Title: | Cytobank API Wrapper for R |
---|---|
Description: | Tools to interface with Cytobank's API via R, organized by endpoints that represent various areas of Cytobank functionality. Learn more about Cytobank at <https://www.beckman.com/flow-cytometry/software>. |
Authors: | Stu Blair [aut, cre], Qihao Qi [aut], Stefanie Trop [aut], Louis Liu [aut], Preston Ng [aut], Chris Ciccolella [aut], Katherine Drake [aut] |
Maintainer: | Stu Blair <[email protected]> |
License: | GPL-3 |
Version: | 2.2.1 |
Built: | 2024-12-03 06:31:15 UTC |
Source: | CRAN |
An Advanced Analysis object that is a parent class to all advanced analysis algorithms. This class should never be called explicitly. Its purpose is to act as a parent class for advanced analyses.
An Advanced Analysis object
channels
the channels selected for the advanced analysis, this can be either a list of short channel IDs (integer) OR long channel names (character)
compensation_id
the compensation ID selected for the advanced analysis
name
the name of the advanced analysis
source_experiment
the source experiment ID the advanced analysis is associated with
status
character representing the status of the advanced analysis
.available_channels
the list of available channels based off the panels.list function
.available_files
the list of available files based off the fcs_files.list function
.available_populations
the list of available populations based off the populations.list function
Interact with attachments using these endpoints. Only FCS files can be analyzed in Cytobank, but any file can be uploaded as an attachment. Exported PDFs, statistics, and files also automatically attach themselves to the Experiment they are exported from. Learn more about attachments in Cytobank.
## S4 method for signature 'UserSession' attachments.delete( UserSession, experiment_id, attachment_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' attachments.download( UserSession, experiment_id, attachment_id, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' attachments.download_zip( UserSession, experiment_id, attachment_id, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' attachments.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' attachments.show( UserSession, experiment_id, attachment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' attachments.update( UserSession, attachment, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' attachments.upload( UserSession, experiment_id, file_path, output = "default", timeout = UserSession@long_timeout )
## S4 method for signature 'UserSession' attachments.delete( UserSession, experiment_id, attachment_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' attachments.download( UserSession, experiment_id, attachment_id, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' attachments.download_zip( UserSession, experiment_id, attachment_id, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' attachments.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' attachments.show( UserSession, experiment_id, attachment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' attachments.update( UserSession, attachment, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' attachments.upload( UserSession, experiment_id, file_path, output = "default", timeout = UserSession@long_timeout )
UserSession |
Cytobank UserSession object |
experiment_id |
integer representing an experiment ID |
attachment_id |
integer representing an attachment ID |
timeout |
integer representing the request timeout time in seconds [optional] |
directory |
character representing a specific directory to which the file will be downloaded (optional ending directory slash), if left empty, the default will be the current working directory [optional] |
output |
character representing the output format [optional] |
attachment |
dataframe representing an attachment (can retrieve via the attachments.show endpoint) |
file_path |
character representing a file path |
attachments.delete
Permanently delete an attachment.
attachments.download
Download an attachment from an experiment.
attachments.download_zip
Download all or a select set of attachments as a zip file from an experiment. The download link of the zip file will be sent to the user's registered email address.
attachments.list
List all attachments from an experiment. Outputs a dataframe [default] or raw list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
attachments.show
Show attachment details from an experiment.
- Optional output parameter, specify one of the following: ("default", "raw")
attachments.update
Update an attachment description from an experiment.
attachments.upload
Upload an attachment to an experiment.
- Optional output parameter, specify one of the following: ("default", "raw")
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: attachments.delete(cyto_session, 22, attachment_id=2) ## Not run: # Download an attachment to the current working directory attachments.download(cyto_session, 22) # Download an attachment to a new directory attachments.download(cyto_session, 22, directory="/my/new/download/directory/") ## End(Not run) ## Not run: # Download the all attachment files as a zip file attachments.download_zip(cyto_session, experiment_id=22) # Download a select set of attachment files as a zip file attachments.download_zip(cyto_session, experiment_id=22, attachment_id=2) ## End(Not run) ## Not run: # Dataframe of all attachments with all fields present attachments.list(cyto_session, 22) # Raw list of all attachments with all fields present attachments.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: attachments.show(cyto_session, 22, attachment_id=2) ## Not run: attachments.update(cyto_session, attachment=cyto_attachment) ## Not run: attachments.upload(cyto_session, 22, file_path="/path/to/my_attachment.txt")
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: attachments.delete(cyto_session, 22, attachment_id=2) ## Not run: # Download an attachment to the current working directory attachments.download(cyto_session, 22) # Download an attachment to a new directory attachments.download(cyto_session, 22, directory="/my/new/download/directory/") ## End(Not run) ## Not run: # Download the all attachment files as a zip file attachments.download_zip(cyto_session, experiment_id=22) # Download a select set of attachment files as a zip file attachments.download_zip(cyto_session, experiment_id=22, attachment_id=2) ## End(Not run) ## Not run: # Dataframe of all attachments with all fields present attachments.list(cyto_session, 22) # Raw list of all attachments with all fields present attachments.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: attachments.show(cyto_session, 22, attachment_id=2) ## Not run: attachments.update(cyto_session, attachment=cyto_attachment) ## Not run: attachments.upload(cyto_session, 22, file_path="/path/to/my_attachment.txt")
Interact with authentication endpoints. Every call to the Cytobank API must be accompanied by an authentication token. Tokens should be kept secure as they confer access to the data and analyses of an account. Tokens expire after 8 hours by default but this figure my change depending on custom configurations of an Enterprise Cytobank.
authenticate( site, username = NA, password = NA, auth_token = NA, short_timeout = 30, long_timeout = 60, timeout = 30 ) ## S4 method for signature 'UserSession' authentication.logout(UserSession, timeout = UserSession@short_timeout) ## S4 method for signature 'UserSession' authentication.revoke_all_tokens( UserSession, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' authentication.revoke_all_tokens_user( UserSession, user_id, timeout = UserSession@short_timeout )
authenticate( site, username = NA, password = NA, auth_token = NA, short_timeout = 30, long_timeout = 60, timeout = 30 ) ## S4 method for signature 'UserSession' authentication.logout(UserSession, timeout = UserSession@short_timeout) ## S4 method for signature 'UserSession' authentication.revoke_all_tokens( UserSession, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' authentication.revoke_all_tokens_user( UserSession, user_id, timeout = UserSession@short_timeout )
site |
character representing Cytobank user's site, as in 'site'.cytobank.org. If your Cytobank server does not end in '.org', enter the entire server name, as in 'site.cytobank.cn'. |
username |
character representing Cytobank user's username or email |
password |
character representing Cytobank user's password |
auth_token |
character representing Cytobank user's authentication token (expires in 8 hours) |
short_timeout |
numeric representing short request timeout times (default = 30s) [optional] |
long_timeout |
numeric representing long request timeout times (default = 60s) [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
UserSession |
Cytobank UserSession object |
user_id |
integer representing Cytobank user's ID |
authenticate
Authenticate a Cytobank user and return a
Cytobank UserSession object that is passed to all other Cytobank API
endpoints.
authentication.logout
This function has been deprecated. Logout a Cytobank user.
authentication.revoke_all_tokens
This function has been deprecated. Invalidate all existing tokens for the user making this call.
authentication.revoke_all_tokens_user
This function has been deprecated. Revoke all tokens for a given user. This endpoint only works for admins of the Cytobank site being accessed.
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run)
Automatic gating Endpoints
## S4 method for signature 'UserSession' autogating.list_autogating_analyses_of_type( UserSession, experiment_id, analysis_type, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.show_autogating_analysis_details( UserSession, experiment_id, analysis_id, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.create_autogating_analysis( UserSession, experiment_id, analysis_type, name, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.update_autogating_training_analysis_details( UserSession, experiment_id, analysis_id, createBlindTestExperiment, desiredEventsPerFile, desiredTotalEvents, eventSamplingMethod, fcsFileIds, gateSetIds, learningMagnification, optimalClusters, randomSeed, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.update_autogating_inference_analysis_details( UserSession, experiment_id, analysis_id, cloneGatesFromParent, fcsFileIds, trainedModelAnalysisId, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.delete_autogating_analysis( UserSession, experiment_id, analysis_id, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.copy_autogating_analysis_settings( UserSession, experiment_id, analysis_id, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.rename_autogating_analysis( UserSession, experiment_id, analysis_id, name, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.run_autogating_analysis( UserSession, experiment_id, analysis_id, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.show_autogating_analysis_status( UserSession, experiment_id, analysis_id, output = "default", timeout = UserSession@long_timeout )
## S4 method for signature 'UserSession' autogating.list_autogating_analyses_of_type( UserSession, experiment_id, analysis_type, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.show_autogating_analysis_details( UserSession, experiment_id, analysis_id, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.create_autogating_analysis( UserSession, experiment_id, analysis_type, name, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.update_autogating_training_analysis_details( UserSession, experiment_id, analysis_id, createBlindTestExperiment, desiredEventsPerFile, desiredTotalEvents, eventSamplingMethod, fcsFileIds, gateSetIds, learningMagnification, optimalClusters, randomSeed, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.update_autogating_inference_analysis_details( UserSession, experiment_id, analysis_id, cloneGatesFromParent, fcsFileIds, trainedModelAnalysisId, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.delete_autogating_analysis( UserSession, experiment_id, analysis_id, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.copy_autogating_analysis_settings( UserSession, experiment_id, analysis_id, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.rename_autogating_analysis( UserSession, experiment_id, analysis_id, name, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.run_autogating_analysis( UserSession, experiment_id, analysis_id, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' autogating.show_autogating_analysis_status( UserSession, experiment_id, analysis_id, output = "default", timeout = UserSession@long_timeout )
UserSession |
Cytobank UserSession object |
experiment_id |
integer representing an experiment ID |
analysis_type |
character representing the type of ananlysis: auto_gate_train or auto_gate_inference |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
analysis_id |
integer representing the id of an autogating analysis |
name |
character representing the name of an autogating analysis |
createBlindTestExperiment |
boolean A child experiment will be automatically created, containing the subset of FCS files that were assigned to the blind test set. For every predicted population, the files now contain one additional parameter following the naming convention of auto_gate_Population name. |
desiredEventsPerFile |
integer Only applies if eventSamplingMethod is set to equal. Defaults to 50,000. It is the number of desired events to sample per file, but if the selected population for any selected file has less total events than the specified number, that quantity will be used instead. |
desiredTotalEvents |
integer Only applies if eventSamplingMethod is set to proportional. Defaults to 5,000,000. Represents the total desired number of events to sample amongst all selected files, whilst keeping the numbers per file proportional to the total number of events in the selected population for that file. If any file has less events in the selected population than possible to make a perfectly proportional sampling to add up to the desired total, all of the events in the file will be used instead. |
eventSamplingMethod |
character Valid options are proportional, equal, or all. Defaults to equal. If eventSamplingMethod is set to all, all events for the selected population from all selected files will be used, without any further subsampling. |
fcsFileIds |
vector/list representing the id list of FCS files |
gateSetIds |
vector/list representing the id list of Cytobank gate set |
learningMagnification |
integer By increasing the magnification, the user can determine how many different models are being trained using different parameters on the same training data. The model with the highest KPI will be returned to the user. With a magnification greater than 1, you may be able to influence the model selection to return a model performing better on your population of interest, but usually not significant. Of note, increasing the magnification also causes a proportional increase of the runtime. It may also cause the run to crash due to memory constraints if there are millions of events. |
optimalClusters |
integer The best estimate of the number of distinct groups of files amongst those selected. Usually, this aligns with how you would sample tag your files into different conditions or time points. It helps the algorithm pick representative samples and perform better. There is an option to create an experiment with blind test files and their inferred populations. It can make it easier to visually evaluate model performance. |
randomSeed |
integer Accepts a positive integer value and sets a specific random seed to that value. If this parameter is not specified or set to 0, autoSeed will automatically be set to true, and a seed value will be randomly chosen, so that afterward it can be referred to for reproducing the analysis results. |
cloneGatesFromParent |
boolean The created child experiment will contain a copy of all gates & populations already present in the parent experiment |
trainedModelAnalysisId |
character The ID of the Autogate Training analysis that contains the model that the inference run will use. |
autogating.list_autogating_analyses_of_type
autogating.show_autogating_analysis_details
autogating.create_autogating_analysis
Create a new automatic gating analysis of
the specified type (auto_gate_train or auto_gate_inference).
autogating.update_autogating_training_analysis_details
autogating.update_autogating_inference_analysis_details
autogating.delete_autogating_analysis
autogating.copy_autogating_analysis_settings
autogating.rename_autogating_analysis
autogating.run_autogating_analysis
autogating.show_autogating_analysis_status
## Not run: # Create train analysis autogating_train_analysis <- autogating.list_autogating_analyses_of_type(cyto_session, p_experiment_id, "auto_gate_train") # Update train settings autogating.update_autogating_training_analysis_details(cyto_session, p_experiment_id, autogating_train_analysis$id, FALSE, 39139, 100001, "proportional", c(114386,114373,114383,114374,114384,114387,114385,114377,114382,114375), c(4,3,1,11,10), 1, 2, 1) # Run analysis autogating.run_autogating_analysis(cyto_session, p_experiment_id, autogating_train_analysis$id) # Create inference analysis autogating_inference_analysis <- autogating.list_autogating_analyses_of_type(cyto_session, p_experiment_id, "auto_gate_inference") # Update inference settings autogating.update_autogating_inference_analysis_details(cyto_session, p_experiment_id, autogating_inference_analysis$id, FALSE, c(114376,114378,114379,114380,114381,114388,114389,114390), autogating_train_analysis$id) # Run analysis autogating.run_autogating_analysis(cyto_session, p_experiment_id, autogating_inference_analysis$id) ## End(Not run) ## Not run: autogating.list_autogating_analyses_of_type(cyto_session, 22, "auto_gate_train") ## Not run: autogating.show_autogating_analysis_details(cyto_session, 22, 10) ## Not run: autogating.create_autogating_analysis(cyto_session, 22, "auto_gate_train", "My auto gating train analysis") ## End(Not run) ## Not run: autogating.update_autogating_training_analysis_details( cyto_session, 22, 10, FALSE, 5000, 100000, "proportional", c(10, 11, 12, 13, 14, 15, 16, 17, 18, 19), c(3, 4), 1, 2, NULL) ## End(Not run) ## Not run: autogating.update_autogating_inference_analysis_details( cyto_session, 22, 10, FALSE, c(21, 22, 23), 10) ## End(Not run) ## Not run: autogating.delete_autogating_analysis(cyto_session, 22, 10) ## Not run: autogating.copy_autogating_analysis_settings(cyto_session, 22, 10) ## Not run: autogating.rename_autogating_analysis(cyto_session, 22, 10, "New new of analysis") ## Not run: autogating.run_autogating_analysis(cyto_session, 22, 10) ## Not run: autogating.show_autogating_analysis_status(cyto_session, 22, 10)
## Not run: # Create train analysis autogating_train_analysis <- autogating.list_autogating_analyses_of_type(cyto_session, p_experiment_id, "auto_gate_train") # Update train settings autogating.update_autogating_training_analysis_details(cyto_session, p_experiment_id, autogating_train_analysis$id, FALSE, 39139, 100001, "proportional", c(114386,114373,114383,114374,114384,114387,114385,114377,114382,114375), c(4,3,1,11,10), 1, 2, 1) # Run analysis autogating.run_autogating_analysis(cyto_session, p_experiment_id, autogating_train_analysis$id) # Create inference analysis autogating_inference_analysis <- autogating.list_autogating_analyses_of_type(cyto_session, p_experiment_id, "auto_gate_inference") # Update inference settings autogating.update_autogating_inference_analysis_details(cyto_session, p_experiment_id, autogating_inference_analysis$id, FALSE, c(114376,114378,114379,114380,114381,114388,114389,114390), autogating_train_analysis$id) # Run analysis autogating.run_autogating_analysis(cyto_session, p_experiment_id, autogating_inference_analysis$id) ## End(Not run) ## Not run: autogating.list_autogating_analyses_of_type(cyto_session, 22, "auto_gate_train") ## Not run: autogating.show_autogating_analysis_details(cyto_session, 22, 10) ## Not run: autogating.create_autogating_analysis(cyto_session, 22, "auto_gate_train", "My auto gating train analysis") ## End(Not run) ## Not run: autogating.update_autogating_training_analysis_details( cyto_session, 22, 10, FALSE, 5000, 100000, "proportional", c(10, 11, 12, 13, 14, 15, 16, 17, 18, 19), c(3, 4), 1, 2, NULL) ## End(Not run) ## Not run: autogating.update_autogating_inference_analysis_details( cyto_session, 22, 10, FALSE, c(21, 22, 23), 10) ## End(Not run) ## Not run: autogating.delete_autogating_analysis(cyto_session, 22, 10) ## Not run: autogating.copy_autogating_analysis_settings(cyto_session, 22, 10) ## Not run: autogating.rename_autogating_analysis(cyto_session, 22, 10, "New new of analysis") ## Not run: autogating.run_autogating_analysis(cyto_session, 22, 10) ## Not run: autogating.show_autogating_analysis_status(cyto_session, 22, 10)
Interact with CITRUS advanced analyses using these endpoints.
## S4 method for signature 'UserSession,CITRUS' citrus.copy_settings( UserSession, citrus, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,CITRUS' citrus.delete(UserSession, citrus, timeout = UserSession@short_timeout) ## S4 method for signature 'UserSession,CITRUS' citrus.download( UserSession, citrus, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' citrus.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' citrus.new( UserSession, experiment_id, citrus_name, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,CITRUS' citrus.rename( UserSession, citrus, citrus_name, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,CITRUS' citrus.run( UserSession, citrus, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' citrus.show( UserSession, experiment_id, citrus_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,CITRUS' citrus.status( UserSession, citrus, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,CITRUS' citrus.update(UserSession, citrus, timeout = UserSession@long_timeout)
## S4 method for signature 'UserSession,CITRUS' citrus.copy_settings( UserSession, citrus, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,CITRUS' citrus.delete(UserSession, citrus, timeout = UserSession@short_timeout) ## S4 method for signature 'UserSession,CITRUS' citrus.download( UserSession, citrus, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' citrus.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' citrus.new( UserSession, experiment_id, citrus_name, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,CITRUS' citrus.rename( UserSession, citrus, citrus_name, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,CITRUS' citrus.run( UserSession, citrus, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' citrus.show( UserSession, experiment_id, citrus_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,CITRUS' citrus.status( UserSession, citrus, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,CITRUS' citrus.update(UserSession, citrus, timeout = UserSession@long_timeout)
UserSession |
Cytobank UserSession object |
citrus |
Cytobank CITRUS object |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
directory |
character representing a specific directory to which the file will be downloaded (optional ending directory slash), if left empty, the default will be the current working directory [optional] |
experiment_id |
integer representing an experiment ID |
citrus_name |
character representing a new CITRUS name |
citrus_id |
integer representing a CITRUS ID |
citrus.copy_settings
Copy CITRUS advanced analysis settings from an experiment and returns a CITRUS object.
citrus.delete
Delete a CITRUS advanced analysis from an experiment.
citrus.download
Download a CITRUS analysis from an experiment.
citrus.list
List all CITRUS advanced analyses from an experiment. Outputs a dataframe [default] or list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
citrus.new
Create a new CITRUS advanced analysis from an experiment and returns a CITRUS object.
citrus.rename
Rename a CITRUS advanced analysis from an experiment and returns a CITRUS object.
citrus.run
Run a CITRUS advanced analysis from an experiment.
citrus.show
Show CITRUS advanced analysis details from an experiment and returns a CITRUS object.
citrus.status
Show the status of a CITRUS advanced analysis from an experiment.
citrus.update
Update a CITRUS advanced analysis from an experiment and returns the new CITRUS object.
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") # cyto_citrus refers to a CITRUS object that is created from CITRUS endpoints # examples: citrus.new, citrus.show (see details section for more) ## End(Not run) ## Not run: citrus.copy_settings(cyto_session, citrus=cyto_citrus) ## Not run: citrus.delete(cyto_session, citrus=cyto_citrus) ## Not run: # Download a CITRUS analysis to the current working directory citrus.download(cyto_session, citrus) # Download a CITRUS analysis to a new directory citrus.download(cyto_session, citrus, directory="/my/new/download/directory/") ## End(Not run) ## Not run: # Dataframe of all CITRUS advanced analyses with all fields present citrus.list(cyto_session, 22) # Raw list of all CITRUS advanced analyses with all fields present citrus.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: citrus.new(cyto_session, 22, citrus_name="My new CITRUS analysis") ## Not run: citrus.rename(cyto_session, citrus=cyto_citrus, citrus_name="My updated CITRUS name") ## Not run: citrus.run(cyto_session, citrus=cyto_citrus) ## Not run: citrus.show(cyto_session, 22, citrus_id=2) ## Not run: citrus.status(cyto_session, citrus=cyto_citrus) ## Not run: citrus.update(cyto_session, citrus=cyto_citrus)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") # cyto_citrus refers to a CITRUS object that is created from CITRUS endpoints # examples: citrus.new, citrus.show (see details section for more) ## End(Not run) ## Not run: citrus.copy_settings(cyto_session, citrus=cyto_citrus) ## Not run: citrus.delete(cyto_session, citrus=cyto_citrus) ## Not run: # Download a CITRUS analysis to the current working directory citrus.download(cyto_session, citrus) # Download a CITRUS analysis to a new directory citrus.download(cyto_session, citrus, directory="/my/new/download/directory/") ## End(Not run) ## Not run: # Dataframe of all CITRUS advanced analyses with all fields present citrus.list(cyto_session, 22) # Raw list of all CITRUS advanced analyses with all fields present citrus.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: citrus.new(cyto_session, 22, citrus_name="My new CITRUS analysis") ## Not run: citrus.rename(cyto_session, citrus=cyto_citrus, citrus_name="My updated CITRUS name") ## Not run: citrus.run(cyto_session, citrus=cyto_citrus) ## Not run: citrus.show(cyto_session, 22, citrus_id=2) ## Not run: citrus.status(cyto_session, citrus=cyto_citrus) ## Not run: citrus.update(cyto_session, citrus=cyto_citrus)
A CITRUS object that holds pertinent CITRUS advanced analysis run information, learn more about CITRUS. This class should never be called explicitly. If a user would like to create a new Cytobank CITRUS object, utilize the citrus.new function, or any other CITRUS endpoints that return CITRUS objects documented in the 'Details' section.
A CITRUS advanced analysis object
associated_models
list representing statistical methods used to discover stratifying signatures from clustered data features that explain differences between sample groups, learn more about CITRUS association models
- choose from the following : ("sam", "pamr" [default], "glmnet")
attachment_id
numeric representing the CITRUS attachment ID
cross_validation_folds
numeric representing the regulation threshold, controlling the number of features in the model (only applies to PAM, LASSO), learn more about CITRUS cross validation folds
citrus_id
numeric representing the CITRUS analysis ID
cluster_characterization
character representing the principle for analyzing and quantifying individual samples, learn more about CITRUS cluster characterization
- choose one of the following : ("abundance" [default], "medians")
event_sampling_method
character representing the sampling method, learn more about CITRUS event sampling methods
- choose one of the following : ("equal" [default], "max-per-file")
events_per_file
numeric representing the number of events taken from each sample
false_discovery_rate
numeric representing the false discovery rate (only applies to PAM, SAM), learn more about CITRUS false discovery rate
file_grouping
numeric dataframe representing which group samples belong to, learn more about CITRUS file grouping, the core functionality of CITRUS
minimum_cluster_size
numeric representing the number of nodes, learn more about CITRUS minimum cluster size
normalize_scales
logical representing whether or not to normalize channels, learn more about normalizing CITRUS scales
plot_theme
character representing the background color of images and figures within the CITRUS results
- choose one of the following : ("white" [default], "black")
population_id
dataframe representing a population gate set ID
statistics_channels
list representing the statistics channels used for the 'median' cluster characterization, these channels should not be selected for clustering
Interact with compensation endpoints. Get information about compensations stored in Cytobank. For information about file-internal compensation for an individual FCS file, consult the FCS files endpoints. Learn more about compensation in Cytobank.
## S4 method for signature 'UserSession' compensations.upload_csv( UserSession, experiment_id, file_path, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' compensations.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' compensations.show( UserSession, experiment_id, compensation_id, output = "default", timeout = UserSession@short_timeout )
## S4 method for signature 'UserSession' compensations.upload_csv( UserSession, experiment_id, file_path, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' compensations.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' compensations.show( UserSession, experiment_id, compensation_id, output = "default", timeout = UserSession@short_timeout )
UserSession |
Cytobank UserSession object |
experiment_id |
integer representing an experiment ID |
file_path |
character representing a file path |
timeout |
integer representing the request timeout time in seconds [optional] |
output |
character representing the output format [optional] |
compensation_id |
integer representing a compensation ID |
compensations.upload_csv
Upload a compensation CSV to an experiment.
compensations.list
List all compensations from an experiment. Outputs a formatted list [default] or raw list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
compensations.show
Show compensation details from an experiment.
- Optional output parameter, specify one of the following: ("default", "dataframe", "raw")
- dataframe
: converts the compensation matrix output to a dataframe
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: compensations.upload_csv(cyto_session, 22, file_path="/path/to/my_compensation.csv") ## Not run: # List of all compensations with all fields present, with a compensation matrix dataframe list item compensations.list(cyto_session, 22) # Raw list of all compensations with all fields present compensations.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: # List form of a compensation compensations.show(cyto_session, 22, compensation_id=2) # Compensation dataframe only compensations.show(cyto_session, 22, compensation_id=2, output="dataframe") ## End(Not run)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: compensations.upload_csv(cyto_session, 22, file_path="/path/to/my_compensation.csv") ## Not run: # List of all compensations with all fields present, with a compensation matrix dataframe list item compensations.list(cyto_session, 22) # Raw list of all compensations with all fields present compensations.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: # List form of a compensation compensations.show(cyto_session, 22, compensation_id=2) # Compensation dataframe only compensations.show(cyto_session, 22, compensation_id=2, output="dataframe") ## End(Not run)
Interact with DimensionalityReduction advanced analyses using these endpoints.
## S4 method for signature 'UserSession,DimensionalityReduction' dimensionality_reduction.copy_settings( UserSession, dimensionality_reduction, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,DimensionalityReduction' dimensionality_reduction.delete( UserSession, dimensionality_reduction, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' dimensionality_reduction.list( UserSession, experiment_id, analysis_type, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' dimensionality_reduction.new( UserSession, experiment_id, analysis_name, analysis_type, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,DimensionalityReduction' dimensionality_reduction.rename( UserSession, dimensionality_reduction, analysis_name, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,DimensionalityReduction' dimensionality_reduction.run( UserSession, dimensionality_reduction, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' dimensionality_reduction.show( UserSession, experiment_id, analysis_id, analysis_type, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,DimensionalityReduction' dimensionality_reduction.status( UserSession, dimensionality_reduction, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,DimensionalityReduction' dimensionality_reduction.update( UserSession, dimensionality_reduction, timeout = UserSession@long_timeout )
## S4 method for signature 'UserSession,DimensionalityReduction' dimensionality_reduction.copy_settings( UserSession, dimensionality_reduction, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,DimensionalityReduction' dimensionality_reduction.delete( UserSession, dimensionality_reduction, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' dimensionality_reduction.list( UserSession, experiment_id, analysis_type, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' dimensionality_reduction.new( UserSession, experiment_id, analysis_name, analysis_type, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,DimensionalityReduction' dimensionality_reduction.rename( UserSession, dimensionality_reduction, analysis_name, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,DimensionalityReduction' dimensionality_reduction.run( UserSession, dimensionality_reduction, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' dimensionality_reduction.show( UserSession, experiment_id, analysis_id, analysis_type, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,DimensionalityReduction' dimensionality_reduction.status( UserSession, dimensionality_reduction, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,DimensionalityReduction' dimensionality_reduction.update( UserSession, dimensionality_reduction, timeout = UserSession@long_timeout )
UserSession |
Cytobank UserSession object |
dimensionality_reduction |
Cytobank DimensionalityReduction object |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
experiment_id |
integer representing an experiment ID |
analysis_type |
character representing the Dimensionality Reduction type (tSNE-CUDA, opt-SNE, UMAP, or viSNE) |
analysis_name |
character the name of the Dimensionality Reduction analysis |
analysis_id |
integer representing the Dimensionality Reduction analysis ID |
dimensionality_reduction.copy_settings
Copy DimensionalityReduction advanced analysis
settings from an experiment and returns a DimensionalityReduction object.
dimensionality_reduction.delete
Delete a DimensionalityReduction advanced analysis
from an experiment.
dimensionality_reduction.list
List all DimensionalityReduction advanced analyses from an experiment.
Outputs a dataframe [default] or list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
dimensionality_reduction.new
Create a new DimensionalityReduction advanced analysis
from an experiment and returns a DimensionalityReduction object.
dimensionality_reduction.rename
Rename a DimensionalityReduction advanced analysis
from an experiment and returns the new name.
dimensionality_reduction.run
Run a DimensionalityReduction advanced analysis from an experiment.
dimensionality_reduction.show
Show DimensionalityReduction advanced analysis details
from an experiment and returns a DimensionalityReduction object.
dimensionality_reduction.status
Show the status of a DimensionalityReduction advanced analysis from an experiment.
dimensionality_reduction.update
Update a DimensionalityReduction advanced analysis
from an experiment and returns the new DimensionalityReduction object.
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") # cyto_dimensionality_reduction refers to a DimensionalityReduction object that is created from DimensionalityReduction endpoints # examples: dimensionality_reduction.new, dimensionality_reduction.show (see details section for more) ## End(Not run) ## Not run: dimensionality_reduction.copy_settings(cyto_session, dimensionality_reduction=cyto_dimensionality_reduction) ## End(Not run) ## Not run: dimensionality_reduction.delete(cyto_session, dimensionality_reduction=cyto_dimensionality_reduction) ## End(Not run) ## Not run: # Dataframe of all DimensionalityReduction advanced analyses with all fields present dimensionality_reduction.list(cyto_session, 22, "viSNE") # Raw list of all DimensionalityReduction advanced analyses with all fields present dimensionality_reduction.list(cyto_session, 22, "viSNE", output="raw") ## End(Not run) ## Not run: dimensionality_reduction.new(cyto_session, 22, analysis_name="My new DimensionalityReduction analysis", "UMAP") ## End(Not run) ## Not run: dimensionality_reduction.rename(cyto_session, dimensionality_reduction=cyto_dimensionality_reduction, analysis_name="My updated DimensionalityReduction name") ## End(Not run) ## Not run: dimensionality_reduction.run(cyto_session, dimensionality_reduction=cyto_dimensionality_reduction) ## End(Not run) ## Not run: dimensionality_reduction.show(cyto_session, 22, analysis_id=2, "opt-SNE") ## Not run: dimensionality_reduction.status(cyto_session, dimensionality_reduction=cyto_dimensionality_reduction) ## End(Not run) ## Not run: dimensionality_reduction.update(cyto_session, dimensionality_reduction=cyto_dimensionality_reduction) ## End(Not run)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") # cyto_dimensionality_reduction refers to a DimensionalityReduction object that is created from DimensionalityReduction endpoints # examples: dimensionality_reduction.new, dimensionality_reduction.show (see details section for more) ## End(Not run) ## Not run: dimensionality_reduction.copy_settings(cyto_session, dimensionality_reduction=cyto_dimensionality_reduction) ## End(Not run) ## Not run: dimensionality_reduction.delete(cyto_session, dimensionality_reduction=cyto_dimensionality_reduction) ## End(Not run) ## Not run: # Dataframe of all DimensionalityReduction advanced analyses with all fields present dimensionality_reduction.list(cyto_session, 22, "viSNE") # Raw list of all DimensionalityReduction advanced analyses with all fields present dimensionality_reduction.list(cyto_session, 22, "viSNE", output="raw") ## End(Not run) ## Not run: dimensionality_reduction.new(cyto_session, 22, analysis_name="My new DimensionalityReduction analysis", "UMAP") ## End(Not run) ## Not run: dimensionality_reduction.rename(cyto_session, dimensionality_reduction=cyto_dimensionality_reduction, analysis_name="My updated DimensionalityReduction name") ## End(Not run) ## Not run: dimensionality_reduction.run(cyto_session, dimensionality_reduction=cyto_dimensionality_reduction) ## End(Not run) ## Not run: dimensionality_reduction.show(cyto_session, 22, analysis_id=2, "opt-SNE") ## Not run: dimensionality_reduction.status(cyto_session, dimensionality_reduction=cyto_dimensionality_reduction) ## End(Not run) ## Not run: dimensionality_reduction.update(cyto_session, dimensionality_reduction=cyto_dimensionality_reduction) ## End(Not run)
A Dimensionality Reduction object that holds pertinent Dimensionality Reduction advanced analysis run information. This class should never be called explicitly. If a user would like to create a new Cytobank Dimensionality Reduction object, utilize the dimensionality_reduction.new function, or any other Dimensionality Reduction endpoints that return Dimensionality Reduction objects documented in the 'Details' section.
A Dimensionality Reduction advanced analysis object
analysis_id
numeric representing the Dimensionality Reduction analysis ID
type
character representing the Dimensionality Reduction type (tSNE-CUDA, opt-SNE, UMAP, or viSNE)
name
character the name of the Dimensionality Reduction analysis
status
character representing the status of the Dimensionality Reduction analysis
source_experiment
numeric the source experiment ID the Dimensionality Reduction analysis is associated with
created_experiment
numeric representing the experiment that gets created from the Dimensionality Reduction analysis
.available_channels
the list of available channels based off the panels.list function
.available_files
the list of available files based off the fcs_files.list function
.available_populations
the list of available populations based off the populations.list function
Upload DROP file(s) into Cytobank. A DROP file consists of any CSV, TSV, TXT, or FCS file. If the DROP file is of the type CSV, TSV, or TXT, the file will be converted to an FCS file to be used within Cytobank. Learn more about DROP.
## S4 method for signature 'UserSession' drop.upload( UserSession, experiment_id, file_path, data_matrix_start_row = 2, data_matrix_start_column = 1, skipped_columns = c(), output = "default", timeout = UserSession@long_timeout )
## S4 method for signature 'UserSession' drop.upload( UserSession, experiment_id, file_path, data_matrix_start_row = 2, data_matrix_start_column = 1, skipped_columns = c(), output = "default", timeout = UserSession@long_timeout )
UserSession |
Cytobank UserSession object |
experiment_id |
integer representing an experiment ID |
file_path |
character representing a file path |
data_matrix_start_row |
integer representing the start row of the DROP file(s) |
data_matrix_start_column |
integer representing the start column of the DROP file(s) |
skipped_columns |
vector/list of integer(s) representing column(s) of the DROP file to skip |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
drop.upload
Upload a DROP file (CSV, TSV, TXT, FCS) to an experiment.
- Optional output parameter, specify one of the following: ("default", "raw")
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: drop.upload(cyto_session, 22, file_path="/path/to/my_drop_file.type", data_matrix_start_row=2, data_matrix_start_column=1) ## End(Not run)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: drop.upload(cyto_session, 22, file_path="/path/to/my_drop_file.type", data_matrix_start_row=2, data_matrix_start_column=1) ## End(Not run)
Interact with experiment endpoints. An Experiment is a container for data and analyses in Cytobank. If data are on Cytobank, they must be within an Experiment. Configurations such as gates, compensations, scales, Sample Tags, and illustrations are also linked to an individual Experiment. Within the Cytobank interface, the Experiment Summary Page is a useful integration point for information about an Experiment.
## S4 method for signature 'UserSession' experiments.clone_full( UserSession, experiment_id, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' experiments.clone_selective( UserSession, experiment_id, experiment_name, fcs_files = c(-1), primary_researcher = NA, principal_investigator = NA, clone_gates = FALSE, clone_annotations = FALSE, clone_attachments = FALSE, clone_reagents = FALSE, clone_compensations = FALSE, clone_panels = FALSE, clone_illustrations = FALSE, clone_project = FALSE, clone_user_access = FALSE, allow_full_access_pi = FALSE, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' experiments.delete( UserSession, experiment_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.full_access_users_list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.full_access_users_add( UserSession, experiment_id, user_id = NA, user_email = NA, username = NA, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.full_access_users_remove( UserSession, experiment_id, user_id = NA, user_email = NA, username = NA, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.list( UserSession, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.new( UserSession, experiment_name, purpose, comments = NA, primary_researcher = NA, principal_investigator = NA, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.show( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.trash( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.update( UserSession, experiment, output = "default", timeout = UserSession@short_timeout )
## S4 method for signature 'UserSession' experiments.clone_full( UserSession, experiment_id, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' experiments.clone_selective( UserSession, experiment_id, experiment_name, fcs_files = c(-1), primary_researcher = NA, principal_investigator = NA, clone_gates = FALSE, clone_annotations = FALSE, clone_attachments = FALSE, clone_reagents = FALSE, clone_compensations = FALSE, clone_panels = FALSE, clone_illustrations = FALSE, clone_project = FALSE, clone_user_access = FALSE, allow_full_access_pi = FALSE, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' experiments.delete( UserSession, experiment_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.full_access_users_list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.full_access_users_add( UserSession, experiment_id, user_id = NA, user_email = NA, username = NA, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.full_access_users_remove( UserSession, experiment_id, user_id = NA, user_email = NA, username = NA, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.list( UserSession, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.new( UserSession, experiment_name, purpose, comments = NA, primary_researcher = NA, principal_investigator = NA, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.show( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.trash( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' experiments.update( UserSession, experiment, output = "default", timeout = UserSession@short_timeout )
UserSession |
Cytobank UserSession object |
experiment_id |
integer representing an experiment ID |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
experiment_name |
character representing an experiment name |
fcs_files |
vector/list of integers representing a list of FCS file IDs [optional] |
primary_researcher |
integer representing a primary researcher ID [optional] |
principal_investigator |
integer representing a principal investigator ID [optional] |
clone_gates |
boolean denoting cloning gates option [optional] |
clone_annotations |
boolean denoting cloning annotations option [optional] |
clone_attachments |
boolean denoting cloning attachments option [optional] |
clone_reagents |
boolean denoting cloning reagents option [optional] |
clone_compensations |
boolean denoting cloning compensations option [optional] |
clone_panels |
boolean denoting cloning panels option [optional] |
clone_illustrations |
boolean denoting cloning illustrations option [optional] |
clone_project |
boolean denoting cloning project option [optional] |
clone_user_access |
boolean denoting cloning user access option [optional] |
allow_full_access_pi |
boolean denoting to allow full access to PI option [optional] |
user_id |
integer representing a user's ID |
user_email |
character representing a user's email |
username |
character representing a username |
purpose |
character representing an experiment purpose |
comments |
character representing an experiment comment [optional] |
experiment |
dataframe representing an experiment |
experiments.clone_full
Full clone an experiment. Learn more about the full clone functionality.
- Optional output parameter, specify one of the following: ("default", "raw")
experiments.clone_selective
Selectively clone an experiment. Learn more about the selective clone functionality
- Optional output parameter, specify one of the following: ("default", "raw")
experiments.delete
Permanently delete an experiment and all analyses (including SPADE, viSNE, etc.) permanently. This is not reversible.
experiments.list
List all full access users from an experiment.
- Optional output parameter, specify one of the following: ("default", "raw")
experiments.list
Add a full access user to an experiment. A full access user can be added by a user ID, email, or username.
experiments.list
Remove a full access user from an experiment. A full access user can be removed by a user ID, email, or username.
experiments.list
List all inbox experiments. Outputs a data frame [default] or raw list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
experiments.new
Create a new experiment.
- Optional output parameter, specify one of the following: ("default", "raw")
experiments.show
Show experiment details.
- Optional output parameter, specify one of the following: ("default", "raw")
experiments.trash
Trash an experiment. This is reversible and not to be confused with permanent deletion.
experiments.update
Update an experiment.
(all parameters are optional, except for experiment_id)
- Optional output parameter, specify one of the following: ("default", "raw")
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: experiments.clone_full(cyto_session, 22) ## Not run: experiments.clone_selective(cyto_session, 22, experiment_name="My New Experiment Name", fcs_files=c(12, 13, 14, 15, 16)) ## End(Not run) ## Not run: experiments.delete(cyto_session, 22) ## Not run: # Dataframe of all full access users experiments.full_access_users_list(cyto_session, 22) # List of all full access users experiments.full_access_users_list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: # Add a user as a full access user by user's ID experiments.full_access_users_add(cyto_session, 22, user_id=2) # Add a user as a full access user by user's email experiments.full_access_users_add(cyto_session, 22, user_email="[email protected]") # Add a user as a full access user by user's username experiments.full_access_users_add(cyto_session, 22, username="sammy_cytometry") ## End(Not run) ## Not run: # Remove a user as a full access user by user's ID experiments.full_access_users_remove(cyto_session, 22, user_id=2) # Remove a user as a full access user by user's email experiments.full_access_users_remove(cyto_session, 22, user_email="[email protected]") # Remove a user as a full access user by user's username experiments.full_access_users_remove(cyto_session, 22, username="sammy_cytometry") ## End(Not run) ## Not run: # Dataframe of all inbox experiments with all fields present experiments.list(cyto_session) # Raw list of all inbox experiments with all fields present experiments.list(cyto_session, output="raw") ## End(Not run) ## Not run: experiments.new(cyto_session, "My New Experiment Name", "My experiment purpose", "An optional comment") ## End(Not run) ## Not run: experiments.show(cyto_session, 22) ## Not run: experiments.trash(cyto_session, 22) ## Not run: experiments.update(cyto_session, experiment=cyto_experiment)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: experiments.clone_full(cyto_session, 22) ## Not run: experiments.clone_selective(cyto_session, 22, experiment_name="My New Experiment Name", fcs_files=c(12, 13, 14, 15, 16)) ## End(Not run) ## Not run: experiments.delete(cyto_session, 22) ## Not run: # Dataframe of all full access users experiments.full_access_users_list(cyto_session, 22) # List of all full access users experiments.full_access_users_list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: # Add a user as a full access user by user's ID experiments.full_access_users_add(cyto_session, 22, user_id=2) # Add a user as a full access user by user's email experiments.full_access_users_add(cyto_session, 22, user_email="[email protected]") # Add a user as a full access user by user's username experiments.full_access_users_add(cyto_session, 22, username="sammy_cytometry") ## End(Not run) ## Not run: # Remove a user as a full access user by user's ID experiments.full_access_users_remove(cyto_session, 22, user_id=2) # Remove a user as a full access user by user's email experiments.full_access_users_remove(cyto_session, 22, user_email="[email protected]") # Remove a user as a full access user by user's username experiments.full_access_users_remove(cyto_session, 22, username="sammy_cytometry") ## End(Not run) ## Not run: # Dataframe of all inbox experiments with all fields present experiments.list(cyto_session) # Raw list of all inbox experiments with all fields present experiments.list(cyto_session, output="raw") ## End(Not run) ## Not run: experiments.new(cyto_session, "My New Experiment Name", "My experiment purpose", "An optional comment") ## End(Not run) ## Not run: experiments.show(cyto_session, 22) ## Not run: experiments.trash(cyto_session, 22) ## Not run: experiments.update(cyto_session, experiment=cyto_experiment)
Interact with FCS file endpoints.
## S4 method for signature 'UserSession' fcs_files.download( UserSession, experiment_id, fcs_file_id, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' fcs_files.download_zip( UserSession, experiment_id, fcs_files, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' fcs_files.file_internal_comp_show( UserSession, experiment_id, fcs_file_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' fcs_files.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' fcs_files.show( UserSession, experiment_id, fcs_file_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' fcs_files.upload( UserSession, experiment_id, file_path, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' fcs_files.upload_zip( UserSession, experiment_id, file_path, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' fcs_files.status( UserSession, experiment_id, timeout = UserSession@long_timeout )
## S4 method for signature 'UserSession' fcs_files.download( UserSession, experiment_id, fcs_file_id, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' fcs_files.download_zip( UserSession, experiment_id, fcs_files, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' fcs_files.file_internal_comp_show( UserSession, experiment_id, fcs_file_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' fcs_files.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' fcs_files.show( UserSession, experiment_id, fcs_file_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' fcs_files.upload( UserSession, experiment_id, file_path, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' fcs_files.upload_zip( UserSession, experiment_id, file_path, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' fcs_files.status( UserSession, experiment_id, timeout = UserSession@long_timeout )
UserSession |
Cytobank UserSession object |
experiment_id |
integer representing an experiment ID |
fcs_file_id |
integer representing an FCS file ID |
directory |
character representing a specific directory to which the file will be downloaded (optional ending directory slash), if left empty, the default will be the current working directory [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
fcs_files |
vector/list of integers representing a list of FCS file IDs |
output |
character representing the output format [optional] |
file_path |
character representing a file path |
fcs_files.download
Download an FCS file from an experiment.
fcs_files.download_zip
Download all or a select set of FCS files as a zip file from an experiment. The download link of the zip file will be sent to the user's registered email address.
fcs_files.file_internal_comp_show
Show FCS file internal compensation (aka spillover matrix, spill matrix, spill string) details from an experiment.
- Optional output parameter, specify one of the following: ("default", "dataframe", "raw")
fcs_files.list
List all FCS files from an experiment. Outputs a dataframe [default] or raw full list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
fcs_files.show
Show FCS file details from an experiment.
- Optional output parameter, specify one of the following: ("default", "raw")
fcs_files.upload
Upload an FCS file to an experiment. Cytobank User ID has to be attached to the UserSession object. See the help document of authenticate function for details.
- Optional output parameter, specify one of the following: ("default", "raw")
fcs_files.upload_zip
Upload a zip of FCS file(s) to an experiment.
- Optional output parameter, specify one of the following: ("default", "raw")
fcs_files.status
Check status of file(s) in an experiment. Return FALSE and print out an warming message if it fail. Otherwise, return a R dataframe object with file status information.
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: # Download an FCS file to the current working directory fcs_files.download(cyto_session, experiment_id = 22, fcs_file_id = 4) # Download an FCS file to a new directory fcs_files.download(cyto_session, 22, experiment_id = 22, fcs_file_id = 4, directory="/my/new/download/directory/") ## End(Not run) ## Not run: # Download all FCS files as a zip file fcs_files.download_zip(cyto_session, experiment_id=22) # Download a select set of FCS files as a zip file fcs_files.download_zip(cyto_session, experiment_id=22, fcs_files=c(22, 23, 24, 25)) ## End(Not run) ## Not run: # List of a file internal compensation, containing a file internal compensation matrix fcs_files.file_internal_comp_show(cyto_session, 22, fcs_file_id=2) # Dataframe only of a file internal compensation fcs_files.file_internal_comp_show(cyto_session, 22, fcs_file_id=2, output="dataframe") # Raw list of a file internal compensation fcs_files.file_internal_comp_show(cyto_session, 22, fcs_file_id=2, output="raw") ## End(Not run) ## Not run: # Dataframe of all FCS files with all fields present fcs_files.list(cyto_session, 22) # Raw list of all FCS files with all fields present fcs_files.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: fcs_files.show(cyto_session, 22, fcs_file_id=2) ## Not run: fcs_files.upload(cyto_session, 22, file_path="/path/to/my_fcs_file.fcs") ## Not run: fcs_files.upload_zip(cyto_session, 22, file_path="/path/to/my_fcs_files.zip") ## Not run: fcs_files.status(cyto_session, 22)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: # Download an FCS file to the current working directory fcs_files.download(cyto_session, experiment_id = 22, fcs_file_id = 4) # Download an FCS file to a new directory fcs_files.download(cyto_session, 22, experiment_id = 22, fcs_file_id = 4, directory="/my/new/download/directory/") ## End(Not run) ## Not run: # Download all FCS files as a zip file fcs_files.download_zip(cyto_session, experiment_id=22) # Download a select set of FCS files as a zip file fcs_files.download_zip(cyto_session, experiment_id=22, fcs_files=c(22, 23, 24, 25)) ## End(Not run) ## Not run: # List of a file internal compensation, containing a file internal compensation matrix fcs_files.file_internal_comp_show(cyto_session, 22, fcs_file_id=2) # Dataframe only of a file internal compensation fcs_files.file_internal_comp_show(cyto_session, 22, fcs_file_id=2, output="dataframe") # Raw list of a file internal compensation fcs_files.file_internal_comp_show(cyto_session, 22, fcs_file_id=2, output="raw") ## End(Not run) ## Not run: # Dataframe of all FCS files with all fields present fcs_files.list(cyto_session, 22) # Raw list of all FCS files with all fields present fcs_files.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: fcs_files.show(cyto_session, 22, fcs_file_id=2) ## Not run: fcs_files.upload(cyto_session, 22, file_path="/path/to/my_fcs_file.fcs") ## Not run: fcs_files.upload_zip(cyto_session, 22, file_path="/path/to/my_fcs_files.zip") ## Not run: fcs_files.status(cyto_session, 22)
Interact with FlowSOM advanced analyses using these endpoints.
## S4 method for signature 'UserSession,FlowSOM' flowsom.copy_settings( UserSession, flowsom, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,FlowSOM' flowsom.delete(UserSession, flowsom, timeout = UserSession@short_timeout) ## S4 method for signature 'UserSession,FlowSOM' flowsom.download( UserSession, flowsom, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' flowsom.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' flowsom.new( UserSession, experiment_id, flowsom_name, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,FlowSOM' flowsom.rename( UserSession, flowsom, flowsom_name, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,FlowSOM' flowsom.run( UserSession, flowsom, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' flowsom.show( UserSession, experiment_id, flowsom_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,FlowSOM' flowsom.status( UserSession, flowsom, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,FlowSOM' flowsom.update(UserSession, flowsom, timeout = UserSession@long_timeout)
## S4 method for signature 'UserSession,FlowSOM' flowsom.copy_settings( UserSession, flowsom, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,FlowSOM' flowsom.delete(UserSession, flowsom, timeout = UserSession@short_timeout) ## S4 method for signature 'UserSession,FlowSOM' flowsom.download( UserSession, flowsom, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' flowsom.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' flowsom.new( UserSession, experiment_id, flowsom_name, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,FlowSOM' flowsom.rename( UserSession, flowsom, flowsom_name, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,FlowSOM' flowsom.run( UserSession, flowsom, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' flowsom.show( UserSession, experiment_id, flowsom_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,FlowSOM' flowsom.status( UserSession, flowsom, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,FlowSOM' flowsom.update(UserSession, flowsom, timeout = UserSession@long_timeout)
UserSession |
Cytobank UserSession object |
flowsom |
Cytobank FlowSOM object |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
directory |
character representing a specific directory to which the file will be downloaded (optional ending directory slash), if left empty, the default will be the current working directory [optional] |
experiment_id |
integer representing an experiment ID |
flowsom_name |
character representing a new FlowSOM name |
flowsom_id |
integer representing a FlowSOM ID |
flowsom.copy_settings
Copy FlowSOM advanced analysis settings from an experiment and returns a FlowSOM object.
flowsom.delete
Delete a FlowSOM advanced analysis from an experiment.
flowsom.download
Download a FlowSOM analysis from an experiment.
flowsom.list
List all FlowSOM advanced analyses from an experiment. Outputs a dataframe [default] or list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
flowsom.new
Create a new FlowSOM advanced analysis from an experiment and returns a FlowSOM object.
flowsom.rename
Rename a FlowSOM advanced analysis from an experiment and returns a FlowSOM object.
flowsom.run
Run a FlowSOM advanced analysis from an experiment.
flowsom.show
Show FlowSOM advanced analysis details from an experiment and returns a FlowSOM object.
flowsom.status
Show the status of a FlowSOM advanced analysis from an experiment.
flowsom.update
Update a FlowSOM advanced analysis from an experiment and returns the new FlowSOM object.
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") # cyto_flowsom refers to a FlowSOM object that is created from FlowSOM endpoints # examples: flowsom.new, flowsom.show (see details section for more) ## End(Not run) ## Not run: flowsom.copy_settings(cyto_session, flowsom=cyto_flowsom) ## Not run: flowsom.delete(cyto_session, flowsom=cyto_flowsom) ## Not run: # Download a FlowSOM analysis to the current working directory flowsom.download(cyto_session, flowsom) # Download a FlowSOM analysis to a new directory flowsom.download(cyto_session, flowsom, directory="/my/new/download/directory/") ## End(Not run) ## Not run: # Dataframe of all FlowSOM advanced analyses with all fields present flowsom.list(cyto_session, 22) # Raw list of all FlowSOM advanced analyses with all fields present flowsom.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: flowsom.new(cyto_session, 22, flowsom_name="My new FlowSOM analysis") ## Not run: flowsom.rename(cyto_session, flowsom=cyto_flowsom, flowsom_name="My updated FlowSOM name") ## End(Not run) ## Not run: flowsom.run(cyto_session, flowsom=cyto_flowsom) ## Not run: flowsom.show(cyto_session, 22, flowsom_id=2) ## Not run: flowsom.status(cyto_session, flowsom=cyto_flowsom) ## Not run: flowsom.update(cyto_session, flowsom=cyto_flowsom)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") # cyto_flowsom refers to a FlowSOM object that is created from FlowSOM endpoints # examples: flowsom.new, flowsom.show (see details section for more) ## End(Not run) ## Not run: flowsom.copy_settings(cyto_session, flowsom=cyto_flowsom) ## Not run: flowsom.delete(cyto_session, flowsom=cyto_flowsom) ## Not run: # Download a FlowSOM analysis to the current working directory flowsom.download(cyto_session, flowsom) # Download a FlowSOM analysis to a new directory flowsom.download(cyto_session, flowsom, directory="/my/new/download/directory/") ## End(Not run) ## Not run: # Dataframe of all FlowSOM advanced analyses with all fields present flowsom.list(cyto_session, 22) # Raw list of all FlowSOM advanced analyses with all fields present flowsom.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: flowsom.new(cyto_session, 22, flowsom_name="My new FlowSOM analysis") ## Not run: flowsom.rename(cyto_session, flowsom=cyto_flowsom, flowsom_name="My updated FlowSOM name") ## End(Not run) ## Not run: flowsom.run(cyto_session, flowsom=cyto_flowsom) ## Not run: flowsom.show(cyto_session, 22, flowsom_id=2) ## Not run: flowsom.status(cyto_session, flowsom=cyto_flowsom) ## Not run: flowsom.update(cyto_session, flowsom=cyto_flowsom)
A FlowSOM object that holds pertinent FlowSOM advanced analysis run information, learn more about FlowSOM. This class should never be called explicitly. If a user would like to create a new Cytobank FlowSOM object, utilize the flowsom.new function, or any other FlowSOM endpoints that return FlowSOM objects documented in the 'Details' section.
A FlowSOM advanced analysis object
attachment_id
numeric representing the FlowSOM attachment to the source experiment containing the FlowSOM results
author
character representing the author of the FlowSOM analysis
auto_seed
logical representing whether to set an auto seed value or not
canceled
logical representing whether or not the FlowSOM analysis is canceled
channels_to_plot
list representing short channel IDs corresponding to channels to output channel-colored MST plots, learn more about FlowSOM PDF output
clustering_method
character representing the clustering method
- choose from the following : ("consensus" [default], "hierarchical", "kmeans")
cluster_size_type
character representing the cluster size type, learn more about FlowSOM PDF output
- choose from the following : ("both", "fixed", "relative" [default])
completed
logical representing whether or not the FlowSOM analysis is complete
created_experiment
numeric representing the experiment that gets created from the FlowSOM analysis
desired_events_per_file
numeric representing the number of desired events per file if event_sampling_method
is set to equal
, learn more about FlowSOM event sampling methods
desired_total_events
numeric representing the total desired number of events to sample amongst all selected files if event_sampling_method
is set to proportional
, learn more about FlowSOM event sampling methods
event_sampling_method
character representing the FlowSOM sampling method, learn more about FlowSOM event sampling methods
- choose from the following : ("all", "equal" [default], "proportional")
expected_clusters
numeric representing the number of expected clusters, learn more about choosing target number of clusters for FlowSOM
expected_metaclusters
numeric representing the expected number of metaclusters learn more about choosing target number of metaclusters for FlowSOM
external_som_analysis_info
character representing FlowSOM analysis information
external_som_analysis_id
character representing the ID of a corresponding FlowSOM analysis ID if som_creation_method
set to "import_existing"
external_som_attachment_id
character representing the ID of a corresponding completed FlowSOM analysis if som_creation_method
is set to import_existing
fcs_files
list of integers or character representing a list of FCS file IDs
final_result
character representing whether or not the FlowSOM analysis is successful
fixed_cluster_size
integer representing fixed cluster size if cluster_size_type
set to "fixed"
or "both"
learn more about FlowSOM PDF output
flowsom_id
numeric representing the FlowSOM analysis ID
gate_set_names_to_label
list of character representing populations to label in the population pie plots, learn more about FlowSOM PDF output
iterations
numeric representing the number of times FlowSOM processes the dataset using its step-wise optimization algorithm, learn more about iterations in FlowSOM
max_relative_cluster_size
numeric representing the max relative cluster size (only applicable if cluster_size_type
set to "relative"
or "both"
, learn more about FlowSOM PDF output
normalize_scales
logical representing whether or not to normalize scales
num_events_to_actually_sample
numeric representing the events actually sampled
num_fcs_files
numeric representing the number of FCS files
output_file_type
character representing the output file type
- choose from the following : ("both", "pdf" [default], "png")
population_id
integer representing a population gate set ID
random_seed
numeric representing the seed value learn more about setting the seed for FlowSOM
show_background_on_legend
logical representing whether or not to show background on legend, learn more about FlowSOM PDF output
show_background_on_channel_colored_msts
logical representing whether or not to show background on channel colored MSTs, learn more about FlowSOM PDF output
show_background_on_population_pies
logical representing whether or not to show background on population pies, learn more about FlowSOM PDF output
som_creation_method
character representing the FlowSOM creation method, learn more about SOM creationg methods for FlowSOM
- choose from the following : ("create_new" [default], "import_existing")
type
character
Interact with gate endpoints. In Cytobank there is a distinction between gates and populations. A gate is simply a shape drawn on a plot. A population is a set of gates and can have parents and children. Learn more about gates and populations. Currently, gate and population information can only be read and not written to Cytobank via the JSON API. To write gates and populations to Cytobank via the API, the gates.gatingML_upload endpoint should be used.
## S4 method for signature 'UserSession' gates.gatingML_download( UserSession, experiment_id, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' gates.gatingML_upload( UserSession, experiment_id, file_path, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' gates.apply(UserSession, experiment_id, timeout = UserSession@long_timeout) ## S4 method for signature 'UserSession' gates.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' gates.show( UserSession, experiment_id, gate_id, output = "default", timeout = UserSession@short_timeout )
## S4 method for signature 'UserSession' gates.gatingML_download( UserSession, experiment_id, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' gates.gatingML_upload( UserSession, experiment_id, file_path, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' gates.apply(UserSession, experiment_id, timeout = UserSession@long_timeout) ## S4 method for signature 'UserSession' gates.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' gates.show( UserSession, experiment_id, gate_id, output = "default", timeout = UserSession@short_timeout )
UserSession |
Cytobank UserSession object |
experiment_id |
integer representing an experiment ID |
directory |
character representing a specific directory to which the file will be downloaded (optional ending directory slash), if left empty, the default will be the current working directory [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
file_path |
character representing a file path |
output |
character representing the output format [optional] |
gate_id |
integer representing a gate ID |
gates.gatingML_download
Download the gatingML from an experiment. Learn more about Gating-ML.
gates.gatingML_upload
Upload a gatingML to an experiment. Learn more about Gating-ML.
gates.apply
Apply gates as Experiment Gates. Gates must be applied in order for Scratch Gates to be converted to Experiment gates. Experiment gates are used for generating statistics, illustrations, and advanced analyses. Learn more about applying gates.
gates.list
List all gates from an experiment. Outputs a dataframe [default] or raw list with all fields present. Currently only the Scratch Gates from the gating interface are returned. These have a version of -1. This is to be contrasted with Experiment Gates, which will have a version number that is a positive integer equal to the number of times the version has been incremented in the gating interface. Learn more about gate versioning in Cytobank.
- Optional output parameter, specify one of the following: ("default", "raw")
gates.show
Show gate details from an experiment.
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: gates.gatingML_download(cyto_session, 22, directory="/my/new/download/directory/") ## Not run: gates.gatingML_upload(cyto_session, 22, file_path="/path/to/my_gatingML.xml") ## Not run: gates.apply(cyto_session, 22) ## Not run: # Dataframe of all gates with all fields present gates.list(cyto_session, 22) # Raw list of all gates with all fields present gates.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: gates.show(cyto_session, 22, gate_id=2)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: gates.gatingML_download(cyto_session, 22, directory="/my/new/download/directory/") ## Not run: gates.gatingML_upload(cyto_session, 22, file_path="/path/to/my_gatingML.xml") ## Not run: gates.apply(cyto_session, 22) ## Not run: # Dataframe of all gates with all fields present gates.list(cyto_session, 22) # Raw list of all gates with all fields present gates.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: gates.show(cyto_session, 22, gate_id=2)
Various helper functions to utilize within the Cytobank API.
helper.filter_names_to_ids_from_df(ids_names_df, names_array = c("*")) helper.channel_ids_from_long_names( panels_list, long_channel_names, fcs_files = c() )
helper.filter_names_to_ids_from_df(ids_names_df, names_array = c("*")) helper.channel_ids_from_long_names( panels_list, long_channel_names, fcs_files = c() )
ids_names_df |
dataframe containing both IDs and their associated names |
names_array |
vector or list of character regular expressions to use |
panels_list |
list provided from the panels.list endpoint |
long_channel_names |
vector of character representing long channel names |
fcs_files |
vector of integers representing a list of FCS file IDs |
helper.filter_names_to_ids_from_df
Compile a vector of IDs from an array of regular expressions.
helper.channel_ids_from_long_names
Compile a vector of IDs based on long channel names for specific FCS files from an experiment. If no FCS files are provided, IDs will be retrieved based on unique short channel / long channel combinations across all FCS files.
## Not run: helper.filter_names_to_ids_from_df(id_and_names_dataframe, names_list=c("CD.*", "Time", "pp38")) ## End(Not run) ## Not run: helper.channel_ids_from_long_names(panels.list(cyto_session, 22), long_channel_names=c("long_channel1", "long_channel2"), fcs_files=c(1,2,3,4,5)) ## End(Not run)
## Not run: helper.filter_names_to_ids_from_df(id_and_names_dataframe, names_list=c("CD.*", "Time", "pp38")) ## End(Not run) ## Not run: helper.channel_ids_from_long_names(panels.list(cyto_session, 22), long_channel_names=c("long_channel1", "long_channel2"), fcs_files=c(1,2,3,4,5)) ## End(Not run)
Get news on CytobankAPI updates
CytobankAPI_news()
CytobankAPI_news()
CytobankAPI_news
View a log of CytobankAPI updates and release notes.
A opt-SNE object that holds pertinent opt-SNE advanced analysis run information. This class should never be called explicitly. If a user would like to create a new Cytobank opt-SNE object, utilize the dimensionality_reduction.new function, or any other opt-SNE endpoints that return opt-SNE objects documented in the 'Details' section.
A Dimensionality Reduction advanced analysis object
perplexity
numeric representing a rough guess for the number of close neighbors any given cellular event will have, learn more about Dimensionality Reduction perplexity
auto_learning_rate
logical representing whether or not to set auto learning rate
clustering_channels
list the channels selected for the Dimensionality Reduction analysis, this can be either a list of short channel IDs (integer) OR long channel names (character)
desired_events_per_file
numeric representing the number of desired events per file
desired_total_events
numeric representing the number of desired total events per file
early_exaggeration
numeric representing how tight natural clusters in the original space are in the embedded space and how much space will be between them
event_sampling_method
character representing the name of event sampling method will be used, learn more about Event Sampling for Dimensionality Reduction analysis
fcsfile_ids
list representing the fcs file ids
gateset_id
numeric representing the selected gate id
learning_rate
numeric representing the learning rate,learn more about opt-SNE learning rate.
max_iterations
numeric representing the maximum number of iterations to perform– typically opt-SNE will automatically stop before this number is reached
normalize_scales
logical representing whether or not to normalize scales
random_seed
numeric representing the seed, Dimensionality Reduction picks a random seed each run, but if users want reproducible data, setting the same seed will allow them to do this
Interact with panel endpoints. A collection of channels, the markers being studied on them, and the FCS files this applies to form a panel. Learn more about panels in Cytobank.
## S4 method for signature 'UserSession' panels.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' panels.show( UserSession, experiment_id, panel_id, output = "default", timeout = UserSession@short_timeout )
## S4 method for signature 'UserSession' panels.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' panels.show( UserSession, experiment_id, panel_id, output = "default", timeout = UserSession@short_timeout )
UserSession |
Cytobank UserSession object |
experiment_id |
integer representing an experiment ID |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
panel_id |
integer representing a panel ID |
panels.list
List all panels from an experiment. Outputs a formatted list [default] or raw list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
panels.show
Show panel details from an experiment. Outputs a full list with all fields present, or an IDs/names list (See attachments examples section for IDs/names list example).
- Optional output parameter, specify one of the following: ("default", "raw")
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: # Full panel list with all fields present, with a dataframe of channels panels.list(cyto_session, 22) # Raw list of all panels with all fields present panels.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: # Full panel info with all fields present panels.show(cyto_session, 22, panel_id=2) ## End(Not run)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: # Full panel list with all fields present, with a dataframe of channels panels.list(cyto_session, 22) # Raw list of all panels with all fields present panels.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: # Full panel info with all fields present panels.show(cyto_session, 22, panel_id=2) ## End(Not run)
Interact with PeacoQC using these endpoints.
## S4 method for signature 'UserSession,PeacoQC' peacoqc.copy_settings( UserSession, peacoqc, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' peacoqc.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' peacoqc.new( UserSession, experiment_id, peaco_qc_name, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,PeacoQC' peacoqc.rename( UserSession, peacoqc, peaco_qc_name, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,PeacoQC' peacoqc.run( UserSession, peacoqc, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' peacoqc.show( UserSession, experiment_id, peaco_qc_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,PeacoQC' peacoqc.status( UserSession, peacoqc, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,PeacoQC' peacoqc.update(UserSession, peacoqc, timeout = UserSession@long_timeout)
## S4 method for signature 'UserSession,PeacoQC' peacoqc.copy_settings( UserSession, peacoqc, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' peacoqc.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' peacoqc.new( UserSession, experiment_id, peaco_qc_name, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,PeacoQC' peacoqc.rename( UserSession, peacoqc, peaco_qc_name, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,PeacoQC' peacoqc.run( UserSession, peacoqc, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' peacoqc.show( UserSession, experiment_id, peaco_qc_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,PeacoQC' peacoqc.status( UserSession, peacoqc, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,PeacoQC' peacoqc.update(UserSession, peacoqc, timeout = UserSession@long_timeout)
UserSession |
Cytobank UserSession object |
peacoqc |
Cytobank PeacoQC object |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
experiment_id |
integer representing an experiment ID |
peaco_qc_name |
character representing a new PeacoQC name |
peaco_qc_id |
integer representing a PeacoQC ID |
peacoqc.copy_settings
Copy PeacoQC settings from an experiment and returns a PeacoQC object.
peacoqc.list
List all PeacoQC from an experiment. Outputs a dataframe [default] or list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
peacoqc.new
Create a new PeacoQC advanced analysis from an experiment and returns a PeacoQC object.
peacoqc.rename
Rename a PeacoQC from an experiment and returns a PeacoQC object.
peacoqc.run
Run a PeacoQC from an experiment.
peacoqc.show
Show PeacoQC details from an experiment and returns a PeacoQC object.
peacoqc.status
Show the status of a PeacoQC from an experiment.
peacoqc.update
Update a PeacoQC from an experiment and returns the new PeacoQC object.
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") # cyto_peacoqc refers to a PeacoQC object that is created from PeacoQC endpoints # examples: peacoqc.new, peacoqc.show (see details section for more) ## End(Not run) ## Not run: peacoqc.copy_settings(cyto_session, peacoqc=cyto_peacoqc) ## Not run: # Dataframe of all PeacoQCs with all fields present peacoqc.list(cyto_session, 22) # Raw list of all PeacoQCs with all fields present peacoqc.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: peacoqc.new(cyto_session, 22, peaco_qc_name="My new PeacoQC") ## Not run: peacoqc.rename(cyto_session, peacoqc=cyto_peacoqc, peaco_qc_name="My updated PeacoQC name") ## End(Not run) ## Not run: peacoqc.run(cyto_session, peacoqc=cyto_peacoqc) ## Not run: peacoqc.show(cyto_session, experiment_id=22, peaco_qc_id=2) ## Not run: peacoqc.status(cyto_session, peacoqc=cyto_peacoqc) ## Not run: peacoqc.update(cyto_session, peacoqc=cyto_peacoqc)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") # cyto_peacoqc refers to a PeacoQC object that is created from PeacoQC endpoints # examples: peacoqc.new, peacoqc.show (see details section for more) ## End(Not run) ## Not run: peacoqc.copy_settings(cyto_session, peacoqc=cyto_peacoqc) ## Not run: # Dataframe of all PeacoQCs with all fields present peacoqc.list(cyto_session, 22) # Raw list of all PeacoQCs with all fields present peacoqc.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: peacoqc.new(cyto_session, 22, peaco_qc_name="My new PeacoQC") ## Not run: peacoqc.rename(cyto_session, peacoqc=cyto_peacoqc, peaco_qc_name="My updated PeacoQC name") ## End(Not run) ## Not run: peacoqc.run(cyto_session, peacoqc=cyto_peacoqc) ## Not run: peacoqc.show(cyto_session, experiment_id=22, peaco_qc_id=2) ## Not run: peacoqc.status(cyto_session, peacoqc=cyto_peacoqc) ## Not run: peacoqc.update(cyto_session, peacoqc=cyto_peacoqc)
A PeacoQC object that holds pertinent PeacoQC data QC run information This class should never be called explicitly. If a user would like to create a new Cytobank PeacoQC object, utilize the peacoqc.new function, or any other PeacoQC endpoints that return PeacoQC objects documented in the 'Details' section.
A PeacoQC object
author
character representing the author of the PeacoQC analysis
attachment_id
numeric representing the PeacoQC attachment to the source experiment containing the PeacoQC results
channel_unique_identifiers
list of character representing a list of unique channel identifiers
compensation_id
the compensation ID selected for the PeacoQC data QC
completed
logical representing whether or not the PeacoQC is complete
consecutive_bins
numeric if 'good' bins are located between bins that are removed, they will also be marked as 'bad'. Can be set to any integer between 1 and 50 (inclusive)
detection_method
character representing the method(s) used to detect and filter out anomalies.
- choose from the following : ("all" [default], "IT", "MAD")
errors
list of character representing a list of error messages of the PeacoQC
failed
logical representing whether or not the PeacoQC is failed
fcs_files
list of integers or character representing a list of FCS file IDs
final_result
character representing whether or not the PeacoQC is successful
heatmap_attachment_id
numeric representing the PeacoQC heatmap image attachment to the source experiment
it_limit
numeric representing the IsolationTree parameter. Higher values mean the IT method will be less strict. Can be set to any float between 0.2 and 1.0(inclusive)
mad
numeric representing the MAD parameter. Higher values mean the MAD method will be less strict. Can be set to any integer between 1 and 100 (inclusive)
max_bins
numeric representing the maximum number of bins that can be used in the cleaning process. If this value is lowered, larger bins will be made. Can be set to any integer between 40 and 1,000,000 (inclusive)
name
the name of the advanced analysis
peaco_qc_id
numeric representing the PeacoQC ID
remove_margins
if the value is true, they will remove margin events based on the internal description of the fcs file. Can be set to a boolean value
source_experiment
the source experiment ID the advanced analysis is associated with
status
character representing the status of the advanced analysis
type
character
use_internal_scales_for_margins
logical this parameter is required when removeMargins is set to true. Set to true, the events will transtorm with fcs file internal scales. Set to false, the events will transform with cytobank scales. Can be set to a boolean value
validFcsFileIds
list of integers or character representing a list of valid FCS file IDs can run PeacoQC
Interact with population (aka gate sets) endpoints. A population is a set of gates and can have parents and children. Learn more about gates and populations.
## S4 method for signature 'UserSession' populations.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' populations.show( UserSession, experiment_id, population_id, output = "default", timeout = UserSession@short_timeout )
## S4 method for signature 'UserSession' populations.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' populations.show( UserSession, experiment_id, population_id, output = "default", timeout = UserSession@short_timeout )
UserSession |
Cytobank UserSession object |
experiment_id |
integer representing an experiment ID |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds |
population_id |
integer representing a population ID |
populations.list
List all populations from an experiment. Outputs a dataframe [default] or raw list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
populations.show
Show population details from an experiment.
- Optional output parameter, specify one of the following: ("default", "raw")
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: # Dataframe of all populations with all fields present populations.list(cyto_session, 22) # Raw list of all populations with all fields present populations.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: populations.show(cyto_session, 22, population_id=2)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: # Dataframe of all populations with all fields present populations.list(cyto_session, 22) # Raw list of all populations with all fields present populations.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: populations.show(cyto_session, 22, population_id=2)
Interact with sample tag endpoints. Download and upload sample tags to save time during the annotation process. Learn more about sample tags here.
## S4 method for signature 'UserSession' sample_tags.download( UserSession, experiment_id, directory = getwd(), timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' sample_tags.upload( UserSession, experiment_id, file_path, timeout = UserSession@long_timeout )
## S4 method for signature 'UserSession' sample_tags.download( UserSession, experiment_id, directory = getwd(), timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' sample_tags.upload( UserSession, experiment_id, file_path, timeout = UserSession@long_timeout )
UserSession |
Cytobank UserSession object |
experiment_id |
integer representing an experiment ID |
directory |
character representing a specific directory to which the file will be downloaded (optional ending directory slash), if left empty, the default will be the current working directory [optional] |
timeout |
integer representing the request timeout time in seconds |
file_path |
character representing a file path |
sample_tags.download
Download the sample tags from an experiment.
sample_tags.upload
Upload sample tag annotation data TSV to an experiment.
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: # Download the experiment sample tags TSV to the current working directory sample_tags.download(cyto_session, 22) # Download the experiment sample tags TSV to a new directory sample_tags.download(cyto_session, 22, directory="/my/new/download/directory/") ## End(Not run) ## Not run: sample_tags.upload(cyto_session, 22, file_path="/path/to/my_annotations.tsv")
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: # Download the experiment sample tags TSV to the current working directory sample_tags.download(cyto_session, 22) # Download the experiment sample tags TSV to a new directory sample_tags.download(cyto_session, 22, directory="/my/new/download/directory/") ## End(Not run) ## Not run: sample_tags.upload(cyto_session, 22, file_path="/path/to/my_annotations.tsv")
Interact with scale endpoints. Data are rarely presented exactly as they were acquired on the instrument. Learn more about data scaling.
## S4 method for signature 'UserSession' scales.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' scales.show( UserSession, experiment_id, scale_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' scales.update( UserSession, scale, output = "default", timeout = UserSession@short_timeout )
## S4 method for signature 'UserSession' scales.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' scales.show( UserSession, experiment_id, scale_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' scales.update( UserSession, scale, output = "default", timeout = UserSession@short_timeout )
UserSession |
Cytobank UserSession object |
experiment_id |
integer representing an experiment ID |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds |
scale_id |
integer representing a scale ID |
scale |
dataframe representing a scale |
scales.list
List all scales from an experiment. Outputs a dataframe [default] or raw list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
scales.show
Show scale details from an experiment.
- Optional output parameter, specify one of the following: ("default", "raw")
scales.update
Update a single scale from an experiment.
(all parameters are optional, except for experiment_id and scale_id)
- Scale Types – 1: Linear, 2: Log, 4: Arcsinh
- Optional output parameter, specify one of the following: ("default", "raw")
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: # Dataframe of all scales with all fields present scales.list(cyto_session, 22) # Raw list of all scales with all fields present scales.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: scales.show(cyto_session, 22, scale_id=2) ## Not run: # Update any number of parameters (scale_type, cofactor, minimum, maximum) # Scale Types -- 1: Linear, 2: Log, 4: Arcsinh scales.update(cyto_session, scale=cyto_scale) ## End(Not run)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: # Dataframe of all scales with all fields present scales.list(cyto_session, 22) # Raw list of all scales with all fields present scales.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: scales.show(cyto_session, 22, scale_id=2) ## Not run: # Update any number of parameters (scale_type, cofactor, minimum, maximum) # Scale Types -- 1: Linear, 2: Log, 4: Arcsinh scales.update(cyto_session, scale=cyto_scale) ## End(Not run)
Interact with SPADE advanced analyses using these endpoints.
## S4 method for signature 'UserSession,SPADE' spade.bubbles_export( UserSession, spade, bubbles, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.bubbles_set( UserSession, spade, bubbles, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.bubbles_show( UserSession, spade, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.copy_results( UserSession, spade, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.copy_settings( UserSession, spade, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.delete(UserSession, spade, timeout = UserSession@short_timeout) ## S4 method for signature 'UserSession,SPADE' spade.download_all( UserSession, spade, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.download_clusters_table( UserSession, spade, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.download_global_boundaries_table( UserSession, spade, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.download_gml( UserSession, spade, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.download_layout_table( UserSession, spade, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.download_statistics_tables( UserSession, spade, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' spade.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' spade.new( UserSession, experiment_id, spade_name, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.rename( UserSession, spade, spade_name, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.run( UserSession, spade, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' spade.show( UserSession, experiment_id, spade_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.status( UserSession, spade, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.update(UserSession, spade, timeout = UserSession@long_timeout)
## S4 method for signature 'UserSession,SPADE' spade.bubbles_export( UserSession, spade, bubbles, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.bubbles_set( UserSession, spade, bubbles, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.bubbles_show( UserSession, spade, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.copy_results( UserSession, spade, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.copy_settings( UserSession, spade, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.delete(UserSession, spade, timeout = UserSession@short_timeout) ## S4 method for signature 'UserSession,SPADE' spade.download_all( UserSession, spade, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.download_clusters_table( UserSession, spade, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.download_global_boundaries_table( UserSession, spade, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.download_gml( UserSession, spade, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.download_layout_table( UserSession, spade, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.download_statistics_tables( UserSession, spade, directory = getwd(), timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' spade.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' spade.new( UserSession, experiment_id, spade_name, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.rename( UserSession, spade, spade_name, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.run( UserSession, spade, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' spade.show( UserSession, experiment_id, spade_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.status( UserSession, spade, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,SPADE' spade.update(UserSession, spade, timeout = UserSession@long_timeout)
UserSession |
Cytobank UserSession object |
spade |
Cytobank SPADE object |
bubbles |
vector/list of characters representing bubbles within a SPADE analysis, learn more about SPADE bubbles |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
directory |
character representing a specific directory (optional ending directory slash), default will be current working directory [optional] |
experiment_id |
integer representing an experiment ID |
spade_name |
character representing a new SPADE name |
spade_id |
integer representing a SPADE ID |
spade.bubbles_export
Export SPADE advanced analysis bubbles from an experiment to a new experiment.
spade.bubbles_set
Set SPADE advanced analysis bubbles from an experiment.
spade.bubbles_show
Show SPADE advanced analysis bubbles from an experiment.
spade.copy_results
Copy SPADE advanced analysis results from an experiment to a new experiment.
spade.copy_settings
Copy SPADE advanced analysis settings from an experiment.
spade.delete
Delete a SPADE advanced analysis from an experiment.
spade.download_all
Download a SPADE advanced analysis with all data included from an experiment.
spade.download_clusters_table
Download a SPADE advanced analysis global clusters table from an experiment.
spade.download_global_boundaries_table
Download a SPADE advanced analysis global boundaries table from an experiment.
spade.download_gml
Download a SPADE advanced analysis GML from an experiment.
spade.download_layout_table
Download a SPADE advanced analysis layout table from an experiment.
spade.download_statistics_tables
Download a SPADE advanced analysis statistics table from an experiment.
spade.list
List all SPADE advanced analyses from an experiment. Outputs a dataframe [default] or list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
spade.new
Create a new SPADE advanced analysis from an experiment and returns a SPADE object.
spade.rename
Rename a SPADE advanced analysis from an experiment and returns a SPADE object.
spade.run
Run a SPADE advanced analysis from an experiment.
spade.show
Show SPADE advanced analysis details from an experiment and returns a SPADE object.
spade.status
Show the status of a SPADE advanced analysis from an experiment.
spade.update
Update a SPADE advanced analysis from an experiment and returns the new SPADE object.
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") # cyto_spade refers to a SPADE object that is created from SPADE endpoints # examples: spade.new, spade.show (see details section for more) ## End(Not run) ## Not run: spade.bubbles_export(cyto_session, spade=cyto_spade, bubbles=c("bubble1", "bubble2")) ## Not run: named_bubble_list_of_node_vectors <- list("bubble_1"=c(1,2,4), "bubble_2"=8, "bubble_4"=c(10,12)) spade.bubbles_set(cyto_session, spade=cyto_spade, bubbles=named_bubble_list_of_node_vectors) ## End(Not run) ## Not run: spade.bubbles_show(cyto_session, spade=cyto_spade) ## Not run: spade.copy_results(cyto_session, spade=cyto_spade) ## Not run: spade.copy_settings(cyto_session, spade=cyto_spade) ## Not run: spade.delete(cyto_session, spade=cyto_spade) ## Not run: spade.download_all(cyto_session, spade=cyto_spade, directory="/my/new/download/directory/") ## End(Not run) ## Not run: spade.download_clusters_table(cyto_session, spade=cyto_spade, directory="/my/new/download/directory/") ## End(Not run) ## Not run: spade.download_global_boundaries_table(cyto_session, spade=cyto_spade, directory="/my/new/download/directory/") ## End(Not run) ## Not run: spade.download_gml(cyto_session, spade=cyto_spade, directory="/my/new/download/directory/") ## End(Not run) ## Not run: spade.download_layout_table(cyto_session, spade=cyto_spade, directory="/my/new/download/directory/") ## End(Not run) ## Not run: spade.download_statistics_tables(cyto_session, spade=cyto_spade, directory="/my/new/download/directory/") ## End(Not run) ## Not run: # Dataframe of all SPADE advanced analyses with all fields present spade.list(cyto_session, 22) # Raw list of all SPADE advanced analyses with all fields present spade.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: spade.new(cyto_session, 22, spade_name="My new SPADE analysis") ## Not run: spade.rename(cyto_session, spade=cyto_spade, spade_name="My updated SPADE name") ## Not run: spade.run(cyto_session, spade=cyto_spade) ## Not run: spade.show(cyto_session, 22, spade_id=2) ## Not run: spade.status(cyto_session, spade=cyto_spade) ## Not run: spade.update(cyto_session, spade=cyto_spade)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") # cyto_spade refers to a SPADE object that is created from SPADE endpoints # examples: spade.new, spade.show (see details section for more) ## End(Not run) ## Not run: spade.bubbles_export(cyto_session, spade=cyto_spade, bubbles=c("bubble1", "bubble2")) ## Not run: named_bubble_list_of_node_vectors <- list("bubble_1"=c(1,2,4), "bubble_2"=8, "bubble_4"=c(10,12)) spade.bubbles_set(cyto_session, spade=cyto_spade, bubbles=named_bubble_list_of_node_vectors) ## End(Not run) ## Not run: spade.bubbles_show(cyto_session, spade=cyto_spade) ## Not run: spade.copy_results(cyto_session, spade=cyto_spade) ## Not run: spade.copy_settings(cyto_session, spade=cyto_spade) ## Not run: spade.delete(cyto_session, spade=cyto_spade) ## Not run: spade.download_all(cyto_session, spade=cyto_spade, directory="/my/new/download/directory/") ## End(Not run) ## Not run: spade.download_clusters_table(cyto_session, spade=cyto_spade, directory="/my/new/download/directory/") ## End(Not run) ## Not run: spade.download_global_boundaries_table(cyto_session, spade=cyto_spade, directory="/my/new/download/directory/") ## End(Not run) ## Not run: spade.download_gml(cyto_session, spade=cyto_spade, directory="/my/new/download/directory/") ## End(Not run) ## Not run: spade.download_layout_table(cyto_session, spade=cyto_spade, directory="/my/new/download/directory/") ## End(Not run) ## Not run: spade.download_statistics_tables(cyto_session, spade=cyto_spade, directory="/my/new/download/directory/") ## End(Not run) ## Not run: # Dataframe of all SPADE advanced analyses with all fields present spade.list(cyto_session, 22) # Raw list of all SPADE advanced analyses with all fields present spade.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: spade.new(cyto_session, 22, spade_name="My new SPADE analysis") ## Not run: spade.rename(cyto_session, spade=cyto_spade, spade_name="My updated SPADE name") ## Not run: spade.run(cyto_session, spade=cyto_spade) ## Not run: spade.show(cyto_session, 22, spade_id=2) ## Not run: spade.status(cyto_session, spade=cyto_spade) ## Not run: spade.update(cyto_session, spade=cyto_spade)
A SPADE object that holds pertinent SPADE advanced analysis run information. This class should never be called explicitly. If a user would like to create a new Cytobank SPADE object, utilize the spade.new function, or any other SPADE endpoints that return SPADE objects documented in the 'Details' section.
A SPADE advanced analysis object
created_experiment
numeric representing the experiment that gets created from the SPADE analysis
down_sampled_events_target
numeric representing the percent OR absolute number (depends on 'down_sampled_events_type' slot) for downsampling occurring within the SPADE analysis, learn more about SPADE density-dependent downsampling
down_sampled_events_type
character representing the downsampling type for down_sampled_events_target, learn more about SPADE density-dependent downsampling types
- choose one of the following : ("percent" [default], "absolute_number")
fold_change_groups
dataframe representing the fold change groups within a SPADE analysis, learn more about SPADE fold change groups
population_id
numeric representing the population to run the SPADE analysis on, learn more about choosing a population for SPADE
spade_id
numeric representing the SPADE analysis ID
target_number_nodes
numeric representing how many population nodes SPADE will seek out within the given data, learn more about target number of nodes for SPADE
Interact with statistic endpoints. Gather data about event counts and general channel statistics. Create dataframes of statistics to help with visualization and downstream analysis.
## S4 method for signature 'UserSession' statistics.event_counts( UserSession, experiment_id, gate_version = -1, compensation_id, fcs_files, populations = c(), output = "dataframe", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' statistics.general( UserSession, experiment_id, gate_version = -1, compensation_id, fcs_files, channels, populations = c(), output = "dataframe_row", timeout = UserSession@long_timeout )
## S4 method for signature 'UserSession' statistics.event_counts( UserSession, experiment_id, gate_version = -1, compensation_id, fcs_files, populations = c(), output = "dataframe", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' statistics.general( UserSession, experiment_id, gate_version = -1, compensation_id, fcs_files, channels, populations = c(), output = "dataframe_row", timeout = UserSession@long_timeout )
UserSession |
Cytobank UserSession object |
experiment_id |
integer representing an experiment ID |
gate_version |
integer representing an experiment gate version, an integer of -1 corresponds to the state of gates and populations in the gating interface. Faster performance can be achieved by using the maximum gate version from the experiment (learn more about gate versions). Maximum gate version can be seen as the gateVersion attribute returned from a call to the Show Experiment Details endpoint [optional] |
compensation_id |
integer representing a compensation ID (use -2 for file-internal compensation, -1 for uncompensated) |
fcs_files |
vector/list of integers representing a list of FCS file IDs |
populations |
vector/list of integers representing a list of population IDs to calculate statistics for. This is the gateSetId attribute of a population object. Another term for a population is a "gate set". If not specified, all population statistics will be fetched [optional] |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds |
channels |
vector/list of integers or character representing a list of channel IDs (integers) or long channel names (character) |
statistics.event_counts
Get event count statistics from an experiment. In the absence of channel information, only event count data are returned. If only event count data are needed, this approach can be faster than retrieving all statistics by avoiding unnecessary computation.
- Optional output parameter, specify one of the following: ("full", "dataframe" [default])
- dataframe
: converts the output to a dataframe for the event count statistics
statistics.general
Get a batch of common statistics for specific channels on populations from an experiment.
- Optional output parameter, specify one of the following: ("full", "dataframe_col", "dataframe_row" [default])
- dataframe_col
: for statistics data on multiple channels, proliferate channel statistics as columns
- dataframe_row
: for statistics data on multiple channels, proliferate channel statistics as rows
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: statistics.event_counts(cyto_session, 22, compensation_id=-2, fcs_files=c(12, 13, 14), channels=c(53, 54, 55), populations=c(32, 33, 34)) ## End(Not run) ## Not run: # Full list with all fields present statistics.general(cyto_session, 22, compensation_id=-2, fcs_files=c(12, 13, 14), channels=c(53, 54, 55), populations=c(32, 33, 34)) # Statistics list transformed into a dataframe, proliferating channel statistics by column statistics.general(cyto_session, 22, compensation_id=-2, fcs_files=c(12, 13, 14), channels=c(53, 54, 55), populations=c(32, 33), output="dataframe_col") # Statistics list transformed into a dataframe, proliferating channel statistics by row statistics.general(cyto_session, 22, compensation_id=-2, fcs_files=c(12, 13, 14), channels=c(53, 54, 55), populations=c(32, 33), output="dataframe_row") # Statistics list transformed into a dataframe, using helper functions (names_to_ids) # Get FCS files that match 'pbmc' in their filename fcs_files <- fcs_files.list(cyto_session, 22) fcs_files <- fcs_files[,c("id", "filename")] fcs_files <- unlist(fcs_files$id[grep("pbmc", fcs_files$filename)]) # Get channels that match 'pp' or 'pStat' as their longName channels <- panels.list(cyto_session, 22)$`Panel 1`$channels channels <- channels[,c("normalizedShortNameId", "shortName", "longName")] channels <- channels$normalizedShortNameId[grep("pp.*|pStat.*", channels$longName)] # Get populations that match 'CD' as their population name populations <- populations.list(cyto_session, 22) populations <- populations[,c("gateSetId", "name")] populations <- populations$id[grep("CD.*", populations$name)] statistics.general(cyto_session, 22, compensation_id=-2, fcs_files=fcs_files, channels=channels, populations=populations, output="dataframe_row") ## End(Not run)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: statistics.event_counts(cyto_session, 22, compensation_id=-2, fcs_files=c(12, 13, 14), channels=c(53, 54, 55), populations=c(32, 33, 34)) ## End(Not run) ## Not run: # Full list with all fields present statistics.general(cyto_session, 22, compensation_id=-2, fcs_files=c(12, 13, 14), channels=c(53, 54, 55), populations=c(32, 33, 34)) # Statistics list transformed into a dataframe, proliferating channel statistics by column statistics.general(cyto_session, 22, compensation_id=-2, fcs_files=c(12, 13, 14), channels=c(53, 54, 55), populations=c(32, 33), output="dataframe_col") # Statistics list transformed into a dataframe, proliferating channel statistics by row statistics.general(cyto_session, 22, compensation_id=-2, fcs_files=c(12, 13, 14), channels=c(53, 54, 55), populations=c(32, 33), output="dataframe_row") # Statistics list transformed into a dataframe, using helper functions (names_to_ids) # Get FCS files that match 'pbmc' in their filename fcs_files <- fcs_files.list(cyto_session, 22) fcs_files <- fcs_files[,c("id", "filename")] fcs_files <- unlist(fcs_files$id[grep("pbmc", fcs_files$filename)]) # Get channels that match 'pp' or 'pStat' as their longName channels <- panels.list(cyto_session, 22)$`Panel 1`$channels channels <- channels[,c("normalizedShortNameId", "shortName", "longName")] channels <- channels$normalizedShortNameId[grep("pp.*|pStat.*", channels$longName)] # Get populations that match 'CD' as their population name populations <- populations.list(cyto_session, 22) populations <- populations[,c("gateSetId", "name")] populations <- populations$id[grep("CD.*", populations$name)] statistics.general(cyto_session, 22, compensation_id=-2, fcs_files=fcs_files, channels=channels, populations=populations, output="dataframe_row") ## End(Not run)
A tSNE object that holds pertinent tSNE advanced analysis run information. This class should never be called explicitly. If a user would like to create a new Cytobank Dimensionality Reduction object, utilize the dimensionality_reduction.new function, or any other Dimensionality Reduction endpoints that return Dimensionality Reduction objects documented in the 'Details' section.
A Dimensionality Reduction advanced analysis object
iterations
numeric representing the number of times Dimensionality Reduction processes the dataset using its step-wise optimization algorithm, learn more about how iterations affect Dimensionality Reduction results
perplexity
numeric representing a rough guess for the number of close neighbors any given cellular event will have, learn more about Dimensionality Reduction perplexity
auto_iterations
logical representing whether or not to set auto interations
auto_learning_rate
logical representing whether or not to set auto learning rate
clustering_channels
list the channels selected for the Dimensionality Reduction analysis, this can be either a list of short channel IDs (integer) OR long channel names (character)
desired_events_per_file
numeric representing the number of desired events per file
desired_total_events
numeric representing the number of desired total events per file
early_exaggeration
numeric representing how tight natural clusters in the original space are in the embedded space and how much space will be between them
event_sampling_method
character representing the name of event sampling method will be used, learn more about Event Sampling for Dimensionality Reduction analysis
fcsfile_ids
list representing the fcs file ids
gateset_id
numeric representing the selected gate id
learning_rate
numeric representing the learning rate
normalize_scales
logical representing whether or not to normalize scales
A UMAP object that holds pertinent UMAP advanced analysis run information. This class should never be called explicitly. If a user would like to create a new Cytobank UMAP object, utilize the dimensionality_reduction.new function, or any other UMAP endpoints that return UMAP objects documented in the 'Details' section.
A UMAP advanced analysis object
clustering_channels
list the channels selected for the Dimensionality Reduction analysis, this can be either a list of short channel IDs (integer) OR long channel names (character)
collapse_outliers
logical Dimension values that are significant outliers (z-score > 3) will be collapsed to be equal to the min or max value. Try this if you observe that most of the data appears squished within small region
desired_events_per_file
numeric representing the number of desired events per file
desired_total_events
numeric representing the number of desired total events per file
event_sampling_method
character representing the name of event sampling method will be used, learn more about Event Sampling for Dimensionality Reduction analysis
fcsfile_ids
list representing the fcs file ids
gateset_id
numeric representing the selected gate id
min_distance
numeric the effective minimum distance between embedded points, learn more about minimum distance for UMAP analysis
num_neighbors
numeric the size of local neighborhood (in terms of number of neighboring sample points) used for manifold approximation, learn more about number of neighbors for UMAP analysis
normalize_scales
logical representing whether or not to normalize scales
Interact with user endpoints. One should never analyze alone...
## S4 method for signature 'UserSession' users.list( UserSession, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' users.show( UserSession, user_id, output = "default", timeout = UserSession@short_timeout )
## S4 method for signature 'UserSession' users.list( UserSession, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' users.show( UserSession, user_id, output = "default", timeout = UserSession@short_timeout )
UserSession |
Cytobank UserSession object |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
user_id |
integer representing a user ID |
users.list
List all users on a Cytobank server (admin access only). Outputs a dataframe [default] or raw list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
users.show
Show user details (admin access only, except for self).
- Optional output parameter, specify one of the following: ("default", "raw")
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: # Dataframe of all users with all fields present users.list(cyto_session) # Raw list of all useres with all fields present users.list(cyto_session, output="raw") ## End(Not run) ## Not run: users.show(cyto_session, user_id=2)
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") ## End(Not run) ## Not run: # Dataframe of all users with all fields present users.list(cyto_session) # Raw list of all useres with all fields present users.list(cyto_session, output="raw") ## End(Not run) ## Not run: users.show(cyto_session, user_id=2)
A Cytobank UserSession object that holds pertinent user information, used to make calls to various Cytobank endpoints. This class should never be called explicitly. If a user would like to create a new Cytobank UserSession object, utilize the authenticate function.
A Cytobank UserSession object
auth_token
character representing Cytobank user's authentication token (expires in 8 hours)
long_timeout
numeric representing long request timeout times
short_timeout
numeric representing short request timeout times
site
character representing Cytobank user's site
user_id
integer representing a Cytobank user's ID
cytobank_user <- new("UserSession", auth_token="my_auth_token", site="premium")
cytobank_user <- new("UserSession", auth_token="my_auth_token", site="premium")
Interact with viSNE advanced analyses using these endpoints.
## S4 method for signature 'UserSession,viSNE' visne.copy_settings( UserSession, visne, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,viSNE' visne.delete(UserSession, visne, timeout = UserSession@short_timeout) ## S4 method for signature 'UserSession' visne.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' visne.new( UserSession, experiment_id, visne_name, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,viSNE' visne.rename( UserSession, visne, visne_name, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,viSNE' visne.run( UserSession, visne, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' visne.show( UserSession, experiment_id, visne_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,viSNE' visne.status( UserSession, visne, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,viSNE' visne.update(UserSession, visne, timeout = UserSession@long_timeout) visne.helper.set_populations(visne, population_id = NA, fcs_files = NA)
## S4 method for signature 'UserSession,viSNE' visne.copy_settings( UserSession, visne, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,viSNE' visne.delete(UserSession, visne, timeout = UserSession@short_timeout) ## S4 method for signature 'UserSession' visne.list( UserSession, experiment_id, output = "default", timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession' visne.new( UserSession, experiment_id, visne_name, timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,viSNE' visne.rename( UserSession, visne, visne_name, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,viSNE' visne.run( UserSession, visne, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession' visne.show( UserSession, experiment_id, visne_id, timeout = UserSession@short_timeout ) ## S4 method for signature 'UserSession,viSNE' visne.status( UserSession, visne, output = "default", timeout = UserSession@long_timeout ) ## S4 method for signature 'UserSession,viSNE' visne.update(UserSession, visne, timeout = UserSession@long_timeout) visne.helper.set_populations(visne, population_id = NA, fcs_files = NA)
UserSession |
Cytobank UserSession object |
visne |
Cytobank viSNE object |
output |
character representing the output format [optional] |
timeout |
integer representing the request timeout time in seconds [optional] |
experiment_id |
integer representing an experiment ID |
visne_name |
character representing a new viSNE name |
visne_id |
integer representing a viSNE ID |
population_id |
integer representing a population gate set ID |
fcs_files |
vector/list of integers representing a list of FCS file IDs |
visne.copy_settings
Copy viSNE advanced analysis settings from an experiment and returns a viSNE object.
visne.delete
Delete a viSNE advanced analysis from an experiment.
visne.list
List all viSNE advanced analyses from an experiment. Outputs a dataframe [default] or list with all fields present.
- Optional output parameter, specify one of the following: ("default", "raw")
visne.new
Create a new viSNE advanced analysis from an experiment and returns a viSNE object.
visne.rename
Rename a viSNE advanced analysis from an experiment and returns a viSNE object.
visne.run
Run a viSNE advanced analysis from an experiment.
visne.show
Show viSNE advanced analysis details from an experiment and returns a viSNE object.
visne.status
Show the status of a viSNE advanced analysis from an experiment.
visne.update
Update a viSNE advanced analysis from an experiment and returns the new viSNE object.
visne.helper.set_populations
Set viSNE advanced analysis populations to be selected from an experiment and returns the new viSNE object with the new population selections. The population provided will be overwritten by the newly selected FCS files provided.
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") # cyto_visne refers to a viSNE object that is created from viSNE endpoints # examples: visne.new, visne.show (see details section for more) ## End(Not run) ## Not run: visne.copy_settings(cyto_session, visne=cyto_visne) ## Not run: visne.delete(cyto_session, visne=cyto_visne) ## Not run: # Dataframe of all viSNE advanced analyses with all fields present visne.list(cyto_session, 22) # Raw list of all viSNE advanced analyses with all fields present visne.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: visne.new(cyto_session, 22, visne_name="My new viSNE analysis") ## Not run: visne.rename(cyto_session, visne=cyto_visne, visne_name="My updated viSNE name") ## Not run: visne.run(cyto_session, visne=cyto_visne) ## Not run: visne.show(cyto_session, 22, visne_id=2) ## Not run: visne.status(cyto_session, visne=cyto_visne) ## Not run: visne.update(cyto_session, visne=cyto_visne) ## Not run: visne.helper.set_populations(visne=cyto_visne, population_id=1, fcs_files=c(1,2,3))
## Not run: # Authenticate via username/password cyto_session <- authenticate(site="premium", username="cyril_cytometry", password="cytobank_rocks!") # Authenticate via auth_token cyto_session <- authenticate(site="premium", auth_token="my_secret_auth_token") # cyto_visne refers to a viSNE object that is created from viSNE endpoints # examples: visne.new, visne.show (see details section for more) ## End(Not run) ## Not run: visne.copy_settings(cyto_session, visne=cyto_visne) ## Not run: visne.delete(cyto_session, visne=cyto_visne) ## Not run: # Dataframe of all viSNE advanced analyses with all fields present visne.list(cyto_session, 22) # Raw list of all viSNE advanced analyses with all fields present visne.list(cyto_session, 22, output="raw") ## End(Not run) ## Not run: visne.new(cyto_session, 22, visne_name="My new viSNE analysis") ## Not run: visne.rename(cyto_session, visne=cyto_visne, visne_name="My updated viSNE name") ## Not run: visne.run(cyto_session, visne=cyto_visne) ## Not run: visne.show(cyto_session, 22, visne_id=2) ## Not run: visne.status(cyto_session, visne=cyto_visne) ## Not run: visne.update(cyto_session, visne=cyto_visne) ## Not run: visne.helper.set_populations(visne=cyto_visne, population_id=1, fcs_files=c(1,2,3))
A viSNE object that holds pertinent viSNE analysis run information. This class should never be called explicitly. If a user would like to create a new Cytobank Dimensionality Reduction object, utilize the dimensionality_reduction.new function, or any other Dimensionality Reduction endpoints that return Dimensionality Reduction objects documented in the 'Details' section.
A Dimensionality Reduction advanced analysis object
iterations
numeric representing the number of times Dimensionality Reduction processes the dataset using its step-wise optimization algorithm, learn more about how iterations affect Dimensionality Reduction results
perplexity
numeric representing a rough guess for the number of close neighbors any given cellular event will have, learn more about Dimensionality Reduction perplexity
channels
list the channels selected for the Dimensionality Reduction analysis, this can be either a list of short channel IDs (integer) OR long channel names (character)
compensation_id
the compensation ID selected for the Dimensionality Reduction analysis
population_selections
dataframe representing which population(s) data will be sourced, learn more about selecting populations for Dimensionality Reduction
sampling_total_count
numeric representing the total number of events to sample for the Dimensionality Reduction analysis
sampling_target_type
character representing the event sampling type
- choose one of the following : ("proportional", "equal")
seed
character representing the seed, Dimensionality Reduction picks a random seed each run, but if users want reproducible data, setting the same seed will allow them to do this
theta
numeric representing the balance of speed and accuracy in the Dimensionality Reduction run compared to the original tSNE algorithm, learn more about Dimensionality Reduction theta
visne_id
numeric representing the Dimensionality Reduction analysis ID