Package 'CovTools'

Title: Statistical Tools for Covariance Analysis
Description: Covariance is of universal prevalence across various disciplines within statistics. We provide a rich collection of geometric and inferential tools for convenient analysis of covariance structures, topics including distance measures, mean covariance estimator, covariance hypothesis test for one-sample and two-sample cases, and covariance estimation. For an introduction to covariance in multivariate statistical analysis, see Schervish (1987) <doi:10.1214/ss/1177013111>.
Authors: Kyoungjae Lee [aut], Lizhen Lin [ctb], Kisung You [aut, cre]
Maintainer: Kisung You <[email protected]>
License: GPL (>= 3)
Version: 0.5.4
Built: 2024-12-11 07:20:29 UTC
Source: CRAN

Help Index


One-Sample Covariance Test using Maximum Pairwise Bayes Factor

Description

It performs Bayesian version of 1-sample test for Covariance where the null hypothesis is

H0:Σn=Σ0H_0 : \Sigma_n = \Sigma_0

where Σn\Sigma_n is the covariance of data model and Σ0\Sigma_0 is a hypothesized covariance. Denote XiX_i be the ii-th column of data matrix. Under the maximum pairwise Bayes Factor framework, we have following hypothesis,

H0:aij=0 and τij=1versus.H1:not H0.H_0: a_{ij}=0~\mathrm{ and }~\tau_{ij}=1 \quad \mathrm{versus. } \quad H_1: \mathrm{ not }~ H_0.

The model is

XiXjNn(aijXj,τij2In)X_i | X_j \sim N_n( a_{ij}X_j, \tau_{ij}^2 I_n )

and the prior is set, under H1H_1, as

aijτij2N(0,τij2/(γXj2))a_{ij}|\tau_{ij}^2 \sim N(0, \tau_{ij}^2/(\gamma*||X_j||^2))

τij2IG(a0,b0).\tau_{ij}^2 \sim IG(a0, b0).

Usage

BCovTest1.mxPBF(data, Sigma0 = diag(ncol(data)), a0 = 2, b0 = 2, gamma = 1)

Arguments

data

an (n×p)(n\times p) data matrix where each row is an observation.

Sigma0

a (p×p)(p\times p) given covariance matrix.

a0

shape parameter for inverse-gamma prior.

b0

scale parameter for inverse-gamma prior.

gamma

non-negative number. See the equation above.

Value

a named list containing:

log.BF.mat

a (p×p)(p\times p) matrix of pairwise log Bayes factors.

References

Lee K, Lin L, Dunson D (2018). “Maximum Pairwise Bayes Factors for Covariance Structure Testing.” arXiv preprint. https://arxiv.org/abs/1809.03105.

Examples

## Not run: 
## generate data from multivariate normal with trivial covariance.
pdim = 10
data = matrix(rnorm(100*pdim), nrow=100)

## run mxPBF-based test
out1 = BCovTest1.mxPBF(data)
out2 = BCovTest1.mxPBF(data, a0=5.0, b0=5.0) # change some params

## visualize two Bayes Factor matrices
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
image(exp(out1$log.BF.mat)[,pdim:1], main="default")
image(exp(out2$log.BF.mat)[,pdim:1], main="a0=b0=5.0")
par(opar)

## End(Not run)

One-Sample Diagonality Test by Maximum Pairwise Bayes Factor

Description

One-sample diagonality test can be stated with the null hypothesis

H0:σij=0 forany ijH_0 : \sigma_{ij} = 0~\mathrm{for any}~i \neq j

and alternative hypothesis H1: not H0H_1 : ~\mathrm{not}~H_0 with Σn=(σij)\Sigma_n = (\sigma_{ij}). Let XiX_i be the ii-th column of data matrix. Under the maximum pairwise bayes factor framework, we have following hypothesis,

H0:aij=0versus.H1:not H0.H_0: a_{ij}=0\quad \mathrm{versus. } \quad H_1: \mathrm{ not }~ H_0.

The model is

XiXjNn(aijXj,τij2In).X_i | X_j \sim N_n( a_{ij}X_j, \tau_{ij}^2 I_n ).

Under H0H_0, the prior is set as

τij2IG(a0,b0)\tau_{ij}^2 \sim IG(a0, b0)

and under H1H_1, priors are

aijτij2N(0,τij2/(γXj2))a_{ij}|\tau_{ij}^2 \sim N(0, \tau_{ij}^2/(\gamma*||X_j||^2))

τij2IG(a0,b0).\tau_{ij}^2 \sim IG(a0, b0).

Usage

BDiagTest1.mxPBF(data, a0 = 2, b0 = 2, gamma = 1)

Arguments

data

an (n×p)(n\times p) data matrix where each row is an observation.

a0

shape parameter for inverse-gamma prior.

b0

scale parameter for inverse-gamma prior.

gamma

non-negative number. See the equation above.

Value

a named list containing:

log.BF.mat

(p×p)(p\times p) matrix of pairwise log Bayes factors.

References

Lee K, Lin L, Dunson D (2018). “Maximum Pairwise Bayes Factors for Covariance Structure Testing.” arXiv preprint. https://arxiv.org/abs/1809.03105.

Examples

## Not run: 
## generate data from multivariate normal with trivial covariance.
pdim = 10
data = matrix(rnorm(100*pdim), nrow=100)

## run test
## run mxPBF-based test
out1 = BDiagTest1.mxPBF(data)
out2 = BDiagTest1.mxPBF(data, a0=5.0, b0=5.0) # change some params

## visualize two Bayes Factor matrices
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
image(exp(out1$log.BF.mat)[,pdim:1], main="default")
image(exp(out2$log.BF.mat)[,pdim:1], main="a0=b0=5.0")
par(opar)

## End(Not run)

Compute Pairwise Distance for Symmetric Positive-Definite Matrices

Description

For a given 3-dimensional array where symmetric positive definite (SPD) matrices are stacked slice by slice, it computes pairwise distance using various popular measures. Some of measures are metric as they suffice 3 conditions in mathematical context; nonnegative definiteness, symmetry, and triangle inequalities. Other non-metric measures represent dissimilarities between two SPD objects.

Usage

CovDist(
  A,
  method = c("AIRM", "Bhattacharyya", "Cholesky", "Euclidean", "Hellinger", "JBLD",
    "KLDM", "LERM", "Procrustes.SS", "Procrustes.Full", "PowerEuclidean",
    "RootEuclidean"),
  power = 1
)

Arguments

A

a (p×p×N)(p\times p\times N) 3d array of NN SPD matrices.

method

the type of distance measures to be used; "AIRM" for Affine Invariant Riemannian Metric, "Bhattacharyya" for Bhattacharyya distance based on normal model, "Cholesky" for Cholesky difference in Frobenius norm, "Euclidean" for naive Frobenius norm as distance, "Hellinger" for Hellinger distance based on normal model, "JBLD" for Jensen-Bregman Log Determinant Distance, "KLDM" for symmetrized Kullback-Leibler Distance Measure, "LERM" for Log Euclidean Riemannian Metric, "Procrustes.SS" for Procrustes Size and Shape measure, "Procrustes.Full" for Procrustes analysis with scale, "PowerEuclidean" for weighted eigenvalues by some exponent, and "RootEuclidean" for matrix square root.

power

a non-zero number for PowerEuclidean distance.

Value

an (N×N)(N\times N) symmetric matrix of pairwise distances.

References

Arsigny V, Fillard P, Pennec X, Ayache N (2006). “Log-Euclidean metrics for fast and simple calculus on diffusion tensors.” Magnetic Resonance in Medicine, 56(2), 411–421. ISSN 0740-3194, 1522-2594.

Dryden IL, Koloydenko A, Zhou D (2009). “Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging.” The Annals of Applied Statistics, 3(3), 1102–1123. ISSN 1932-6157.

Examples

## generate 100 SPD matrices of size (5-by-5)
samples = samplecovs(100,5)

## get pairwise distance for "AIRM"
distAIRM = CovDist(samples, method="AIRM")

## dimension reduction using MDS
ss = cmdscale(distAIRM)

## visualize
opar <- par(no.readonly=TRUE)
plot(ss[,1],ss[,2],main="2d projection")
par(opar)

Covariance Estimation with Linear Shrinkage

Description

Ledoit and Wolf (2003, 2004) proposed a linear shrinkage strategy to estimate covariance matrix with an application to portfolio optimization. An optimal covariance is written as a convex combination as follows,

Σ^=δF^+(1δ)S^\hat{\Sigma} = \delta \hat{F} + (1-\delta) \hat{S}

where δ(0,1)\delta \in (0,1) a control parameter/weight, S^\hat{S} an empirical covariance matrix, and F^\hat{F} a target matrix. Although authors used FF a highly structured estimator, we also enabled an arbitrary target matrix to be used as long as it's symmetric and positive definite of corresponding size.

Usage

CovEst.2003LW(X, target = NULL)

Arguments

X

an (n×p)(n\times p) matrix where each row is an observation.

target

target matrix FF. If target=NULL, constant correlation model estimator is used. If target is specified as a qualified matrix, it is used instead.

Value

a named list containing:

S

a (p×p)(p\times p) covariance matrix estimate.

delta

an estimate for convex combination weight according to the relevant theory.

References

Ledoit O, Wolf M (2003). “Improved estimation of the covariance matrix of stock returns with an application to portfolio selection.” Journal of Empirical Finance, 10(5), 603–621. ISSN 09275398.

Ledoit O, Wolf M (2004). “A well-conditioned estimator for large-dimensional covariance matrices.” Journal of Multivariate Analysis, 88(2), 365–411. ISSN 0047259X.

Ledoit O, Wolf M (2004). “Honey, I Shrunk the Sample Covariance Matrix.” The Journal of Portfolio Management, 30(4), 110–119. ISSN 0095-4918.

Examples

## CRAN-purpose small computation
# set a seed for reproducibility
set.seed(11)

#  small data with identity covariance
pdim      <- 5
dat.small <- matrix(rnorm(20*pdim), ncol=pdim)

#  run the code with highly structured estimator
out.small <- CovEst.2003LW(dat.small)

#  visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
image(diag(5)[,pdim:1], main="true cov")
image(cov(dat.small)[,pdim:1], main="sample cov")
image(out.small$S[,pdim:1], main="estimated cov")
par(opar)

## Not run: 
## want to see how delta is determined according to
#  the number of observations we have.
nsamples = seq(from=5, to=200, by=5)
nnsample = length(nsamples)

#  we will record two values; delta and norm difference
vec.delta = rep(0, nnsample)
vec.normd = rep(0, nnsample)
for (i in 1:nnsample){
  dat.norun <- matrix(rnorm(nsamples[i]*pdim), ncol=pdim) # sample in R^5
  out.norun <- CovEst.2003LW(dat.norun)                   # run with default

  vec.delta[i] = out.norun$delta
  vec.normd[i] = norm(out.norun$S - diag(pdim),"f")       # Frobenius norm
}

# let's visualize the results
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(nsamples, vec.delta, lwd=2, type="b", col="red", main="estimated deltas")
plot(nsamples, vec.normd, lwd=2, type="b", col="blue",main="Frobenius error")
par(opar)

## End(Not run)

Oracle Approximating Shrinkage Estimator

Description

Authors propose to estimate covariance matrix by iteratively approximating the shrinkage with

Σ^=ρF^+(1ρ)S^\hat{\Sigma} = \rho \hat{F} + (1-\rho) \hat{S}

where ρ(0,1)\rho \in (0,1) a control parameter/weight, S^\hat{S} an empirical covariance matrix, and F^\hat{F} a target matrix. It is proposed to use a structured estimate F^=Tr(S^/p)Ip×p\hat{F} = \textrm{Tr} (\hat{S}/p) \cdot I_{p\times p} where Ip×pI_{p\times p} is an identity matrix of dimension pp.

Usage

CovEst.2010OAS(X)

Arguments

X

an (n×p)(n\times p) matrix where each row is an observation.

Value

a named list containing:

S

a (p×p)(p\times p) covariance matrix estimate.

rho

an estimate for convex combination weight.

References

Chen Y, Wiesel A, Eldar YC, Hero AO (2010). “Shrinkage Algorithms for MMSE Covariance Estimation.” IEEE Transactions on Signal Processing, 58(10), 5016–5029. ISSN 1053-587X, 1941-0476.

Examples

## CRAN-purpose small computation
# set a seed for reproducibility
set.seed(11)

#  small data with identity covariance
pdim      <- 5
dat.small <- matrix(rnorm(10*pdim), ncol=pdim)

#  run the code
out.small <- CovEst.2010OAS(dat.small)

#  visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
image(diag(pdim)[,pdim:1],     main="true cov")
image(cov(dat.small)[,pdim:1], main="sample cov")
image(out.small$S[,pdim:1],    main="estimated cov")
par(opar)

## Not run: 
## want to see how delta is determined according to
#  the number of observations we have.
nsamples = seq(from=5, to=200, by=5)
nnsample = length(nsamples)

#  we will record two values; rho and norm difference
vec.rho   = rep(0, nnsample)
vec.normd = rep(0, nnsample)
for (i in 1:nnsample){
  dat.norun <- matrix(rnorm(nsamples[i]*pdim), ncol=pdim) # sample in R^5
  out.norun <- CovEst.2010OAS(dat.norun)                  # run with default

  vec.rho[i]   = out.norun$rho
  vec.normd[i] = norm(out.norun$S - diag(pdim),"f")       # Frobenius norm
}

# let's visualize the results
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(nsamples, vec.rho,   lwd=2, type="b", col="red", main="estimated rhos")
plot(nsamples, vec.normd, lwd=2, type="b", col="blue",main="Frobenius error")
par(opar)

## End(Not run)

Rao-Blackwell Ledoit-Wolf Estimator

Description

Authors propose to estimate covariance matrix by minimizing mean squared error with the following formula,

Σ^=ρF^+(1ρ)S^\hat{\Sigma} = \rho \hat{F} + (1-\rho) \hat{S}

where ρ(0,1)\rho \in (0,1) a control parameter/weight, S^\hat{S} an empirical covariance matrix, and F^\hat{F} a target matrix. It is proposed to use a structured estimate F^=Tr(S^/p)Ip×p\hat{F} = \textrm{Tr} (\hat{S}/p) \cdot I_{p\times p} where Ip×pI_{p\times p} is an identity matrix of dimension pp.

Usage

CovEst.2010RBLW(X)

Arguments

X

an (n×p)(n\times p) matrix where each row is an observation.

Value

a named list containing:

S

a (p×p)(p\times p) covariance matrix estimate.

rho

an estimate for convex combination weight.

References

Chen Y, Wiesel A, Eldar YC, Hero AO (2010). “Shrinkage Algorithms for MMSE Covariance Estimation.” IEEE Transactions on Signal Processing, 58(10), 5016–5029. ISSN 1053-587X, 1941-0476.

Examples

## CRAN-purpose small computation
# set a seed for reproducibility
set.seed(11)

#  small data with identity covariance
pdim      <- 10
dat.small <- matrix(rnorm(5*pdim), ncol=pdim)

#  run the code
out.small <- CovEst.2010RBLW(dat.small)

#  visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
image(diag(pdim)[,pdim:1],     main="true cov")
image(cov(dat.small)[,pdim:1], main="sample cov")
image(out.small$S[,pdim:1],    main="estimated cov")
par(opar)

## Not run: 
## want to see how delta is determined according to
#  the number of observations we have.
nsamples = seq(from=5, to=200, by=5)
nnsample = length(nsamples)

#  we will record two values; rho and norm difference
vec.rho   = rep(0, nnsample)
vec.normd = rep(0, nnsample)
for (i in 1:nnsample){
  dat.norun <- matrix(rnorm(nsamples[i]*pdim), ncol=pdim) # sample in R^5
  out.norun <- CovEst.2010RBLW(dat.norun)                 # run with default

  vec.rho[i]   = out.norun$rho
  vec.normd[i] = norm(out.norun$S - diag(5),"f")          # Frobenius norm
}

# let's visualize the results
opar <- par(mfrow=c(1,2))
plot(nsamples, vec.rho,   lwd=2, type="b", col="red", main="estimated rhos")
plot(nsamples, vec.normd, lwd=2, type="b", col="blue",main="Frobenius error")
par(opar)

## End(Not run)

Covariance Estimation via Adaptive Thresholding

Description

Cai and Liu (2011) proposed an adaptive variant of Bickel and Levina (2008) - CovEst.hard. The idea of adaptive thresholding is to apply thresholding technique on correlation matrix in that it becomes adaptive in terms of each variable.

Usage

CovEst.adaptive(X, thr = 0.5, nCV = 10, parallel = FALSE)

Arguments

X

an (n×p)(n\times p) matrix where each row is an observation.

thr

user-defined threshold value. If it is a vector of regularization values, it automatically selects one that minimizes cross validation risk.

nCV

the number of repetitions for 2-fold random cross validations for each threshold value.

parallel

a logical; TRUE to use half of available cores, FALSE to do every computation sequentially.

Value

a named list containing:

S

a (p×p)(p\times p) covariance matrix estimate.

CV

a dataframe containing vector of tested threshold values(thr) and corresponding cross validation scores(CVscore).

References

Cai T, Liu W (2011). “Adaptive Thresholding for Sparse Covariance Matrix Estimation.” Journal of the American Statistical Association, 106(494), 672–684. ISSN 0162-1459, 1537-274X.

Examples

## generate data from multivariate normal with Identity covariance.
pdim <- 5
data <- matrix(rnorm(10*pdim), ncol=pdim)

## apply 4 different schemes
#  mthr is a vector of regularization parameters to be tested
mthr <- seq(from=0.01,to=0.99,length.out=10)

out1 <- CovEst.adaptive(data, thr=0.1)  # threshold value 0.1
out2 <- CovEst.adaptive(data, thr=0.5)  # threshold value 0.5
out3 <- CovEst.adaptive(data, thr=0.1)  # threshold value 0.9
out4 <- CovEst.adaptive(data, thr=mthr) # automatic threshold checking

## visualize 4 estimated matrices
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(out1$S[,pdim:1], col=gray((0:100)/100), main="thr=0.1")
image(out2$S[,pdim:1], col=gray((0:100)/100), main="thr=0.5")
image(out3$S[,pdim:1], col=gray((0:100)/100), main="thr=0.9")
image(out4$S[,pdim:1], col=gray((0:100)/100), main="automatic")
par(opar)

Covariance Estimation via Hard Thresholding

Description

Bickel and Levina (2008) proposed a sparse covariance estimation technique to apply thresholding on off-diagonal elements of the sample covariance matrix. The entry of sample covariance matrix Si,j=0S_{i,j}=0 if Si,j<=τ|S_{i,j}|<=\tau where τ\tau is a thresholding value (thr). If thr is rather a vector of regularization parameters, it applies cross-validation scheme to select an optimal value.

Usage

CovEst.hard(X, thr = sqrt(log(ncol(X))/nrow(X)), nCV = 10, parallel = FALSE)

Arguments

X

an (n×p)(n\times p) matrix where each row is an observation.

thr

user-defined threshold value. If it is a vector of regularization values, it automatically selects one that minimizes cross validation risk.

nCV

the number of repetitions for 2-fold random cross validations for each threshold value.

parallel

a logical; TRUE to use half of available cores, FALSE to do every computation sequentially.

Value

a named list containing:

S

a (p×p)(p\times p) covariance matrix estimate.

CV

a dataframe containing vector of tested threshold values(thr) and corresponding cross validation scores(CVscore).

References

Bickel PJ, Levina E (2008). “Covariance regularization by thresholding.” The Annals of Statistics, 36(6), 2577–2604. ISSN 0090-5364.

Examples

## generate data from multivariate normal with Identity covariance.
pdim <- 5
data <- matrix(rnorm(10*pdim), ncol=pdim)

## apply 4 different schemes
#  mthr is a vector of regularization parameters to be tested
mthr <- exp(seq(from=log(0.1),to=log(10),length.out=10))

out1 <- CovEst.hard(data, thr=0.1)  # threshold value 0.1
out2 <- CovEst.hard(data, thr=1)    # threshold value 1
out3 <- CovEst.hard(data, thr=10)   # threshold value 10
out4 <- CovEst.hard(data, thr=mthr) # automatic threshold checking

## visualize 4 estimated matrices
gcol <- gray((0:100)/100)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(out1$S[,pdim:1], col=gcol, main="thr=0.1")
image(out2$S[,pdim:1], col=gcol, main="thr=1")
image(out3$S[,pdim:1], col=gcol, main="thr=10")
image(out4$S[,pdim:1], col=gcol, main="automatic")
par(opar)

Covariance Estimation via Hard Thresholding under Positive-Definiteness Constraint

Description

Sparse covariance estimation does not necessarily guarantee positive definiteness of an estimated covariance matrix. Fan et al. (2013) proposed to solve this issue by taking an iterative procedure to take an incremental decrease of threshold value until positive definiteness is preserved.

Usage

CovEst.hardPD(X)

Arguments

X

an (n×p)(n\times p) matrix where each row is an observation.

Value

a named list containing:

S

a (p×p)(p\times p) covariance matrix estimate.

optC

an optimal threshold value CminC_{min} that guarantees positive definiteness after thresholding.

References

Fan J, Liao Y, Mincheva M (2013). “Large covariance estimation by thresholding principal orthogonal complements.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(4), 603–680. ISSN 13697412.

Examples

## generate data from multivariate normal with Identity covariance.
pdim <- 5
data <- matrix(rnorm(10*pdim), ncol=pdim)

## apply 4 different schemes
out1 <- CovEst.hard(data, thr=0.1)  # threshold value 0.1
out2 <- CovEst.hard(data, thr=1)    # threshold value 1
out3 <- CovEst.hard(data, thr=10)   # threshold value 10
out4 <- CovEst.hardPD(data) # automatic threshold checking

## visualize 4 estimated matrices
mmessage <- paste("hardPD::optimal thr=",sprintf("%.2f",out4$optC),sep="")
gcol     <- gray((0:100)/100)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(out1$S[,pdim:1], col=gcol, main="thr=0.1")
image(out2$S[,pdim:1], col=gcol, main="thr=1")
image(out3$S[,pdim:1], col=gcol, main="thr=10")
image(out4$S[,pdim:1], col=gcol, main=mmessage)
par(opar)

Covariance Estimation via Nearest Positive-Definite Matrix Projection

Description

Qi and Sun (2006) proposed an algorithm for computing the positive correlation matrix with Positive Definiteness and transforming it back in order to estimate covariance matrix. This algorithm does not depend on any parameters.

Usage

CovEst.nearPD(X)

Arguments

X

an (n×p)(n\times p) matrix where each row is an observation.

Value

a named list containing:

S

a (p×p)(p\times p) covariance matrix estimate.

References

Qi H, Sun D (2006). “A Quadratically Convergent Newton Method for Computing the Nearest Correlation Matrix.” SIAM Journal on Matrix Analysis and Applications, 28(2), 360–385. ISSN 0895-4798, 1095-7162.

Examples

## generate data from multivariate normal with Identity covariance.
pdim <- 5
data <- matrix(rnorm(10*pdim), ncol=pdim)

## compare against sample covariance
out1 <- cov(data)
out2 <- CovEst.nearPD(data) # apply nearPD

## visualize 2 estimated matrices
gcol <- gray((0:100)/100)
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
image(out1[,pdim:1],   col=gcol, main="sample covariance")
image(out2$S[,pdim:1], col=gcol, main="SPD Projection")
par(opar)

Covariance Estimation via Soft Thresholding

Description

Soft Thresholding method for covariance estimation takes off-diagonal elements zz of sample covariance matrix and applies

hτ(z)=sgn(z)(zτ)+h_{\tau}(z) = \textrm{sgn}(z)(|z|-\tau)_{+}

where sgn(z)\textrm{sgn}(z) is a sign of the value zz, and (x)+=max(x,0)(x)_+ = \textrm{max}(x,0). If thr is rather a vector of regularization parameters, it applies cross-validation scheme to select an optimal value.

Usage

CovEst.soft(X, thr = 0.5, nCV = 10, parallel = FALSE)

Arguments

X

an (n×p)(n\times p) matrix where each row is an observation.

thr

user-defined threshold value. If it is a vector of regularization values, it automatically selects one that minimizes cross validation risk.

nCV

the number of repetitions for 2-fold random cross validations for each threshold value.

parallel

a logical; TRUE to use half of available cores, FALSE to do every computation sequentially.

Value

a named list containing:

S

a (p×p)(p\times p) covariance matrix estimate.

CV

a dataframe containing vector of tested threshold values(thr) and corresponding cross validation scores(CVscore).

References

Antoniadis A, Fan J (2001). “Regularization of Wavelet Approximations.” Journal of the American Statistical Association, 96(455), 939–967. ISSN 0162-1459, 1537-274X.

Donoho DL, Johnstone IM, Kerkyacharian G, Picard D (1995). “Wavelet Shrinkage: Asymptopia?” Journal of the Royal Statistical Society. Series B (Methodological), 57(2), 301–369. ISSN 00359246.

Examples

## generate data from multivariate normal with Identity covariance.
pdim <- 5
data <- matrix(rnorm(10*pdim), ncol=pdim)

## apply 4 different schemes
#  mthr is a vector of regularization parameters to be tested
mthr <- exp(seq(from=log(0.1),to=log(10),length.out=10))

out1 <- CovEst.soft(data, thr=0.1)  # threshold value 0.1
out2 <- CovEst.soft(data, thr=1)    # threshold value 1
out3 <- CovEst.soft(data, thr=10)   # threshold value 10
out4 <- CovEst.soft(data, thr=mthr) # automatic threshold checking

## visualize 4 estimated matrices
gcol <- gray((0:100)/100)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(out1$S[,pdim:1], col=gcol, main="thr=0.1")
image(out2$S[,pdim:1], col=gcol, main="thr=1")
image(out3$S[,pdim:1], col=gcol, main="thr=10")
image(out4$S[,pdim:1], col=gcol, main="automatic")
par(opar)

Estimate Mean Covariance Matrix

Description

For a given 3-dimensional array where symmetric positive definite (SPD) matrices are stacked slice by slice, it estimates Frechet mean on an open cone of SPD matrices under corresponding metric/distance measure.

Usage

CovMean(
  A,
  method = c("AIRM", "Cholesky", "Euclidean", "LERM", "Procrustes.SS",
    "Procrustes.Full", "PowerEuclidean", "RootEuclidean"),
  power = 1
)

Arguments

A

a (p×p×N)(p\times p\times N) 3d array of NN SPD matrices.

method

the type of distance measures to be used; "AIRM" for Affine Invariant Riemannian Metric, "Cholesky" for Cholesky difference in Frobenius norm, "Euclidean" for naive Frobenius norm as distance, "LERM" for Log Euclidean Riemannian Metric, "Procrustes.SS" for Procrustes Size and Shape measure, "Procrustes.Full" for Procrustes analysis with scale, "PowerEuclidean" for weighted eigenvalues by some exponent, and "RootEuclidean" for matrix square root.

power

a non-zero number for PowerEuclidean distance.

Value

a (p×p)(p\times p) mean covariance matrix estimated.

References

Dryden IL, Koloydenko A, Zhou D (2009). “Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging.” The Annals of Applied Statistics, 3(3), 1102–1123. ISSN 1932-6157.

Examples

## Not run: 
## generate 100 sample covariances of size (5-by-5).
pdim    = 5
samples = samplecovs(100,pdim)

## compute mean of first 50 sample covariances from data under Normal(0,Identity).
mLERM = CovMean(samples[,,1:50], method="LERM")
mAIRM = CovMean(samples[,,1:50], method="AIRM")
mChol = CovMean(samples[,,1:50], method="Cholesky")
mRoot = CovMean(samples[,,1:50], method="RootEuclidean")

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(mLERM[,pdim:1], main="LERM mean")
image(mAIRM[,pdim:1], main="AIRM mean")
image(mChol[,pdim:1], main="Cholesky mean")
image(mRoot[,pdim:1], main="RootEuclidean mean")
par(opar)

## End(Not run)

One-Sample Covariance Test by Cai and Ma (2013)

Description

Given data, it performs 1-sample test for Covariance where the null hypothesis is

H0:Σn=Σ0H_0 : \Sigma_n = \Sigma_0

where Σn\Sigma_n is the covariance of data model and Σ0\Sigma_0 is a hypothesized covariance based on a procedure proposed by Cai and Ma (2013).

Usage

CovTest1.2013Cai(data, Sigma0 = diag(ncol(data)), alpha = 0.05)

Arguments

data

an (n×p)(n\times p) data matrix where each row is an observation.

Sigma0

a (p×p)(p\times p) given covariance matrix.

alpha

level of significance.

Value

a named list containing:

statistic

a test statistic value.

threshold

rejection criterion to be compared against test statistic.

reject

a logical; TRUE to reject null hypothesis, FALSE otherwise.

References

Cai TT, Ma Z (2013). “Optimal hypothesis testing for high dimensional covariance matrices.” Bernoulli, 19(5B), 2359–2388. ISSN 1350-7265.

Examples

## Not run: 
## generate data from multivariate normal with trivial covariance.
pdim = 5
data = matrix(rnorm(10*pdim), ncol=pdim)

## run the test
CovTest1.2013Cai(data)

## End(Not run)

One-Sample Covariance Test by Srivastava, Yanagihara, and Kubokawa (2014)

Description

Given data, it performs 1-sample test for Covariance where the null hypothesis is

H0:Σn=Σ0H_0 : \Sigma_n = \Sigma_0

where Σn\Sigma_n is the covariance of data model and Σ0\Sigma_0 is a hypothesized covariance based on a procedure proposed by Srivastava, Yanagihara, and Kubokawa (2014).

Usage

CovTest1.2014Srivastava(data, Sigma0 = diag(ncol(data)), alpha = 0.05)

Arguments

data

an (n×p)(n\times p) data matrix where each row is an observation.

Sigma0

a (p×p)(p\times p) given covariance matrix.

alpha

level of significance.

Value

a named list containing

statistic

a test statistic value.

threshold

rejection criterion to be compared against test statistic.

reject

a logical; TRUE to reject null hypothesis, FALSE otherwise.

References

Srivastava MS, Yanagihara H, Kubokawa T (2014). “Tests for covariance matrices in high dimension with less sample size.” Journal of Multivariate Analysis, 130, 289–309. ISSN 0047259X.

Examples

## Not run: 
## generate data from multivariate normal with trivial covariance.
pdim = 5
data = matrix(rnorm(10*pdim), ncol=pdim)

## run the test
CovTest1.2014Srivastava(data)

## End(Not run)

Two-Sample Covariance Test by Cai and Ma (2013)

Description

Given two sets of data, it performs 2-sample test for equality of covariance matrices where the null hypothesis is

H0:Σ1=Σ2H_0 : \Sigma_1 = \Sigma_2

where Σ1\Sigma_1 and Σ2\Sigma_2 represent true (unknown) covariance for each dataset based on a procedure proposed by Cai and Ma (2013). If statistic >> threshold, it rejects null hypothesis.

Usage

CovTest2.2013Cai(X, Y, alpha = 0.05)

Arguments

X

an (m×p)(m\times p) matrix where each row is an observation from the first dataset.

Y

an (n×p)(n\times p) matrix where each row is an observation from the second dataset.

alpha

level of significance.

Value

a named list containing

statistic

a test statistic value.

threshold

rejection criterion to be compared against test statistic.

reject

a logical; TRUE to reject null hypothesis, FALSE otherwise.

References

Cai TT, Ma Z (2013). “Optimal hypothesis testing for high dimensional covariance matrices.” Bernoulli, 19(5B), 2359–2388. ISSN 1350-7265.

Examples

## generate 2 datasets from multivariate normal with identical covariance.
pdim  = 5
data1 = matrix(rnorm(100*pdim), ncol=pdim)
data2 = matrix(rnorm(150*pdim), ncol=pdim)

## run test
CovTest2.2013Cai(data1, data2)

One-Sample Diagonality Test by Cai and Jiang (2011)

Description

Given data, it performs 1-sample test for diagonal entries of a Covariance matrix where the null hypothesis is

H0:σij=0 forany ijH_0 : \sigma_{ij} = 0~\mathrm{for any}~i \neq j

and alternative hypothesis is H1: not H0H_1 : ~\mathrm{not}~H_0 with Σn=(σij)\Sigma_n = (\sigma_{ij}) based on a procedure proposed by Cai and Jiang (2011).

Usage

DiagTest1.2011Cai(data, alpha = 0.05)

Arguments

data

an (n×p)(n\times p) data matrix where each row is an observation.

alpha

level of significance.

Value

a named list containing:

statistic

a test statistic value.

threshold

rejection criterion to be compared against test statistic.

reject

a logical; TRUE to reject null hypothesis, FALSE otherwise.

References

Cai TT, Jiang T (2011). “Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices.” The Annals of Statistics, 39(3), 1496–1525. ISSN 0090-5364.

Examples

## Not run: 
## generate data from multivariate normal with trivial covariance.
pdim = 5
data = matrix(rnorm(100*pdim), ncol=pdim)

## run test with different alpha values
DiagTest1.2011Cai(data, alpha=0.01)
DiagTest1.2011Cai(data, alpha=0.05)
DiagTest1.2011Cai(data, alpha=0.10)

## End(Not run)

One-Sample Diagonality Test by Lan et al. (2015)

Description

Given data, it performs 1-sample test for diagonal entries of a Covariance matrix where the null hypothesis is

H0:σij=0 forany ijH_0 : \sigma_{ij} = 0~\mathrm{for any}~i \neq j

and alternative hypothesis is H1: not H0H_1 : ~\mathrm{not}~H_0 with Σn=(σij)\Sigma_n = (\sigma_{ij}) based on a procedure proposed by Lan et al. (2015).

Usage

DiagTest1.2015Lan(data, alpha = 0.05)

Arguments

data

an (n×p)(n\times p) data matrix where each row is an observation.

alpha

level of significance.

Value

a named list containing:

statistic

a test statistic value.

threshold

rejection criterion to be compared against test statistic.

reject

a logical; TRUE to reject null hypothesis, FALSE otherwise.

References

Lan W, Luo R, Tsai C, Wang H, Yang Y (2015). “Testing the Diagonality of a Large Covariance Matrix in a Regression Setting.” Journal of Business & Economic Statistics, 33(1), 76–86. ISSN 0735-0015, 1537-2707.

Examples

## Not run: 
## generate data from multivariate normal with trivial covariance.
pdim = 5
data = matrix(rnorm(100*pdim), ncol=pdim)

## run test with different alpha values
DiagTest1.2015Lan(data, alpha=0.01)
DiagTest1.2015Lan(data, alpha=0.05)
DiagTest1.2015Lan(data, alpha=0.10)

## End(Not run)

A Collection of Geometric and Statistical Tools for Covariance (and Precision) Analysis

Description

Covariance is of universal prevalence across various disciplines within statistics. CovTools package aims at providing a rich collection of geometric and statistical tools for a variety of inferences on covariance structures as well as its inverse called precision matrix. See the sections below for a comprehensive list of functions provided from the package.

Geometric Methods

From inference on manifolds perspective, we have following functions,

name of a function description
CovDist compute pairwise distance of covariance matrices
CovMean compute mean covariance matrix

Banded Precision Matrix Estimation via Bandwidth Test

Description

PreEst.2014An returns an estimator of the banded precision matrix using the modified Cholesky decomposition. It uses the estimator defined in Bickel and Levina (2008). The bandwidth is determined by the bandwidth test suggested by An, Guo and Liu (2014).

Usage

PreEst.2014An(
  X,
  upperK = floor(ncol(X)/2),
  algorithm = c("Bonferroni", "Holm"),
  alpha = 0.01
)

Arguments

X

an (n×p)(n\times p) data matrix where each row is an observation.

upperK

upper bound of bandwidth kk.

algorithm

bandwidth test algorithm to be used.

alpha

significance level for the bandwidth test.

Value

a named list containing:

C

a (p×p)(p\times p) estimated banded precision matrix.

optk

an estimated optimal bandwidth acquired from the test procedure.

References

An B, Guo J, Liu Y (2014). “Hypothesis testing for band size detection of high-dimensional banded precision matrices.” Biometrika, 101(2), 477–483. ISSN 0006-3444, 1464-3510.

Bickel PJ, Levina E (2008). “Regularized estimation of large covariance matrices.” The Annals of Statistics, 36(1), 199–227. ISSN 0090-5364.

Examples

## Not run: 
## parameter setting
p = 200; n = 100
k0 = 5; A0min=0.1; A0max=0.2; D0min=2; D0max=5

set.seed(123)
A0 = matrix(0, p,p)
for(i in 2:p){
  term1 = runif(n=min(k0,i-1),min=A0min, max=A0max)
  term2 = sample(c(1,-1),size=min(k0,i-1),replace=TRUE)
  vals  = term1*term2
  vals  = vals[ order(abs(vals)) ]
  A0[i, max(1, i-k0):(i-1)] = vals
}

D0 = diag(runif(n = p, min = D0min, max = D0max))
Omega0 = t(diag(p) - A0)%*%diag(1/diag(D0))%*%(diag(p) - A0)

## data generation (based on AR representation)
## it is same with generating n random samples from N_p(0, Omega0^{-1})
X = matrix(0, nrow=n, ncol=p)
X[,1] = rnorm(n, sd = sqrt(D0[1,1]))
for(j in 2:p){
  mean.vec.j = X[, 1:(j-1)]%*%as.matrix(A0[j, 1:(j-1)])
  X[,j] = rnorm(n, mean = mean.vec.j, sd = sqrt(D0[j,j]))
}

## banded estimation using two different schemes
Omega1 <- PreEst.2014An(X, upperK=20, algorithm="Bonferroni")
Omega2 <- PreEst.2014An(X, upperK=20, algorithm="Holm")

## visualize true and estimated precision matrices
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
image(Omega0[,p:1],   main="Original Precision")
image(Omega1$C[,p:1], main="banded3::Bonferroni")
image(Omega2$C[,p:1], main="banded3::Holm")
par(opar)

## End(Not run)

Bayesian Estimation of a Banded Precision Matrix (Banerjee 2014)

Description

PreEst.2014Banerjee returns a Bayes estimator of the banded precision matrix using G-Wishart prior. Stein’s loss or squared error loss function is used depending on the “loss” argument in the function. The bandwidth is set at the mode of marginal posterior for the bandwidth parameter.

Usage

PreEst.2014Banerjee(
  X,
  upperK = floor(ncol(X)/2),
  delta = 10,
  logpi = function(k) {     -k^4 },
  loss = c("Stein", "Squared")
)

Arguments

X

an (n×p)(n\times p) data matrix where each row is an observation.

upperK

upper bound of bandwidth kk.

delta

hyperparameter for G-Wishart prior. Default value is 10. It has to be larger than 2.

logpi

log of prior distribution for bandwidth kk. Default is a function proportional to k4-k^4.

loss

type of loss; either "Stein" or "Squared".

Value

a named list containing:

C

a (p×p)(p\times p) MAP estimate for precision matrix.

References

Banerjee S, Ghosal S (2014). “Posterior convergence rates for estimating large precision matrices using graphical models.” Electronic Journal of Statistics, 8(2), 2111–2137. ISSN 1935-7524.

Examples

## generate data from multivariate normal with Identity precision.
pdim = 10
data = matrix(rnorm(50*pdim), ncol=pdim)

## compare different K
out1 <- PreEst.2014Banerjee(data, upperK=1)
out2 <- PreEst.2014Banerjee(data, upperK=3)
out3 <- PreEst.2014Banerjee(data, upperK=5)

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(diag(pdim)[,pdim:1],main="Original Precision")
image(out1$C[,pdim:1], main="banded1::upperK=1")
image(out2$C[,pdim:1], main="banded1::upperK=3")
image(out3$C[,pdim:1], main="banded1::upperK=5")
par(opar)

Bayesian Estimation of a Banded Precision Matrix (Lee 2017)

Description

PreEst.2017Lee returns a Bayes estimator of the banded precision matrix, which is defined in subsection 3.3 of Lee and Lee (2017), using the k-BC prior. The bandwidth is set at the mode of marginal posterior for the bandwidth parameter.

Usage

PreEst.2017Lee(X, upperK = floor(ncol(X)/2), logpi = function(k) {
    -k^4
})

Arguments

X

an (n×p)(n\times p) data matrix where each row is an observation.

upperK

upper bound of bandwidth kk.

logpi

log of prior distribution for bandwidth kk. Default is a function proportional to k4-k^4.

Value

a named list containing:

C

a (p×p)(p\times p) MAP estimate for precision matrix.

References

Lee K, Lee J (2017). “Estimating Large Precision Matrices via Modified Cholesky Decomposition.” ArXiv e-prints.

Examples

## generate data from multivariate normal with Identity precision.
pdim = 5
data = matrix(rnorm(100*pdim), ncol=pdim)

## compare different K
out1 <- PreEst.2017Lee(data, upperK=1)
out2 <- PreEst.2017Lee(data, upperK=3)
out3 <- PreEst.2017Lee(data, upperK=5)

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(diag(pdim)[,pdim:1], main="Original Precision")
image(out1$C[,pdim:1],     main="banded2::upperK=1")
image(out2$C[,pdim:1],     main="banded2::upperK=3")
image(out3$C[,pdim:1],     main="banded2::upperK=5")
par(opar)

Precision Matrix Estimation via Graphical Lasso

Description

Given a sample covariance matrix SS, graphical lasso aims at estimating sparse precision matrix XX - inverse of covariance. It solves a following optimization problem,

maxXlogdetX<S,X>λX1 such that X0\textrm{max}_X \log\textrm{det}X - <S,X> - \lambda \|X \|_1 \textrm{ such that } X \succ 0

where λ\lambda a regularization parameter, <S,X>=tr(STX)<S,X>=tr(S^T X) , X1=Xij\|X\|_1 = \sum X_{ij} and X0X\succ 0 indicates positive definiteness. We provide three modes of computations, 'fixed','confidence', or 'BIC' with respect to λ\lambda. Please see the section below for more details.

Usage

PreEst.glasso(X, method = list(type = "fixed", param = 1), parallel = FALSE)

Arguments

X

an (n×p)(n\times p) data matrix where each row is an observation.

method

a list containing following parameters,

type

one of 'fixed','confidence', or 'BIC'.

param

either a numeric value or vector of values.

parallel

a logical; TRUE for using half the cores available, FALSE otherwise.

Value

a named list containing:

C

a (p×p)(p\times p) estimated precision matrix.

BIC

a dataframe containing λ\lambda values and corresponding BIC scores with type='BIC' method.

regularization parameters

We currently provide three options for solving the problem, 'fixed','confidence', or 'BIC' with respect to λ\lambda. When the method type is 'fixed', the parameter should be a single numeric value as a user-defined λ\lambda value. Likewise, method type of 'confidence' requires a singule numeric value in (0,1)(0,1), where the value is set heuristically according to

ρ=tn2(γ)maxSiiSjjn2+tn22(γ)\rho = \frac{t_{n-2}(\gamma) \max S_{ii}S_{jj}}{\sqrt{n-2+ t_{n-2}^2(\gamma)}}

for a given confidence level γ(0,1)\gamma \in (0,1) as proposed by Banerjee et al. (2006). Finally, 'BIC' type requires a vector of λ\lambda values and opts for a lambda value with the lowest BIC values as proposed by Yuan and Lin (2007).

References

Banerjee O, Ghaoui LE, d'Aspremont A, Natsoulis G (2006). “Convex optimization techniques for fitting sparse Gaussian graphical models.” In Proceedings of the 23rd international conference on Machine learning, 89–96. ISBN 978-1-59593-383-6.

Yuan M, Lin Y (2007). “Model Selection and Estimation in the Gaussian Graphical Model.” Biometrika, 94(1), 19–35. ISSN 00063444.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse inverse covariance estimation with the graphical lasso.” Biostatistics, 9(3), 432–441. ISSN 1465-4644, 1468-4357.

Examples

## generate data from multivariate normal with Identity precision.
pdim = 10
data = matrix(rnorm(100*pdim), ncol=pdim)

## prepare input arguments for diefferent scenarios
lbdvec <- c(0.01,0.1,1,10,100)              # a vector of regularization parameters
list1 <- list(type="fixed",param=1.0)       # single regularization parameter case
list2 <- list(type="confidence",param=0.95) # single confidence level case
list3 <- list(type="BIC",param=lbdvec)      # multiple regularizers with BIC selection

## compute with different scenarios
out1 <- PreEst.glasso(data, method=list1)
out2 <- PreEst.glasso(data, method=list2)
out3 <- PreEst.glasso(data, method=list3)

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(diag(pdim)[,pdim:1], main="Original Precision")
image(out1$C[,pdim:1],     main="glasso::lambda=1.0")
image(out2$C[,pdim:1],     main="glasso::Confidence=0.95")
image(out3$C[,pdim:1],     main="glasso::BIC selection")
par(opar)

Generate Sample Covariances of 2 groups

Description

For visualization purpose, samplecovs generates a 3d array of stacked sample covariances where - in 3rd dimension, the first half are sample covariances of samples generated independently from normal distribution with identity covariance, where the latter half consists of samples covariances from dense random population covariance.

Usage

samplecovs(ncopy, size)

Arguments

ncopy

the total number of sample covariances to be generated.

size

dimension pp.

Value

a (p×p×ncopy)(p\times p\times ncopy) array of strictly positive definite sample covariances.

Examples

## generate total of 20 samples covariances of size 5-by-5.
samples <- samplecovs(20,5)