Crossover - A search algorithm and GUI for cross-over designs

Kornelius Rohmeyer

October 22, 2024

Contents

1	Intr	oducti	on	2
	1.1	Install	ation	2
	1.2	Overvi	iew	3
		1.2.1	Design selection in the GUI	3
		1.2.2	Designs in R	4
		1.2.3	Algorithm Search	5
2	Mo	dels		6
	2.1	Standa	ard additive model	6
	2.2	Full se	t of interactions	8
	2.3	Self-ad	ljacency model	9
	2.4	Placeb	o model	9
	2.5	No car	rry-over into self model	10
	2.6	Treatn	nent decay model	11
	2.7	Propor	rtionality model	11
	2.8	Second	l-order carry-over effects	12
3	Sea	rch str	ategy	15
	3.1	Rando	m Subject Effects Model	19
A	Ap	pendix		20
	A.1	Appen	dix - Variance Balance / Partial Balance	20
	A.2	Appen	dix - Matrix Algebra / Linear Models	20
		A.2.1	Generalized inverse	20
		A.2.2	Fisher information	21
		A.2.3	Linear Mixed Models	21
	A.3	Appen	dix - Internals	22
		A.3.1	Naming conventions	22
	Inde	ex		23
	Lite	ratur .		24
	Tabl	le of Syr	mbols	25

Chapter 1

Introduction

This package provides more than two hundred cross-over design from literature, a search algorithm to find efficient cross-over designs for various models and a graphical user interface (GUI) to find/generate appropriate designs.

The computationally intensive parts of the package, i.e. the search algorithm, is written using the R packages Rcpp and RcppArmadillo (Eddelbuettel and François [2011] and Eddelbuettel and Sanderson [2013]). The GUI is written in Java and uses package rJava (Urbanek [2013]).

1.1 Installation

Once it is installed, whenever you start R you can load the Crossover package by entering library(Crossover) into the R Console. The graphical user interface as shown in figure 1.1 is started with the command CrossoverGUI().

😣 🖻 💿 CROSS-OVER DESIGN SEARCH TOOL	0.1.13									
<u>Eile Analysis Extras H</u> elp										
Number of treatments: 4	Mod	el				S	tandai	d addi	tive model	-
Number of periods:	Furt	her m	ndel	paran	neters	. 1				
Number of sequences: Min: 5 - Max: 12			louci	purun	lieters					
Catalogue Algorithm Search Input own de	sign	1.1								
List of designs:		Se	elect	ed des	ign:					
Title	Sequences av.eff.trt.pair	F	LET	CHER	FAC	TOR	IAL 2	x 2 DI	ESIGN 4 (p = 4, n = 8, t = 4)	
FLETCHER FACTORIAL 2 × 2 DESIGN 4 LEWIS, FLETCHER AND MATTHEWS 2 × 2 DESIGN 3	8 0.538 8 0.909				·					
LEWIS, FLETCHER AND MATTHEWS 2 x 2 DESIGN 3	8 0.826			s1 s2	s 3 s	4 s	5 s 6	s7 s8		
LEWIS, FLETCHER AND MATTHEWS 2 x 2 DESIGN 5	8 0.826		p1	1 2	3	4	1 2	3 4	1	
LEWIS, FLETCHER AND MATTHEWS 2 x 2 DESIGN 6	8 0.826									
ORTHOGONAL LATIN SQUARE DESIGN FOUR TREATM PATTERSON AND LUCAS EXTRA-PERIOD DESIGN 33 (12 0.909 12 0.833		p2	2 1	4	3	3 4	1 2		
Search Result n=(2000,20), model=0, 2014-10-31			pЗ	4 3	2	1	4 3	2 1		
			p4	3 4	1	2	2 1	4 3	1	
									1	
		A	Av.ef	f.trt.p	air.ad	lj: 0.	5385			
		Г	lofo		Elata	hor	DI (I	097) 4	new class of change-over design	
									a, 74, 649654.	15
									.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
						addi	itive m	odel		
			/ar.t	rt.paiı	r:					
				t1	t2		t3	t4		
			t1 C	,0000	0,812	25 0	0,8125	0,250	0	
			t2 0	,8125	0,000	000	0,2500	0,812	5	
			t3 (,8125	0,250	00	0,0000	0,812	5	
			t4 (,2500	0,812	25 0	0,8125	0,000	0	
		Ē	Eff.tr	t.pair	:				_	
				t1	t2		t3	t4		
Designs from package archive			t1 C	,0000,	0,307	77 0	0,3077	1,000	0	
Designs generated by package crossdes			t2 (,3077	0,000	00 1	1,0000	0,307	7	
Designs manually entered			t3 (,3077	1,000	00 0	0,000,0	0,307	7	
Designs from previous search runs			t4 1	,0000,	0,307	77 0	0,3077	0,000	0	_

Figure 1.1: Cross-Over Design GUI.

1.2 Overview

The catalogue, collected and compiled by Professor Byron Jones, contains 241 designs from the following literature: Anderson and Preece [2002], Archdeacon et al. [1980], Atkinson [1966], Balaam [1968], Berenblut [1964], Blaisdell Jr and Raghavarao [1980], Davis and Hall [1969], Federer and Atkinson [1964], Fletcher [1987], Iqbal and Jones [1994], Lewis et al. [1988], Cochran et al. [1941], Patterson and Lucas [1962], Pigeon [1985], Prescott [1999], Quenouille [1953], Russell [1991], Lucas [1956], Williams [1949], Prescott [1994], Bate and Jones [2002]

Further 149 designs are constructed from partially balanced incomplete block designs from Clatworthy et al. [1973] and balanced crossover designs.

1.2.1 Design selection in the GUI

The GUI will show appropriate designs from the catalogue according to the number of treatments, periods and the range of sequences the user enters.¹ Further functions from package crossdes (Sailer [2013]) are called to create designs for the specified values if possible.

In figure 1.1 you can see the following four checkboxes, that allow you to see only specific subsets:

Designs from package archive The previously noted designs from literature are shown.

Designs generated by package crossdes Activating this option will result in short delays when displaying the catalogue, since the crossdes algorithms are called.

Designs manually entered All designs entered on tab "Input own design" are shown.

Designs from previous search runs All designs from previous search runs are shown.

The column av.eff.trt.pair shows the average efficiency of pairwise treatment parameter differences.

To define these efficiencies we compare a design D with an "ideal design" D_I without period, subject or carry-over effects, where each treatment $i \in \{1, \ldots, v\}$ occurs n_i times in D and D_I . For D_I the variance of the treatment parameter difference estimate $\hat{\tau}_i - \hat{\tau}_j$ for treatment i and j is $1/n_i + 1/n_j$. We define the efficiency for a design D as the quotient of the variances under D_I and D, i.e.

$$\frac{\operatorname{Var}_{D_I}(\hat{\tau}_i - \hat{\tau}_j)}{\operatorname{Var}_D(\hat{\tau}_i - \hat{\tau}_j)} = \frac{\frac{1}{n_i} + \frac{1}{n_j}}{\operatorname{Var}_D(\hat{\tau}_i - \hat{\tau}_j)}$$

The tab "Input own design" provides you with the possibility to analyse and save your own designs easily or to use them as starting points for the search algorithm.

The drop-down menu for *model* let you specify which model you are interested. These models are described in detail in chapter 2. In case of the placebo or proportionality model you can specify *further model parameters* (namely the number of placebos and the proportionality parameter, respectively).

 $^{^{1}}$ A table referencing all available designs and the respective number of treatments, periods and sequences is available by calling buildSummaryTable().

1.2.2 Designs in R

Our crossover designs in R are numeric matrices, where the elements represent the treatments, the rows represent the periods and the columns the subjects.

A data frame referencing all available designs and the respective number of treatments, periods and sequences is available by calling the buildSummaryTable() function.

Designs referenced in this table can be accessed via the getDesign() function. For example the Williams design for three treatments is represented by a 3×6 -matrix and assigns each of the three treatments once to each of the six subjects:

```
getDesign("williams3t")

## s1 s2 s3 s4 s5 s6

## p1 1 2 3 3 1 2

## p3 3 1 2 1 2 3

## attr(,"reference")

## [1] "Williams, E.J. (1949) Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Science
## attr(,"signature")
## [1] "p = 3, n = 6, t = 3"
## attr(,"title")
## [1] "WILLIAMS DESIGN THREE TREATMENTS"
```

Each treatment occurs six times, two times in the each period and each treatment follows each other treatment exactly two times.

If we are interested in the variance of the treatment parameter difference estimates, we can use the function general.carryover:

```
design <- getDesign("williams3t")</pre>
general.carryover(design, model=1)
## $Var.trt.pair
## [,1] [,2] [,3]
## [1,] 0.0000 0.4167 0.4167
## [2,] 0.4167 0.0000 0.4167
## [3,] 0.4167 0.4167 0.0000
##
## $Var.car.pair
## [,1] [,2] [,3]
## [1,] 0.00 0.75 0.75
## [2,] 0.75 0.00 0.75
## [3,] 0.75 0.75 0.00
##
## $model
## [1] 1
```

We see that the Williams design is a balanced design.

The following nine models which are discussed in chapter 2 are implemented:

```
## 1: "Standard additive model"
## 2: "Self-adjacency model"
## 3: "Proportionality model"
## 4: "Placebo model"
## 5: "No carry-over into self model"
## 6: "Treatment decay model"
## 7: "Full set of interactions"
## 8: "Second-order carry-over effects"
# 9: "No carry-over effects"
```

1.2.3 Algorithm Search

Covariance pattern	Autoregressive Error 💌							
Covariance pattern coefficient	0.8							
☑ Include fixed subject effects	s in design matrix.							
Number of sequences:	11 *							
Specify exact number of tree Treatment 1: 16 Treatment Treatment 4: 15 Treatment	2: 16 Treatment 3: 15							
 No balancing restrictions Balance treatments in regar Balance treatments in regar 								
Contrasts:								
All pair comparisons (Tukey)	-							
Weights: Treatment 1 C	arry-over 1							
🗹 Use designs from catalogue	as starting point							
Number of search runs:	25							
Number of steps per run:	5000							
Compute	Design							

Figure 1.2: Panel for algorithmic search of cross-over designs.

In figure 1.2 the preliminary graphical interface for the search algorithm is shown with the following options:

- The covariance pattern can be "Independence", "Autoregressive Error" or "Autoregressive Error". Except for "Independence" a covariance pattern coefficient ρ has to be specified.
- Specify the exact *number of sequences*. (The number of treatments and periods is already specified in the top panel of the GUI.)
- Optionally specify the *exact number of treatment assignments*. The GUI default is to let the algorithm figure out good/optimal assignments. But depending on further information (information from theoretical results or treatments more important than the others², etc.) the number of treatment assignments can be specified.
- You can specify that the design should be constructed in a way that in each sequence/period a treatment occur as evenly as possible. This restriction will normally decrease the efficiency of the algorithm.
- The GUI default is an all-pair comparison of all treatments with equal weights. Change the *contrast* weights accordingly if you are interested in other contrasts or different weights.
- Pressing the "Compute Design" button will start the search algorithm described in section 3. After a few seconds the result will be shown in the previous empty text area on the right.

 $^{^2}$ Different weights of treatment importance should be specified as weighted contrasts. See item *contrasts*.

Chapter 2

Models

The package and GUI support the following eight models.

2.1 Standard additive model

 $Y_{ijk} = \mu + \pi_j + \tau_{d[i,j]} + \lambda_{d[i,j-1]} + s_{ik} + e_{ijk}$

 with^1

 μ intercept,

 π_j period effect for period j,

 $\tau_{d[i,j]}$ direct treatment effect for treatment d[i,j] in period j of sequence i,

 $\lambda_{d[i,j-1]}$ first-order carry-over effect (0 for j-1=0),

 s_{ik} kth subject effect on sequence i,

 e_{ijk} random error with zero mean and variance σ^2 .

which we can write as

$$E(Y) = \mu + X\left(\frac{\tau}{\lambda}\right) + Z\left(\frac{\pi}{s}\right)$$

with X and Z called the *treatment* and *block design matrices*, respectively.

We call H a *link matrix* if $X = X_r H$ were X_r is the design matrix for the row-column design. The rows of the link matrix specify all possible parameter combinations. Therefore H has as many columns as there are parameters and in the row-column-setting i parameter j is included h_{ij} times.

```
# Design:
design <- rbind(c(3,2,1),</pre>
              c(2,1,3),
              c(1,2,3),
              c(3,2,1))
design
##
       [,1] [,2] [,3]
## [1,]
         3 2 1
## [2,]
          2
             1 3
             2
## [3,]
                  3
         1
        3
             2
## [4,]
                  1
```

¹cf. Jones and Kenward [2003], page 8

2.2 Full set of interactions

This model has further interaction parameters γ_{ij} and a design matrix X with $2 * v + v^2$ columns:

$$E(Y) = \mu + X \begin{pmatrix} \tau \\ \lambda \\ \gamma \end{pmatrix} + Z \begin{pmatrix} \pi \\ s \end{pmatrix}$$

Η	- Cros	ssover	:::li	.nkMat	rix(n	nodel=	="Full	. set	of in	nterad	tions'	', ⊽)		
##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]	[,13]
##	[1,]	1	0	0	0	0	0	0	0	0	0	0	0	0
##	[2,]	0	1	0	0	0	0	0	0	0	0	0	0	0
##	[3,]	0	0	1	0	0	0	0	0	0	0	0	0	0
## ##	[4,] [5,]	1 0	0 1	0	1 1	0	0	1 0	0	0	0 1	0	0	0 0
##	[6,]	0	0	1	1	0	0	0	0	0	0	0	0	1
##	[7,]	1	0	0	0	1	0	0	1	0	0	0	0	0
##	[8,]	0	1	0	0	1	0	0	0	0	0	1	0	0
##	[9,]	0	0	1	0	1	0	0	0	0	0	0	0	0
##	[10,]	1	0	0	0	0	1	0	0	1	0	0	0	0
## ##	[11,] [12,]	0 0	1 0	0 1	0	0	1 1	0	0	0	0	0	1 0	0
##	[12,]	[,14]	[,15		0	0	1	0	0	0	0	0	0	0
##	[1,]	0		0										
##	[2,]	0		0										
##	[3,]	0		0										
##	[4,]	0		0										
## ##	[5,] [6,]	0		0										
##	[7,]	0		0										
##	[8,]	0		0										
##	[9,]	1		0										
	[10,]	0		0										
##	[11,]	0		0 1										
##	[12,]	0		1										
	lesign	Matri	x of	Gross	s - N1101	n Desi	ian:							
X	- Xr	%*% ⊞	5			200	5							
	- Xr	%*% ⊞ [,1]	[,2]				-	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]	[,13]
X	(1,]						-	[,7] 0	[,8] 0	[,9] 0	[,10] 0	[,11] 0	[,12] 0	[,13] 0
X ## ## ##	[1,] [2,]	[,1] 0 0	[,2] 0 1	[,3] 1 0	[,4] 0 0	[,5] 0 0	[,6] 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
X ## ## ##	[1,] [2,] [3,]	[,1] 0 0 1	[,2] 0 1 0	[,3] 1 0 0	[,4] 0 0	[,5] 0 0 0	[,6] 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
X ## ## ## ##	[1,] [2,] [3,] [4,]	[,1] 0 0 1 0	[,2] 0 1 0 1	[,3] 1 0 0	[,4] 0 0 0	[,5] 0 0 0	[,6] 0 0 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 1	0 0 0
X ## ## ##	[1,] [2,] [3,]	[,1] 0 0 1	[,2] 0 1 0	[,3] 1 0 0	[,4] 0 0	[,5] 0 0 0	[,6] 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
X ## ## ## ## ##	[1,] [2,] [3,] [4,] [5,]	[,1] 0 1 0 1	[,2] 0 1 0 1 0	[,3] 1 0 0 0	[,4] 0 0 0 0	[,5] 0 0 0 1	[,6] 0 0 1 0	0 0 0 0	0 0 0 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 0	0 0 0 0
X ## ## ## ## ## ## ##	[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,]	[,1] 0 1 0 1 0 1 0	[,2] 0 1 0 1 0 0 0 1	[,3] 1 0 0 0 1 0 0	[,4] 0 0 0 0 1 0 1	[,5] 0 0 0 1 0 1 0	[,6] 0 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 1 0 1 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 1	0 0 0 0 0 0	0 0 1 0 0 0	0 0 0 1 0
X ## ## ## ## ## ## ##	[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,]	[,1] 0 1 0 1 0 1 0 0	[,2] 0 1 0 1 0 0 0 1 0	[,3] 1 0 0 0 1 0 0 1	[,4] 0 0 0 0 1 0 1 0	[,5] 0 0 0 1 0 1 0 0	[,6] 0 0 1 0 0 0 0 0 1	0 0 0 0 0 0 0	0 0 0 1 0 1 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0	0 0 0 1 0 0
X ## ## ## ## ## ## ## ##	[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,]	[,1] 0 1 0 1 0 1 0 0 0 0	[,2] 0 1 0 1 0 0 0 1 0 0	[,3] 1 0 0 0 1 0 1 1	[,4] 0 0 0 0 1 0 1 0 1	[,5] 0 0 1 0 1 0 1 0 0 0	[,6] 0 0 1 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0	0 0 0 1 0 0 0 1
X ## ## ## ## ## ## ## ## ##	[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,]	[,1] 0 1 0 1 0 1 0 0 0 0 0	[,2] 0 1 0 1 0 0 1 0 0 1 0 1	[,3] 1 0 0 0 1 0 0 1	[,4] 0 0 0 1 0 1 0 1 0	[,5] 0 0 0 1 0 1 0 0	[,6] 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0	0 0 0 1 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 1 0
X ## ## ## ## ## ## ## ##	[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,]	[,1] 0 1 0 1 0 1 0 0 0 0	[,2] 0 1 0 1 0 0 0 1 0 0 1 0 1 0	[,3] 1 0 0 0 1 0 0 1 1 1 0 0 0	[,4] 0 0 0 0 1 0 1 0 1	[,5] 0 0 1 0 1 0 0 0 1	[,6] 0 0 1 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0 0	0 0 0 1 0 0 0 1
X ## ## ## ## ## ## ## ## ## ## ##	[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,]	[,1] 0 1 0 1 0 1 0 0 0 0 0 1	[,2] 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	[,3] 1 0 0 0 1 0 0 1 1 1 0 0 0	[,4] 0 0 0 1 0 1 0 1 0	[,5] 0 0 1 0 1 0 0 0 1	[,6] 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 1 0
X ## ## ## ## ## ## ## ## ## ## ##	[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [1,] [2,]	[,1] 0 1 0 1 0 1 0 0 0 1 [,14] 0 0 0	[,2] 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	[,3] 1 0 0 0 1 1 0 0 1 1 1 0 0 0	[,4] 0 0 0 1 0 1 0 1 0	[,5] 0 0 1 0 1 0 0 0 1	[,6] 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 1 0
X ## ## ## ## ## ## ## ## ## ## ## ##	[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [1,] [2,] [3,]	[,1] 0 1 0 1 0 1 0 0 0 1 [,14] 0 0 0 0 0	[,2] 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	[,3] 1 0 0 0 1 1 1 0 0 0 5] 0 0 0	[,4] 0 0 0 1 0 1 0 1 0	[,5] 0 0 1 0 1 0 0 0 1	[,6] 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 1 0
X ## ## ## ## ## ## ## ## ## ## ##	[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [11,] [2,] [3,] [4,]	[,1] 0 1 0 1 0 1 0 0 0 1 [,14] 0 0 0	[,2] 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	[,3] 1 0 0 0 1 1 0 0 1 1 1 0 0 0	[,4] 0 0 0 1 0 1 0 1 0	[,5] 0 0 1 0 1 0 0 0 1	[,6] 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 1 0
X ## ## ## ## ## ## ## ## ## ## ## ## ##	[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [1,] [2,] [3,]	[,1] 0 1 0 1 0 1 0 0 0 1 [,14] 0 0 0 0 0 0 0 0	[,2] 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	[,3] 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0	[,4] 0 0 0 1 0 1 0 1 0	[,5] 0 0 1 0 1 0 0 0 1	[,6] 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 1 0
X ## ## ## ## ## ## ## ## ## ## ## ## ##	<pre>[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [11,] [2,] [1,] [2,] [3,] [4,] [5,] [6,] [7,]</pre>	[,1] 0 1 0 1 0 1 0 0 0 1 [,14] 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[,2] 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	[,3] 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0	[,4] 0 0 0 1 0 1 0 1 0	[,5] 0 0 1 0 1 0 0 0 1	[,6] 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 1 0
X ### ### ### ### ### ### ### ### ### #	<pre>[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [11,] [2,] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,]</pre>	[,1] 0 1 0 1 0 1 0 0 0 0 1 [,14] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[,2] 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	[,3] 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0	[,4] 0 0 0 1 0 1 0 1 0	[,5] 0 0 1 0 1 0 0 0 1	[,6] 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 1 0
X ### ### ### ### ### ### ### ### ### #	<pre>[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [11,] [2,] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,]</pre>	[,1] 0 1 0 1 0 0 0 0 1 [,14] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[,2] 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	[,3] 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0	[,4] 0 0 0 1 0 1 0 1 0	[,5] 0 0 1 0 1 0 0 0 1	[,6] 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 1 0
X ####################################	<pre>[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [11,] [2,] [1,] [2,] [4,] [5,] [6,] [7,] [8,] [9,] [10,]</pre>	[,1] 0 1 0 1 0 0 0 0 1 [,14] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[,2] 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	[,3] 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	[,4] 0 0 0 1 0 1 0 1 0	[,5] 0 0 1 0 1 0 0 0 1	[,6] 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 1 0
X ####################################	<pre>[1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [11,] [2,] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,]</pre>	[,1] 0 1 0 1 0 0 0 0 1 [,14] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[,2] 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	[,3] 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0	[,4] 0 0 0 1 0 1 0 1 0	[,5] 0 0 1 0 1 0 0 0 1	[,6] 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 1 0

2.3 Self-adjacency model

In the self-adjacency model λ_i is replaced by φ_i in case of carry-over into itself. The case $\varphi = 0$ represents the no carry-over into self model.

$$E(Y) = \mu + X\left(\begin{smallmatrix} \tau \\ \lambda \\ \varphi \end{smallmatrix}\right) + Z\left(\begin{smallmatrix} \pi \\ s \end{smallmatrix}\right)$$

```
H <- Crossover:::linkMatrix(model="Self-adjacency model", v)</pre>
Η
##
          [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

      ##
      [1,]
      1
      0
      0
      0
      0
      0

      ##
      [2,]
      0
      1
      0
      0
      0
      0
      0

                                                                   0
                                                                 0
## [3,] 0 0 1 0 0 0 0
                                                                  0
## [4,] 1 0 0 0 0 1 0
                                                                  0

      ##
      [5,]
      0
      1
      0
      1

      ##
      [6,]
      0
      0
      1
      1

                                         0
                                               0
                                                      0
                                                            0
                                                                   0
                                              0 0
                                         0
                                                             0
                                                                   0
## [7,] 1 0 0 0 1 0 0 0
## [8,] 0 1 0 0 0 0 1 0

      ## [9,]
      0
      0
      1
      0
      1
      0
      0

      ## [10,]
      1
      0
      0
      0
      1
      0
      0

                                                                 0
                                                                   0
## [11,] 0 1 0 0 1 0 0 0 1
## [12,] 0 0 1 0 0 0 0 1
# Design Matrix of Cross-Over Design:
X <- Xr %*% H
Х
         [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
##
                   0 1 0 0 0 0 0
1 0 0 0 0 0 0
## [1,]
              0
                                                                   0
             0
## [2,]
                                                                 0
## [3,] 1 0 0 0 0 0 0 0 0

      ##
      [4,]
      0
      1
      0
      0
      1
      0
      0
      0

      ##
      [5,]
      1
      0
      0
      0
      1
      0
      0
      0
      0

      ##
      [6,]
      0
      0
      1
      1
      0
      0
      0
      0

## [7,] 1 0 0 0 1 0 0 0
## [8,] 0 1 0 1 0 0 0 0

      ## [9,]
      0
      0
      1
      0
      0
      0
      0

      ## [10,]
      0
      0
      1
      1
      0
      0
      0
      0

                                                                   1
                                                                   0
## [11,] 0 1 0 0 0 0 1
                                                                   0
## [12,] 1 0 0 0 0 1 0 0
                                                                    0
```

2.4 Placebo model

[8,] 0 1 0 0 1 0

In the placebo model there are no carry-over effects for the placebo treatment(s).

$$E(Y) = \mu + X\left(\frac{\tau}{\lambda}\right) + Z\left(\frac{\pi}{s}\right)$$

```
# Link matrix:
H <- Crossover:::linkMatrix(model="Placebo model", v, placebos=1)
H
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 0 0 0
## [2,] 0 1 0 0 0 0
## [2,] 0 1 0 0 0 0
## [3,] 0 0 1 0 0 0
## [4,] 1 0 0 0 0 0
## [4,] 1 0 0 0 0 0
## [5,] 0 1 0 0 0 0
## [6,] 0 0 1 0 0 0
## [7,] 1 0 0 0 1 0
```

##	[9,]	0	0	1	0	1	0
##	[10,]	1	0	0	0	0	1
##	[11,]	0	1	0	0	0	1
##	[12,]	0	0	1	0	0	1
# 1	Design	Matri	ix of	Cross	s-Over	Dest	gn:
X <	- Xr 🕅	/*% ⊞					
X							
##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
##	[1,]	0	0	1	0	0	0
##	[2,]	0	1	0	0	0	0
##	[3,]	1	0	0	0	0	0
##	[4,]	0	1	0	0	0	1
##	[5,]	1	0	0	0	1	0
##	[6,]	0	0	1	0	0	0
##	[7,]	1	0	0	0	1	0
##	[8,]	0	1	0	0	0	0
##	[9,]	0	0	1	0	0	1
##	[10,]	0	0	1	0	0	0
##	[11,]	0	1	0	0	1	0
##	[12,]	1	0	0	0	0	1

2.5 No carry-over into self model

This model differs from the standard additive model in the assumption that in the *no carry-over into self model* no carry-over effect occurs if current and previous treatment are the same.

 $E(Y) = \mu + X\left(\begin{smallmatrix} \tau \\ \lambda \end{smallmatrix}\right) + Z\left(\begin{smallmatrix} \pi \\ s \end{smallmatrix}\right)$

Н < Н	<- Cros	ssover	::::li	inkMat	rix(r	nodel=	="No	carry-o	ver	into	self	model"	, 1
H													
##		[,1]	[2]	[3]	Г 41	[,5]	[6]						
##	[1,]	1	0	0	0	0	0						
##	[2,]	0	1	0	0	0	0						
##	[3,]	0	0	1	0	0	0						
##	[4,]	1	0	0	0	0	0						
##	[5,]	0	1	0	1	0	0						
##	[6,]	0	0	1	1	0	0						
##	[7,]	1	0	0	0	1	0						
##	[8,]	0	1	0	0	0	0						
##	[9,]	0	0	1	0	1	0						
##	[10,]	1	0	0	0	0	1						
##	[11,]	0	1	0	0	0	1						
##	[12,]	0	0	1	0	0	0						
# 1	Design	Matri	ix of	Cross	s-Ove	r Des	ign:						
Χ <	<- Xr	% *% ⊞					5						
X													
##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]						
##	[1,]	0	0	1	0	0	0						
##	[2,]	0	1	0	0	0	0						
##	[3,]	1	0	0	0	0	0						
##	[4,]	0	1	0	0	0	1						
##	[5,]	1	0	0	0	1	0						
##	[6,]	0	0	1	1	0	0						
##	[7,]	1	0	0	0	1	0						
##	[8,]	0	1	0	1	0	0						
##	[9,]	0	0	1	0	0	0						
##	[10,]	0	0	1	1	0	0						
##	[11,]	0	1	0	0	0	0						
##	[12,]	1	0	0	0	0	1						

2.6 Treatment decay model

In contrast to the no carry-over into self model in the *treatment decay model* we assume there are only (negative) carry-over effects if the current and previous treatment are the same.

$$E(Y) = \mu + X\left(\begin{smallmatrix} \tau \\ \lambda \end{smallmatrix}\right) + Z\left(\begin{smallmatrix} \pi \\ s \end{smallmatrix}\right)$$

2.7 Proportionality model

For the proportionality model we have no separate carry-over effects, but assume for period i > 1 an additive proportion p of the effect $\tau_{d(i-1,j)}$ from the previous treatment d(i-1,j). This model is non-linear in p, therefore we assume p is known.

$$E(Y) = \mu + X_p \tau + Z\left(\begin{smallmatrix} \pi \\ s \end{smallmatrix}\right)$$

```
H <- Crossover:::linkMatrix(model="Proportionality model", v)
H
## [,1] [,2] [,3]
## [1,] 1.0 0.0 0.0
## [2,] 0.0 1.0 0.0
## [2,] 0.0 1.0 0.0
## [3,] 0.0 0.0 1.0
## [4,] 1.5 0.0 0.0
## [5,] 0.5 1.0 0.0
## [6,] 0.5 0.0 1.0</pre>
```

```
## [7,] 1.0 0.5 0.0
## [8,] 0.0 1.5 0.0
## [9,] 0.0 0.5 1.0
## [10,] 1.0 0.0 0.5
## [11,] 0.0 1.0 0.5
## [12,] 0.0 0.0 1.5
# Design Matrix of Cross-Over Design:
X <- Xr %*% H
Х
##
      [,1] [,2] [,3]
## [1,] 0.0 0.0 1.0
## [2,] 0.0 1.0 0.0
## [3,] 1.0 0.0 0.0
## [4,] 0.0 1.0 0.5
## [5,] 1.0 0.5 0.0
## [6,] 0.5 0.0 1.0
## [7,] 1.0 0.5 0.0
## [8,] 0.5 1.0 0.0
## [9,] 0.0 0.0 1.5
## [10,] 0.5 0.0 1.0
## [11,] 0.0 1.5 0.0
## [12,] 1.0 0.0 0.5
```

2.8 Second-order carry-over effects

In the model with second-order carry-over effects we do have another vector λ_2 of carry-over effects:

$$E(Y) = \mu + X \begin{pmatrix} \tau \\ \lambda_1 \\ \lambda_2 \end{pmatrix} + Z \begin{pmatrix} \pi \\ s \end{pmatrix}$$

Therefore the link matrix has 3 * v columns.

```
# Link matrix:
H <- Crossover:::linkMatrix(model="Second-order carry-over effects", v)</pre>
Η
##
         [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,] 1 0 0 0 0 0 0 0 0

      ##
      [2,]
      0
      1
      0
      0
      0
      0
      0

      ##
      [3,]
      0
      0
      1
      0
      0
      0
      0

                                                                 0
                           1
                                                                 0
            1
                   0 0 1 0 0 0 0
                                                               0
## [4,]
## [5,] 0 1 0 1 0 0 0 0

      ##
      [6,]
      0
      0
      1
      1
      0
      0
      0
      0

      ##
      [7,]
      1
      0
      0
      0
      1
      0
      0
      0
      0

      ##
      [8,]
      0
      1
      0
      0
      1
      0
      0
      0

                                                               0
## [9,] 0 0 1 0 1 0 0
                                                               0
## [10,] 1 0 0 0 0 1 0 0 0

      ## [11,]
      0
      1
      0
      0
      1
      0

      ## [12,]
      0
      0
      1
      0
      1
      0

                                                          0
                                                                 0
            0
1
                           1
                                              1
                                                           0
                                                                 0
                   0 0 1
                                        0 0 1
                                                                0
## [13,]
                                                           0
## [14,] 0 1 0 1 0 1 0
                                                                0

      ## [15,]
      0
      0
      1
      1
      0
      0
      1
      0

      ## [16,]
      1
      0
      0
      0
      1
      0
      1
      0

      ## [17,]
      0
      1
      0
      0
      1
      0
      1
      0

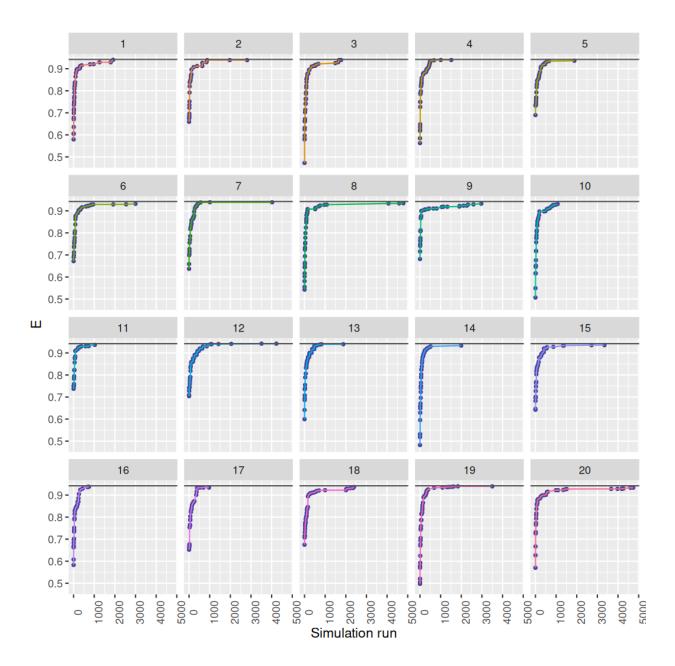
                                                                0
                                                                 0
                                                                 0
## [18,] 0 0 1 0 1 0 1 0
                                                                0
## [19,] 1 0 0 0 0 1 1 0 0
## [20,] 0
                    1 0 0
0 1 0
                                            1 1
1 1
                                       0
                                                          0
                                                                 0
## [21,]
              0
                                        0
                                                           0
                                                                 0
            1
                     0 0 1 0 0 0 1
## [22,]
                                                                 0
## [23,] 0 1 0 1 0 0 1
                                                                 0
## [24,] 0 0 1 1 0 0 1 1
                                                                 0
                    0
                                 0
                                                    0
## [25,]
              1
                           0
                                        1
                                              0
                                                           1
                                                                 0
## [26,] 0 1 0 0 1 0
                                                    0
                                                         1
                                                                  0
```

```
## [27,] 0 0 1 0 1
                       0 0 1
                                  0
                 0
                           0
## [28,]
       1
           0
              0
                     0
                        1
                               1
                                  0
                0
## [29,]
       0
           1
              0
                     0
                        1
                           0
                               1
                                  0
## [30,]
       0
           0
             1 0
                     0
                        1
                           0
                               1
                                  0
## [31,]
       1
           0 0 1
                     0
                        0
                           0
                               0
                                  1
                1
## [32,]
       0
              0
                     0
                        0
                           0
                               0
           1
                                  1
## [33,]
       0
           0
              1
                 1
                     0
                        0
                           0
                               0
                                  1
             0 0
## [34,]
                          0
       1
           0
                     1
                        0
                               0
                                  1
## [35,]
       0
           1 0 0
                        0
                          0
                   1
                               0
                                  1
                0
## [36,]
       0
                        0
                           0
           0
              1
                     1
                               0
                                  1
## [37,]
                 0
                           0
       1
           0
              0
                     0
                        1
                               0
                                  1
## [38,]
       0
          1
              0
                 0
                     0
                        1
                           0
                               0
                                  1
## [39,] 0 0 1 0
                     0
                       1
                           0
                             0
                                 1
# Row-Column-Design: (cf. John et al. 2004, Table II and page 2649f.)
rcDesign <- Crossover:::rcd(design, v=v, model=8)</pre>
rcDesign
##
    [,1] [,2] [,3]
## [1,] 3 2 1
## [2,] 11
         7
            6
## [3,] 34 23 21
## [4,] 24 17
            37
# Design Matrix of Row-Column Design:
Xr <- Crossover:::rcdMatrix(rcDesign, v, model=8)</pre>
Xr
##
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## [1,] 0
         0 1 0 0 0
                          0 0 0 0
                                        0 0
                                                  0
##
  [2,]
       0
                 0
                     0
                        0
                           0
                               0
                                  0
                                          0
                                              0
                                                  0
           1
              0
                                      0
##
  [3,]
       1
           0
              0
                 0
                     0
                        0
                           0
                               0
                                  0
                                      0
                                          0
                                              0
                                                  0
             0 0
                                    0
                                            0
                                                  0
##
  [4.]
       0
           0
                     0
                        0
                           0
                               0
                                 0
                                          1
## [5,]
           0 0 0
                     0
                        0 1
                                                  0
       0
                               0 0 0
                                          0 0
       0
          0 0 0
0 0 0
                          0
                       1
                                    0
## [6,]
                    0
                                                  0
                              0
                                 0
                                          0 0
##
  [7,]
                     0
                        0
                           0
       0
                               0
                                  0
                                      0
                                          0
                                             0
                                                  0
           0 0 0
                                    0
                       0 0
                                 0
                                            0
##
  [8,]
       0
                    0
                               0
                                          0
                                                  0
## [9,]
       0
           0 0 0
                     0 0 0
                               0 0 0
                                          0 0
                                                  0
       0
## [10,]
           0 0 0
                     0 0 0
                               0 0 0
                                          0 0
                                                  0
## [11,]
       0
           0
              0
                 0
                     0
                        0
                           0
                              0
                                  0
                                      0
                                          0
                                             0
                                                  0
## [12,]
       0
           0
              0
                 0
                     0
                        0
                           0
                               0
                                  0
                                      0
                                          0
                                              0
                                                  0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
##
## [1,]
       0 0 0 0 0
                          0 0 0 0 0 0 0
          0
                  0
                              0
                                      0
                                          0
               0
## [2.]
        0
                       0
                            0
                                   0
                                                0
                                                    0
##
  [3,]
            0
                0
                    0
                        0
                                0
                                   0
                                        0
                                            0
        0
                            0
                                                0
                                                    0
          0
                      0
                              0
                                          0
              0
                  0
                                  0
## [4,]
        0
                            0
                                        0
                                                0
                                                    0
## [5,]
        0
          0 0 0 0
                          0
                              0 0 0 0
                                                0
                                                    0
## [6,]
        0
          0 0 0 0
                            0
                              0 0
                                      0 0
                                               0
                                                    0
##
  [7,]
        0
            0
                0
                    0
                        0
                            0
                                0
                                    0
                                        0
                                            0
                                                0
                                                    0
                      0
              0
##
  [8,]
        0
            0
                   0
                            0
                                0
                                   0
                                        0
                                            1
                                                0
                                                    0
          0
                      0
                              0
              0 0
                                   1
                                        0 0
## [9,]
        0
                            0
                                                0
                                                    0
                                   0 0
## [10,]
        0
          0 0 0 0
                            0
                                0
                                            0
                                              1
                                                    0
                0
## [11.]
            0
                        0
                            0
                                0
                                    0
                                        0
                                            0
                                                    0
        0
                    1
                                                0
## [12,]
        0
            0
               0
                    0
                        0
                            0
                                0
                                   0
                                        0
                                            0
                                                0
                                                    0
##
      [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
## [1,]
      0 0 0 0 0 0 0 0 0
                                                    0
          0
                  0
                      0
                              0
                                      0
## [2,]
                0
                                    0
                                                    0
        0
                            0
                                            0
                                                0
##
  [3,]
        0
            0
                0
                    0
                        0
                            0
                                0
                                    0
                                        0
                                            0
                                                0
                                                    0
                      0
##
  [4,]
        0
           0
                0
                    0
                            0
                                0
                                    0
                                        0
                                            0
                                                0
                                                    0
## [5,]
          0 0
                  0 0
                              0
                                  0
                                      0 0
        0
                            0
                                                0
                                                    0
## [6,]
        0 0 0 0 0
                            0
                              0 0
                                      0 0
                                               0
                                                    0
          0
                  0
                      0
## [7,]
                0
                            0
                                0
                                   0
                                            0
                                                0
                                                    0
        0
                                        1
##
  [8,]
            0
                0
                    0
                       0
                                0
                                    0
                                        0
        0
                            0
                                            0
                                                0
                                                    0
                      0
          0
                              0
                                  0
                                          0
              0 0
                                      0
## [9.]
                                                    0
        0
                            0
                                                0
## [10,]
        0
          0 0 0 0
                          0
                              0 0 0 0
                                                0
                                                    0
          0
                              0
                0 0 0
                                   0
                                      0 0
                                                    0
## [11.]
        0
                            0
                                                0
            0
                                    0
                                        0
## [12,]
        0
                0
                   0
                       0
                            0
                                0
                                            0
                                                0
                                                    1
##
    [,38] [,39]
## [1,] 0 0
## [2,] 0
            0
```

##	[3,]	()	0						
##	[4,]	()	0						
##	[5,]	()	0						
##	[6,]	()	0						
##	[7,]	()	0						
##	[8,]	()	0						
##	[9,]	()	0						
##	[10,]	()	0						
##	[11,]	()	0						
##	[12,]	()	0						
# .	Design	Matr	ix of	Cross	s-Ovei	Des	ign:			
X	<- Xr	%∗%⊞								
X										
##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]
## ##	[1,]	[,1] 0	[,2] 0	[,3] 1	[,4] 0	[,5] 0	[,6] 0	[,7] 0	[,8] 0	[,9] 0
	[1,] [2,]									
##		0	0	1	0	0	0	0	0	0
## ##	[2,]	0 0	0 1	1 0	0 0	0 0	0 0	0 0	0 0	0 0
## ## ##	[2,] [3,]	0 0 1	0 1 0	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
## ## ## ##	[2,] [3,] [4,]	0 0 1 0	0 1 0 1	1 0 0	0 0 0	0 0 0	0 0 0 1	0 0 0	0 0 0	0 0 0
## ## ## ## ##	[2,] [3,] [4,] [5,]	0 0 1 0 1	0 1 0 1 0	1 0 0 0	0 0 0 0	0 0 0 1	0 0 1 0	0 0 0 0	0 0 0 0	0 0 0 0
## ## ## ## ## ##	[2,] [3,] [4,] [5,] [6,] [7,] [8,]	0 0 1 0 1 0	0 1 0 1 0 0	1 0 0 0 1	0 0 0 0 1	0 0 0 1 0	0 0 1 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
## ## ## ## ## ##	[2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,]	0 0 1 0 1 0	0 1 0 1 0 0 0	1 0 0 0 1 0	0 0 0 0 1 0	0 0 0 1 0 1	0 0 1 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 1
## ## ## ## ## ## ## ##	[2,] [3,] [4,] [5,] [6,] [7,] [8,]	0 0 1 0 1 0 1 0	0 1 0 1 0 0 0 1	1 0 0 0 1 0 0	0 0 0 1 0 1 0 1	0 0 0 1 0 1 0 0 0 0	0 0 1 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1	0 0 0 0 0 1 0
## ## ## ## ## ## ##	[2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,]	0 0 1 0 1 0 1 0 0	0 1 0 1 0 0 0 1 0	1 0 0 1 0 1	0 0 0 1 0 1 0	0 0 0 1 0 1 0 0	0 0 1 0 0 0 0 1	0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 1	0 0 0 0 1 0 0

Chapter 3

Search strategy


Monte-Carlo search for first candidates, followed by parallel hill climbing search, extended by long jumps.

In the following graphic we see 100.000 design evaluations (that take less than 7 seconds on my computer), consisting out of 20 hill climbing search *runs* from 20 different designs as starting point which were selected by a Monte-Carlo search. We can see that 10 out of the 20 search runs were not able to achieve the efficieny the other 10 achieved. We can see, that there were most likely at least four local maxima the hill climbing search found and got stuck:

set.seed(42)
x <- searchCrossOverDesign(s=9, p=5, v=4, model=4)
plot(x)</pre>

plot(x, type=2)

Definition 3.0.1 (Efficiency). If the difference of two treatments, replicated r_1 and r_2 times, is estimated in an *ideal design* with residual variance σ^2 , the variance of the estimated difference $\overline{y}_A - \overline{y}_B$ is

$$V_I = \left(\frac{1}{r_1} + \frac{1}{r_2}\right)\sigma^2.$$

In a cross-over design the variance of a parameter estimates for A and B are given by the corresponding elements $\sigma^2 x_A$ and $\sigma^2 x_B$ of

$$\sigma^2 (X^T X)^{-1}$$

with X the crossover design matrix. The variance of the difference is $\sigma^2(x_A + x_B - 2 * x_{AB})$ where x_{AB} is the element of $X^T X$ specifying the covariance of the two treatment parameter estimates. The efficiency is

$$E := \frac{V_I}{V_C} = \frac{r_1 + r_2}{r_1 r_2 (x_A + x_B - 2 * x_{AB})} \in [0, 1]$$

If we have a model with n parameters and a contrast matrix $C \in \mathbb{R}^{n \times n}$, the sum of the variances of the

linear combinations given by C is

trace $(CH^T A_r H C^T)$.

Example for two treatments

We compare our results with results from the algorithm of John et al. [2004] that are presented in [Jones and Kenward, 2003, table 4.35-4.38, p. 202ff] for s=6 sequences, p=4 periods and v=2 treatments under the constraint that each treatment should occur 12 times.

The following shows all designs that were found. For some models the algorithm always returned only one design, but for some 2 or even 3 equally good designs were found.

Here are all the designs as found by the above code. Actually there are only 11 different designs, since the following designs were already found for other models: 7, 8, 9, 12, 13.

	1	1	1	2	2	2	Ξ	1	1	1	2	2	2	:	1	1	1	2	2	2
Design 1 :	1	2	2	1	1	2	Design 2 :	1	1	2	1	2	2	Design 3 :	1	1	2	1	2	2
Design 1.	2	2	2	1	1	1	Design 2 .	2	2	2	1	1	1	Design 0.	2	2	1	2	1	1
	2	1	1	2	2	1	_	2	2	1	2	1	1		2	2	2	1	1	1
	1	1	1	2	2	2	-	1	1	1	2	2	2		1	1	1	2	2	2
Design 4 :	2	2	2	1	1	1	Design 5 :	1	2	2	1	1	2	Design 6 :	1	1	1	2	2	2
Design 4.	1	1	2	1	2	2	Design 0.	2	1	2	1	2	1	Design 0.	2	2	2	1	1	1
	1	2	1	2	1	2	_	1	2	1	2	1	2		2	2	2	1	1	1
	1	1	1	2	2	2	-	1	1	1	2	2	2		1	1	1	2	2	2
Design 7 :	1	1	2	1	2	2	Design 8 :	1	2	2	1	1	2	Design 9 :	1	1	2	1	2	2
Design 7.	2	2	2	1	1	1	Design 6.	2	2	2	1	1	1	Design 9.	2	2	1	2	1	1
	2	2	1	2	1	1		2	1	1	2	2	1		2	2	2	1	1	1
							Ξ							-						
	1	1	1	2	2	2	=	1	1	1	2	2	2		1	1	1	2	2	2
Design 10	1 1	1 1	1 2	2 1	2 2	2 2	Dosign 11 :	1 2	1 2	1 2	2 1	2 1	2 1	Design 12	1 2			2 1	2 1	2 1
Design 10 :		1 1 2	-				≞ Design 11 :							Design 12 :	_	1	1		2 1 2	
Design 10 :	1	1	2	1	2	2	≡ Design 11 :	2	2	2	1	1	1	Design 12 :	2	1 2	1 2	1	1	1
Design 10 :	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	21	21	≡ Design 11 : ≣	21	21	21	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	Design 12 :	2 1	1 2 1	1 2 2	1 1	$\frac{1}{2}$	$\frac{1}{2}$
-		1 2 2	2 2 2	1 1 1	2 1 1	$\begin{array}{c} 2\\ 1\\ 1\\ \hline 2 \end{array}$	E	2 1 2	2 1 2	2 1 2	1 2 1	1 2 1	$\begin{array}{c}1\\2\\1\end{array}$	=	2 1 1	1 2 1 2	1 2 2 1	1 1 2	1 2 1	1 2 2
Design 10 : Design 13 :	$ \begin{array}{c} 1\\2\\2\\\hline\\1\end{array} \end{array} $	$\begin{array}{c}1\\2\\2\\\end{array}$	2 2 2 1	$\begin{array}{c}1\\1\\1\\2\end{array}$	$\begin{array}{c}2\\1\\1\end{array}$	2 1 1	≡ Design 11 : ≡ Design 14 :	$\begin{array}{c}2\\1\\2\\\hline\hline\\1\end{array}$	2 1 2 1	$\begin{array}{c}2\\1\\2\\\hline\end{array}$	1 2 1 2	$\begin{array}{c}1\\2\\1\end{array}$	1 2 1	Design 12 : Design 15 :	2 1 1 1	1 2 1 2 1	1 2 2 1	$\begin{array}{c}1\\1\\2\\\hline\end{array}$	1 2 1	$ \begin{array}{c} 1\\2\\2\\\hline \\ 2\\\hline \\ 2\end{array} \end{array} $
-	$ \begin{array}{c} 1\\2\\\\\hline\\1\\1\\\end{array} $	1 2 2 1 2	2 2 2 1 2	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \end{array} $	$2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1$	$\begin{array}{c} 2\\ 1\\ 1\\ \hline 2\\ 2\\ \end{array}$	E	$\begin{array}{c}2\\1\\2\\\hline\\\hline\\1\\1\end{array}$	2 1 2 1 2	2 1 2 1 2	$\begin{array}{c}1\\2\\1\\\hline\\2\\1\\\end{array}$	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ \hline 2 \\ 1 \\ 1 \end{array} $	$\begin{array}{c}1\\2\\1\\2\\2\\\end{array}$	=		1 2 1 2 1	1 2 1 1 2	$\begin{array}{c}1\\1\\2\\\hline\\2\\1\end{array}$	$\begin{array}{c}1\\2\\1\\\hline\\2\\1\\\end{array}$	$ \begin{array}{c} 1\\2\\2\\\hline \\ 2\\1\\\end{array} $
-	$ \begin{array}{c} 1\\2\\\\\hline\\1\\1\\2\end{array} \end{array} $	1 2 2 1 2 1	2 2 2 1 2 2	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} $	$2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$	$2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1$	E	$\begin{array}{c}2\\1\\2\\\hline\\1\\1\\2\end{array}$	2 1 2 1 2 1 2 1	$ \begin{array}{c} 2 \\ 1 \\ 2 \\ \hline 1 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \end{array} $	=		$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} $	1 2 1 1 2 1 1 2 1	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ \hline 2 \\ 1 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{array} $	$\begin{array}{c}1\\2\\\hline\\2\\\hline\\1\\2\end{array}$
Design 13 :	$ \begin{array}{c} 1 \\ 2 \\ \hline 1 \\ 1 \\ 2 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline \end{array} $	1 2 2 1 2 1 2	2 2 2 1 2 2 1 2 1	1 1 2 1 1 2	2 1 2 1 2 1 2	$2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ $	E	$\begin{array}{c}2\\1\\2\\\hline\\1\\1\\2\end{array}$	2 1 2 1 2 1 2 1	$ \begin{array}{c} 2 \\ 1 \\ 2 \\ \hline 1 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \end{array} $	=		$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} $	1 2 1 1 2 1 1 2 1	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ \hline 2 \\ 1 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{array} $	$\begin{array}{c}1\\2\\\hline\\2\\\hline\\1\\2\end{array}$
-	$\begin{array}{c} 1 \\ 2 \\ \hline 1 \\ 1 \\ 2 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \end{array}$	1 2 1 2 1 2 1 2	2 2 2 1 2 1 2 1 1	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \end{array} $	$ \begin{array}{c} 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ $	E	$\begin{array}{c}2\\1\\2\\\hline\\1\\1\\2\end{array}$	2 1 2 1 2 1 2 1	$ \begin{array}{c} 2 \\ 1 \\ 2 \\ \hline 1 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \end{array} $	=		$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} $	1 2 1 1 2 1 1 2 1	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ \hline 2 \\ 1 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{array} $	$\begin{array}{c}1\\2\\\hline\\2\\\hline\\1\\2\end{array}$
Design 13 :	$ \begin{array}{c} 1 \\ 2 \\ \hline 1 \\ 1 \\ 2 \\ 1 \\ \hline 1 \\ 1 \\ 1 \\ 1 \\ \end{array} $	1 2 1 2 1 2 1 2 2	2 2 2 1 2 1 2 1 1	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \end{array} $	$ \begin{array}{c} 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	E	$\begin{array}{c}2\\1\\2\\\hline\\1\\1\\2\end{array}$	2 1 2 1 2 1 2 1	$ \begin{array}{c} 2 \\ 1 \\ 2 \\ \hline 1 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \end{array} $	=		$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} $	1 2 1 1 2 1 1 2 1	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ \hline 2 \\ 1 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{array} $	$\begin{array}{c}1\\2\\\hline\\2\\\hline\\1\\2\end{array}$

Design	Additive	Self-adjacency	Proportional	Placebo	No into self	Decay	Interaction	2nd-order carry-over
1	0.042	0.231	0.038	0.042	0.074	0.067	0.231	0.111
2	0.042	0.231	0.033	0.042	0.067	0.074	0.231	0.168
3	0.042	0.236	0.038	0.042	0.082	0.063	0.236	0.050
4	0.068	0.223	0.066	0.068	0.134	0.053	0.223	0.090
5	0.068	0.223	0.066	0.068	0.134	0.053	0.223	0.088
6	0.046	0.250	0.029	0.046	0.062	0.083	0.250	Not estimable
7	0.042	0.231	0.033	0.042	0.067	0.074	0.231	0.168
8	0.042	0.231	0.038	0.042	0.074	0.067	0.231	0.111
9	0.042	0.236	0.038	0.042	0.082	0.063	0.236	0.050
10	0.049	0.262	0.032	0.049	0.061	0.083	0.262	0.074
11	0.229	0.229	0.099	0.229	0.229	0.042	0.229	0.250
12	0.068	0.223	0.066	0.068	0.134	0.053	0.223	0.090
13	0.068	0.223	0.066	0.068	0.134	0.053	0.223	0.088
14	0.047	0.250	0.043	0.047	0.080	0.063	0.250	0.047
15	0.120	0.234	0.090	0.120	0.203	0.047	0.234	0.173
16	0.120	0.234	0.090	0.120	0.203	0.047	0.234	0.135

Note that for the full interaction model and the self-adjacency model we get the same results, because they are essentially the same models with

$$\begin{split} \lambda_{1}^{SA} &= \lambda_{1}^{FI} + \gamma_{12}^{FI}, \\ \lambda_{2}^{SA} &= \lambda_{2}^{FI} + \gamma_{21}^{FI}, \\ \varphi_{1}^{SA} &= \lambda_{1}^{FI} + \gamma_{11}^{FI}, \text{ and} \\ \varphi_{2}^{SA} &= \lambda_{2}^{FI} + \gamma_{22}^{FI}. \end{split}$$

For the treatment decay model the algorithm provided us with a design where the treatment decay effect never occurs. Let's give a little bit of weight to this treatment decay effect:

As we can see we find the design from the book, when we give weights 100:1 for treatment / carry-over effects in the treatment decay model. (As seen in the first result section a zero weight for the carry-over effects results in a model with alternating treatments, so that there never occurs a treatment decay effect.)

Summary

3.1 Random Subject Effects Model

See Jones and Kenward [2003], 5.3, page 213ff. The model stays the same

$$Y_{ijk} = \mu + \pi_j + \tau_{d[i,j]} + \lambda_{d[i,j-1]} + s_{ik} + e_{ijk},$$

but we also assume that the subject effects follow a normal distribution: $s_{ik} \sim \mathcal{N}(0, \sigma_s^2)$.

In matrix notation we have

$$Y = X\beta + Z\gamma + \varepsilon$$

with X and Z the fixed and random effects design matrices¹, $\varepsilon \sim \mathcal{N}(0, \Sigma)$ and $\gamma \sim \mathcal{N}(0, D)$. Then²

$$\operatorname{Var}(Y) = ZDZ^T + \Sigma.$$

For known $V := \operatorname{Var}(Y) = ZDZ^T + \Sigma$ the MLE and BLUE is given by

$$\hat{\beta} = (X^t V^{-1} X)^{-1} X^t V^{-1} Y.$$

 $^{^1\,\}mathrm{Note}$ that X and Z are different from the \ldots

²See for example [Lee et al., 2006, chapter 5].

Appendix A

Appendix

The appendices are all work in progress.

A.1 Appendix - Variance Balance / Partial Balance

Definition A.1.1 (Variance Balance). A design is variance balanced if $\operatorname{Var}[\hat{\tau}_i - \hat{\tau}_j]$ is constant for all pairs of the *n* treatment effects $\tau_i, \tau_j, 1 \leq i, j \leq n, i \neq j$.

Definition A.1.2 (Partially balanced incomplete block design with two associate classes). A *partially* balanced incomplete block design with two associate classes (or short PBIBD(2)) is a design that fulfils the following (see Clatworthy et al. [1973]):

- There are b blocks of k units each.
- There are v treatments and v > k, so that not all treatments can occur in a block. Each treatment occurs once in each block and is assigned r times.
- Let X be the set of treatments. Then there is a partition of $X \times X$ into three relations, with one relation the identity and the other two relations R_1 and R_2 fulfilling the following properties:
 - A treatment y is called an *i*th associates, $i \in \{1, 2\}$, if and only if $(x, y) \in R_i$. Each treatment x has n_i *i*th associates.
 - For all $i, j, k \in \{1, 2\}$ there is a constant numbers p_{jk}^i , so that for all $(x, y) \in R_i$ the number of treatments z with $(x, z) \in R_j$ and $(z, y) \in R_k$ is p_{jk}^i .
 - The association scheme is *commutative*, i.e. $p_{jk}^i = p_{kj}^i$.
- There are two numbers λ_1 , λ_2 so that $(x, y) \in R_i$, $i \in \{1, 2\}$, implies that treatment x and y occur together in exactly λ_i blocks.

A.2 Appendix - Matrix Algebra / Linear Models

A.2.1 Generalized inverse

Definition A.2.1 (Moore-Penrose pseudoinverse). For $A \in \mathbb{R}^{m \times n}$ a matrix A^+ is called Moore-Penrose pseudoinverse iff

1. $AA^+A = A$,

2. $A^+AA^+ = A^+$, 3. $(AA^+)^T = AA^+$ and 4. $(A^+A)^T = A^+A$.

The Moore-Penrose pseudoinverse exists for every real matrix and is unique.

Theorem A.2.2 (Block matrix pseudoinverse). For a block matrix

$$X := [A B]$$

we have

...

$$(X^{T}X)^{+} = \left(\begin{bmatrix} A^{T} \\ B^{T} \end{bmatrix} \begin{bmatrix} A & B \end{bmatrix} \right)^{+} = \left(\begin{bmatrix} A^{T}A & A^{T}B \\ B^{T}A & B^{T}B \end{bmatrix} \right)^{+} = \begin{bmatrix} (A^{T}P_{B}^{\perp}A)^{+} & -(A^{T}P_{B}^{\perp}A)^{+}A^{T}B(B^{T}B)^{+} \\ -(B^{T}P_{A}^{\perp}B)^{+}B^{T}A(A^{T}A)^{+} & (B^{T}P_{A}^{\perp}B)^{+} \end{bmatrix}$$

with the orthogonal projection matrices $P_B^{\perp} = I - B(B^T B)^+ B^T$, $P_A^{\perp} = I - A(A^T A)^+ A^T$. For a proof see for example http://en.wikipedia.org/wiki/Block_matrix_pseudoinverse.

Theorem A.2.3. Let Ax = b a linear equation system in n variables and A^+ the Moore-Penrose pseudoinverse of A. Solutions exist if and only if $AA^+b = b$ and are given in this case by

$$\{A^+b + (I - A^+A)y \mid y \in \mathbb{R}^n\}.$$

Proof. If $AA^+b = b$ we have for every $A^+b + (I - A^+A)y$ with $y \in \mathbb{R}^n$:

$$A(A^{+}b + (I - A^{+}A)y) = b + Ay - AA^{+}Ay = b + Ay - Ay = b$$

Theorem A.2.4. Let $y = X\beta + \varepsilon$ be a linear model with $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$. Then $t^T\beta$ is estimable iff $t^T(X^TX)^+X^TX = t^T$.

A.2.2 Fisher information

For a linear regression model with design matrix X and variance σ^2 the information matrix is given by

$$\frac{1}{\sigma^2} X^T X.$$

A.2.3 Linear Mixed Models

In the *linear mixed model* the response Y is given by

$$Y = X\beta + Z\gamma + \varepsilon$$

with X and Z the fixed and random effects design matrices, $\varepsilon \sim \mathcal{N}(0, \Sigma)$ and $\gamma \sim \mathcal{N}(0, D)$. Then¹

$$\operatorname{Var}(Y) = ZDZ^T + \Sigma.$$

For known $V := \operatorname{Var}(Y) = ZDZ^T + \Sigma$ the MLE and BLUE is given by

$$\hat{\beta} = (X^t V^{-1} X)^{-1} X^t V^{-1} Y.$$

 $^{^1 \, {\}rm See}$ for example [Lee et al., 2006, chapter 5].

A.3 Appendix - Internals

A.3.1 Naming conventions

Most functions exist as R and C/C++ variant, with the following naming conventions:

We have functions in R and on the C/C++ level with the same name (in our folowing example rcd) that should be used in R and C/C++ respectively. The R function rcd calls the C function rcd2R which handles the conversion from and to the R structures the SEXP are pointing to. Apart from that we often provide an R function with a suffix _R, i.e. in our example rcd_R, which is a pure R function and reimplements the same functionality for testing purposes.

```
SEXP createRCDesign2R(SEXP designS, SEXP vS, SEXP modelS) {...}
arma::mat createRCDesign(arma::mat design, int v, int model) {...}
createRCDesign <-- function(X, v, model) {
    return(.Call("createRCDesign2R", X, v, model, PACKAGE = "Crossover"))
}
createRCDesign_R <-- function(X, v, model) {
    # Same functionality written in R
}</pre>
```

A variable v means always the original number of treatments. A variable vv stands for the maximum number of different settings², either $v + v^2$ or for the second-order carry-over effects $v + v^2 + v^3$.

 $^{^2\,{\}rm For}$ the no carry-over into self or placebo model there are actually less settings.

Index

balanced variance, 20 block design matrix, 6 efficiency, 17 Fisher information, 21 information matrix, 21 Linear Mixed Models, 21 link matrix, 6 model no carry-over into self, 10 placebo model, 9 proportionality model, 11 self-adjacency model, 9 standard additive, 6 treatment decay, 11 with full set of interactions, 8 with second-order carry-over effects, 12 Moore-Penrose pseudoinverse, 20 partially balanced incomplete block design, 20 PBIB(2), 20 second-order carry-over effects, 12 self-adjacency model, 9treatment design matrix, 6

variance balance, 20

Bibliography

- Ian Anderson and DA Preece. Locally balanced change-over designs. Utilitas Mathematica, 62:33-59, 2002.
- DS Archdeacon, Jeffrey H. Dinitz, Douglas R. Stinson, and TW Tillson. Some new row-complete latin squares. Journal of Combinatorial Theory, Series A, 29(3):395–398, 1980.
- Glenn Francis Atkinson. Designs for sequences of treatments with carry-over effects. *Biometrics*, pages 292–309, 1966.
- LN Balaam. A two-period design with t2 experimental units. *Biometrics*, pages 61–73, 1968.
- S. Bate and B. Jones. The construction of universally optimal uniform cross-over designs. Technical report, GlaxoSmithKline Biomedical Data Sciences, 2002.
- II Berenblut. Change-over designs with complete balance for first residual effects. *Biometrics*, 20(4):707–712, 1964.
- EA Blaisdell Jr and D Raghavarao. Partially balanced change-over designs based on m-associate class pbib designs. Journal of the Royal Statistical Society. Series B (Methodological), pages 334–338, 1980.
- Mausumi Bose and Aloke Dey. *Optimal Crossover Designs*. World Scientific Publishing Company, 2nd edition edition, 2009.
- Willard H Clatworthy, Joseph M Cameron, and Janace A Speckman. Tables of two-associate-class partially balanced designs. US Government Printing Office, 1973.
- WG Cochran, KM Autrey, and CY Cannon. A double change-over design for dairy cattle feeding experiments. Journal of Dairy Science, 24(11):937–951, 1941.
- AW Davis and WB Hall. Cyclic change-over designs. Biometrika, 56(2):283-293, 1969.
- Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software, 40(8):1-18, 2011.
- Dirk Eddelbuettel and Conrad Sanderson. RcppArmadillo: Accelerating R with high-performance C++ linear algebra. *Computational Statistics and Data Analysis*, in press, 2013. URL http://dx.doi.org/10.1016/j.csda.2013.02.005.
- WT Federer and GF Atkinson. Tied-double-change-over designs. Biometrics, pages 168–181, 1964.
- David J Fletcher. A new class of change-over designs for factorial experiments. *Biometrika*, 74(3):649–654, 1987.
- I Iqbal and B Jones. Efficient repeated measurements designs with equal and unequal period sizes. *Journal* of statistical planning and inference, 42(1):79–88, 1994.
- J Aneurin John and Maurice Henry Quenouille. Experiments: design and analysis. Griffin London, 1977.

- J.A. John and E.R. Williams. Cyclic and Computer Generated Designs. Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, 1995. ISBN 9780412575808.
- JA John, KG Russell, and D Whitaker. Crossover: an algorithm for the construction of efficient cross-over designs. *Statistics in medicine*, 23(17):2645–2658, 2004.
- Byron Jones and Michael G Kenward. *Design and analysis of cross-over trials*, volume 98. Chapman & Hall, 2nd edition edition, 2003.
- Eugene M Laska and Morris Meisner. A variational approach to optimal two-treatment crossover designs: application to carryover-effect models. *Journal of the American Statistical Association*, 80(391):704–710, 1985.
- Youngjo Lee, John A Nelder, and Yudi Pawitan. Generalized linear models with random effects: unified analysis via H-likelihood. CRC Press, 2006.
- SM Lewis, DJ Fletcher, and JNS Matthews. Factorial cross-over designs in clinical trials. *Optimal Design* and Analysis of Experiments, pages 133–140, 1988.
- HL Lucas. Switchback trials for more than two treatments. Journal of Dairy Science, 39(2):146-154, 1956.
- JNS Matthews. Optimal crossover designs for the comparison of two treatments in the presence of carryover effects and autocorrelated errors. *Biometrika*, 74(2):311–320, 1987.
- HD Patterson and Henry Lawrence Lucas. *Change-over designs*. North Carolina Agricultural Experiment Station and US Department of Agriculture, 1962.
- Joseph G Pigeon. Residual effects designs for comparing treatments with a control. PhD thesis, Temple University, 1985.
- P. Prescott. Construction of sequentially counterbalanced designs formed from two or more latin squares. In R. Dutter and W. Grossmann, editors, *Proceedings of the 11th Symposium on Computational Statistics held in Vienna, Austria*, pages 435–440. Physica-Verlag: Heidelberg, 1994.
- P Prescott. Construction of sequentially counterbalanced designs formed from two latin squares. Utilitas Mathematica, 55:135–152, 1999.
- H. Quenouille. The Design and Analysis of Experiment. Hafner Pub. Co., 1953.
- KG Russell. The construction of good change-over designs when there are fewer units than treatments. Biometrika, 78(2):305-313, 1991.
- Martin Oliver Sailer. crossdes: Construction of Crossover Designs, 2013. URL http://CRAN.R-project. org/package=crossdes. R package version 1.1-1.
- Simon Urbanek. *rJava: Low-level R to Java interface*, 2013. URL http://CRAN.R-project.org/package= rJava. R package version 0.9-4.
- EJ Williams. Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Chemistry, 2(2):149–168, 1949.

Table of Symbols

\mathbf{Sets}

Variables

v	number of treatments
p	number of periods
s	number of sequences
μ	intercept
π_j	period effect for period j
$\tau_{d[i,j]}$	direct treatment effect for treatment $d[i, j]$ in period j of sequence i
$\lambda_{d[i,j-1]}$	first-order carry-over effect (0 for $j - 1=0$)
s_{ik}	kth subject effect on sequence i
e_{ijk}	random error with zero mean and variance σ^2

Functions

X'	transpose of matrix X
X^+	Moore-Penrose pseudoinverse of X
$\langle \cdot, \cdot angle$	standard direct product $\langle x, y \rangle = \sum_{j=1}^n x_j \cdot y_j$ for $x, y \in \mathbb{R}^n$
id_X	identity on X, i.e. $\operatorname{id}_X : X \to X, \ x \mapsto x$

Other Symbols

$\mathcal{N}(\mu,\sigma^2)$	Normal distribution with mean μ and variance σ^2 .
$\mathcal{N}(\mu, \Sigma)$	Multivariate normal distribution with mean μ and covariance matrix Σ .