is shown that the
original IITA algorithm leads to bad results in population (and sample) values. In this regard,
see also the “General remarks” in “Inductive item tree analysis algorithms in sample values” of
Section 2.2. Hence the corrected and minimized corrected IITA algorithms are recommended
for use in real applications.

Estimated and population asymptotic variances. As mentioned in Section 2.2, the MLEs diff
are asymptotically normal. Large sample normality with associated standard errors can be
used to construct confidence intervals for the population values of and to test hypotheses about
the diff coefficients (cf. Sections 3.2 and 4.1). For instance, using the function z_test we can
test whether one of two quasi orders has a significantly smaller diff value in the population.
The quasi orders could, for example, be derived from querying experts. In order to do such
a test, the asymptotic variances need to be estimated. Population asymptotic variances and
consistent estimators thereof can be computed using the delta method (cf. Section 3.2).
The estimated asymptotic variance of the MLE diff in the sample version corrected IITA
algorithm can be computed by:

R> var_sample <- variance(ex_data$dataset, ex_data$implications, v = 2)
R> var_sample

[1] 8.944665e-05

R> sqrt(var_sample)

[1] 0.009457624

This estimated asymptotic variance is formulated for the simulated data ex_data$dataset
and the randomly generated surmise relation ex_data$implications underlying these data.
The corresponding population asymptotic variance of the MLE diff in the population version
corrected IITA algorithm is:
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R> pop_variance <- pop_variance(pop$pop.matrix, pop$selection.set[[mp]],
+ pop$error.pop[mp], v = 2)
R> pop_variance

[1] 4.453308e-07

R> sqrt(pop_variance)

[1] 0.0006673311

This population asymptotic variance is formulated for the population cell probabilities
pop$pop.matrix of the multinomial distribution and the population error rate obtained for
the true quasi order (with minimum population diff value) underlying the simulated data.
Note that in this example the arguments pop_matrix and error_pop are obtained from a
call to the function pop_iita. For the argument imp we use the true quasi order.
The sample and population values are quite similar. The sample variance is a consistent
estimator for the population variance (convergence in probability). This and the function
variance are important, because in real applications the estimated asymptotic variance has
to be used (e.g., for calculating standard deviations of the diff measures or for performing
such significance tests as the z_test).

5. Conclusion

Summary. This paper has introduced the R package DAKS. This package contains several
basic functions for KST, and it primarily implements the IITA methods for data analysis in
KST, at the level of both sample and population values. Functions for computing various
population values and for estimating asymptotic variances and performing Z-tests are also
contained. These tools provide the basis for statistical inference methodology and for further
analyses in KST. We have described the functions of the package DAKS and demonstrated
their usage by real and simulated data examples.

Some suggestions for future implementations of the package. In future research, we plan to
implement other fit measures such as the di (discrepancy) index (Kambouri et al. 1994) or
the CA (correlational agreement) coefficient (Van Leeuwe 1974). Functions for computing
confidence intervals and for performing hypothesis tests for the diff and other fit measures
will also be implemented. The present functions of the package are to be extended; for
example, the function hasse should incorporate drawing diagrams for knowledge structures,
or the simulation tool could allow for individual response error probabilities for each item.

General remarks about the interplay between KST and IRT. By contributing the R package
DAKS we hope to have established a basis for computational work in the so far combinatorial
theory of knowledge spaces. Implementing KST procedures in R can help to bring together
KST and IRT. A number of R packages are available for IRT; for instance, ltm (Rizopoulos
2006) or mokken (Van der Ark 2007). KST and IRT are split directions of psychological
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test theories and have recently been partly compared at a theoretical level (Stefanutti 2006;
Stefanutti and Robusto 2009; Ünlü 2006, 2007). Using R as an interface between these theories
may prove valuable in comparing them at a computational level.
Why should one be interested in trying to unify KST and IRT? What can KST contribute
to IRT, and vice versa? The following lists some arguments supporting the importance of a
possible fusion of KST and IRT (cf. Ünlü 2007).

Statistical inference methodologies. An IRT-type modeling in KST could provide feasible new
statistical inference methodologies. For IRT, unlike KST, has plenty of sophisticated
statistical methods that could be suited to and applied in KST (e.g., Skrondal and
Rabe-Hesketh 2004).

Restrictivity. IRT models that simultaneously imply person and item orderings are restrictive
models with respect to real data (e.g., Sijtsma and Molenaar 2002). In general, they
will not fit many empirical datasets. A unified test theory combining KST and IRT
could positively contribute to and improve on this observation. For a strength of KST
is that it implies very general combinatorial structures, both at the levels of persons and
items, contrary to IRT, implying more restrictive linear orderings. KST further provides
mathematical results on the linkage between these levels, offering flexibility in the choice
of a representation. A unified approach could deliver as general as possible probabilistic
models that could imply both a person ordering and an item ordering, extend linear
orderings to more general surmise relations or even surmise systems, allow for flexibility
in representation, encompass most of the existing IRT and KST models as special cases,
and thus fit far more datasets in practice.

Adaptive testing. A unified test theory could also positively contribute to the problem of
adaptive testing in nonparametric IRT using ordinal measurement information (e.g.,
Huisman and Molenaar 2001). Adaptive testing, however, is a major strength of KST.

Qualitative derivation of hierarchies among items. KST offers a number of ‘a priori’ qualita-
tive, psychological theory driven methods for the derivation of hierarchies among items
(e.g., Albert and Lukas 1999). In IRT, however, orderings of items are obtained ‘a
posteriori’ by using quantitative, statistical methods (e.g., by estimating the difficulty
parameter of each item). A unified framework could provide qualitative, theory driven,
or quantitative, statistical, or hybrid derivation methods.

The R environment is ideally suited for a unified test theory combining KST and IRT. Such a
comprehensive environment can encompass many existing KST and IRT models and software,
unified under one umbrella. This implies easy access to and use of software for the practical
application of the unified test theory, KST, and IRT models to empirical data.
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