Package 'Copula.surv'

Title: Analysis of Bivariate Survival Data Based on Copulas
Description: Simulating bivariate survival data from copula models. Estimation of the association parameter in copula models. Two different ways to estimate the association parameter in copula models are implemented. A goodness-of-fit test for a given copula model is implemented. See Emura, Lin and Wang (2010) <doi:10.1016/j.csda.2010.03.013> for details.
Authors: Takeshi Emura [aut, cre]
Maintainer: Takeshi Emura <[email protected]>
License: GPL-2
Version: 1.8
Built: 2025-03-02 07:02:23 UTC
Source: CRAN

Help Index


Analysis of Bivariate Survival Data

Description

Simulating bivariate survival data from copula models (Emura et al. 2019). Estimation of the association parameter in copula models. Two different ways to estimate the association parameter in copula models are implemented. A goodness-of-fit test for a given copula model is implemented. See Emura, Lin and Wang (2010) <doi:10.1016/j.csda.2010.03.013> for details. Also, Weibull regression is implemented (Section 2.6.3 of Emura et al. (2019)).

Details

Details are seen from the references.

Author(s)

Takeshi Emura Maintainer: Takeshi Emura <[email protected]>

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer


Simulating data from the BB1 copula

Description

n pairs of (U,V) are generated from the BB1 copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.

Usage

simu.BB1(n,alpha,d=0,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)

Arguments

n

sample size

alpha

association (copula) parameter

d

BB1 copula's departure parameter from the Clayton (d=0 is the default)

scale1

scale parameter for X

scale2

scale parameter for Y

shape1

shape parameter for X

shape2

shape parameter for Y

Print

print Kendall's tau and means of X and Y if "TRUE"

Details

See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.

Value

U

uniformly distributed on (0,1)

V

uniformly distributed on (0,1)

X

Weibull distributed (scale1, shape1)

Y

Weibull distributed (scale2, shape2)

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

n=100
Dat=simu.BB1(n=n,alpha=1,d=2,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")

Simulating data from the Celebioglu-Cuadras (CC) copula

Description

n pairs of (U,V) are generated from the CC copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.

Usage

simu.CC(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)

Arguments

n

sample size

alpha

association (copula) parameter, -1<=alpha<=1

scale1

scale parameter for X

scale2

scale parameter for Y

shape1

shape parameter for X

shape2

shape parameter for Y

Print

print Kendall's tau and means of X and Y if "TRUE"

Details

See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.

Value

U

uniformly distributed on (0,1)

V

uniformly distributed on (0,1)

X

Weibull distributed (scale1, shape1)

Y

Weibull distributed (scale2, shape2)

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

n=100
Dat=simu.CC(n=n,alpha=-1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")

Simulating data from the Clayton copula

Description

n pairs of (U,V) are generated from the Clayton copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.

Usage

simu.Clayton(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)

Arguments

n

sample size

alpha

association (copula) parameter

scale1

scale parameter for X

scale2

scale parameter for Y

shape1

shape parameter for X

shape2

shape parameter for Y

Print

print Kendall's tau and means of X and Y if "TRUE"

Details

See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.

Value

U

uniformly distributed on (0,1)

V

uniformly distributed on (0,1)

X

Weibull distributed (scale1, shape1)

Y

Weibull distributed (scale2, shape2)

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

n=100
Dat=simu.Clayton(n=n,alpha=1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")

Simulating data from the FGM copula

Description

n pairs of (U,V) are generated from the FGM copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.

Usage

simu.FGM(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)

Arguments

n

sample size

alpha

association (copula) parameter; -1<=alpha<=1

scale1

scale parameter for X

scale2

scale parameter for Y

shape1

shape parameter for X

shape2

shape parameter for Y

Print

print Kendall's tau and means of X and Y if "TRUE"

Details

See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.

Value

U

uniformly distributed on (0,1)

V

uniformly distributed on (0,1)

X

Weibull distributed (scale1, shape1)

Y

Weibull distributed (scale2, shape2)

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

n=100
Dat=simu.FGM(n=n,alpha=1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")

Simulating data from the Frank copula

Description

n pairs of (U,V) are generated from the Frank copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.

Usage

simu.Frank(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)

Arguments

n

sample size

alpha

association (copula) parameter

scale1

scale parameter for X

scale2

scale parameter for Y

shape1

shape parameter for X

shape2

shape parameter for Y

Print

print Kendall's tau and means of X and Y if "TRUE"

Details

See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.

Value

U

uniformly distributed on (0,1)

V

uniformly distributed on (0,1)

X

Weibull distributed (scale1, shape1)

Y

Weibull distributed (scale2, shape2)

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

n=100
Dat=simu.Frank(n=n,alpha=10,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")

Simulating data from the Gumbel-Barnett (GB) copula

Description

n pairs of (U,V) are generated from the GB copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.

Usage

simu.GB(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)

Arguments

n

sample size

alpha

association (copula) parameter, 0<=alpha<=1

scale1

scale parameter for X

scale2

scale parameter for Y

shape1

shape parameter for X

shape2

shape parameter for Y

Print

print Kendall's tau and means of X and Y if "TRUE"

Details

See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.

Value

U

uniformly distributed on (0,1)

V

uniformly distributed on (0,1)

X

Weibull distributed (scale1, shape1)

Y

Weibull distributed (scale2, shape2)

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

n=100
Dat=simu.GB(n=n,alpha=1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")

Simulating data from the Gumbel copula

Description

n pairs of (U,V) are generated from the Gumbel copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.

Usage

simu.Gumbel(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)

Arguments

n

sample size

alpha

association (copula) parameter

scale1

scale parameter for X

scale2

scale parameter for Y

shape1

shape parameter for X

shape2

shape parameter for Y

Print

print Kendall's tau and means of X and Y if "TRUE"

Details

See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.

Value

U

uniformly distributed on (0,1)

V

uniformly distributed on (0,1)

X

Weibull distributed (scale1, shape1)

Y

Weibull distributed (scale2, shape2)

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

n=100
Dat=simu.Gumbel(n=n,alpha=1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")

Simulating data from the Joe copula

Description

n pairs of (U,V) are generated from the Joe copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.

Usage

simu.Joe(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)

Arguments

n

sample size

alpha

association (copula) parameter

scale1

scale parameter for X

scale2

scale parameter for Y

shape1

shape parameter for X

shape2

shape parameter for Y

Print

print Kendall's tau and means of X and Y if "TRUE"

Details

See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.

Value

U

uniformly distributed on (0,1)

V

uniformly distributed on (0,1)

X

Weibull distributed (scale1, shape1)

Y

Weibull distributed (scale2, shape2)

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

n=100
Dat=simu.Joe(n=n,alpha=1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")

Simulating data from the t-copula

Description

n pairs of (U,V) are generated from the t-copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.

Usage

simu.t(n,alpha,df=1,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)

Arguments

n

sample size

alpha

association (copula) parameter

df

degrees of freedom (d=1 is the default)

scale1

scale parameter for X

scale2

scale parameter for Y

shape1

shape parameter for X

shape2

shape parameter for Y

Print

print Kendall's tau and means of X and Y if "TRUE"

Details

See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.

Value

U

uniformly distributed on (0,1)

V

uniformly distributed on (0,1)

X

Weibull distributed (scale1, shape1)

Y

Weibull distributed (scale2, shape2)

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

n=100
Dat=simu.t(n=n,alpha=0.8,df=1,scale1=1,scale2=2,shape1=0.5,shape2=2,Print=TRUE)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")

A goodness-of-fit test for the Clayton copula

Description

Perform a goodness-of-fit test for the Clayton copula based on Emura, Lin and Wang (2010). The test is asymptotically equivalent to the test of Shih (1998).

Usage

Test.Clayton(x.obs,y.obs,dx,dy,lower=0.001,upper=50,U.plot=TRUE)

Arguments

x.obs

censored times for X

y.obs

censored times for Y

dx

censoring indicators for X

dy

censoring indicators for Y

lower

lower bound for the association parameter

upper

upper bound for the association parameter

U.plot

if TRUE, draw the plot of U_1(theta)

Details

See the references.

Value

theta1

association parameter by the pseudo-likelihood estimator

theta2

association parameter by the unweighted estimator

Stat

log(theta1)-log(theta2)

Z

Z-value of the goodness-of-fit for the Clayton copula

P

P-value of the goodness-of-fit for the Clayton copula

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Shih JH (1998) A goodness-of-fit test for association in a bivariate survival model. Biometrika 85: 189-200

Examples

n=20
theta_true=2 ## association parameter ##
r1_true=2 ## hazard for X
r2_true=2 ## hazard for Y

set.seed(1)
V1=runif(n)
V2=runif(n)
X=-1/r1_true*log(1-V1)
W=(1-V1)^(-theta_true)
Y=1/theta_true/r2_true*log(  1-W+W*(1-V2)^(-theta_true/(theta_true+1))  )
C=runif(n,min=0,max=5)

x.obs=pmin(X,C)
y.obs=pmin(Y,C)
dx=X<=C
dy=Y<=C

Test.Clayton(x.obs,y.obs,dx,dy)

A goodness-of-fit test for the Gumbel copula

Description

Perform a goodness-of-fit test for the Gumbel copula based on Emura, Lin and Wang (2010).

Usage

Test.Gumbel(x.obs,y.obs,dx,dy,lower=0.01,upper=50,U.plot=TRUE)

Arguments

x.obs

censored times for X

y.obs

censored times for Y

dx

censoring indicators for X

dy

censoring indicators for Y

lower

lower bound for the association parameter

upper

upper bound for the association parameter

U.plot

if TRUE, draw the plot of U_1(theta) and U_2(theta)

Details

See the references.

Value

theta1

association parameter by the pseudo-likelihood estimator

theta2

association parameter by the unweighted estimator

Stat

log(theta1)-log(theta2)

Z

Z-value of the goodness-of-fit for the Clayton copula

P

P-value of the goodness-of-fit for the Clayton copula

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Examples

x.obs=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
y.obs=c(2,1,4,5,6,8,3,7,10,9,11,12,13,14,15)
dx=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
dy=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Test.Gumbel(x.obs,y.obs,dx,dy)

Estimation of an association parameter via the pseudo-likelihood

Description

Estimate the association parameter of the Clayton copula using bivariate survival data. The estimator was derived by Clayton (1978) and reformulated by Emura, Lin and Wang (2010).

Usage

U1.Clayton(x.obs,y.obs,dx,dy,lower=0.001,upper=50,U.plot=TRUE)

Arguments

x.obs

censored times for X

y.obs

censored times for Y

dx

censoring indicators for X

dy

censoring indicators for Y

lower

lower bound for the association parameter

upper

upper bound for the association parameter

U.plot

if TRUE, draw the plot of U_1(theta)

Details

Details are seen from the references.

Value

theta

association parameter

tau

Kendall's tau (=theta/(theta+2))

Author(s)

Takeshi Emura

References

Clayton DG (1978). A model for association in bivariate life tables and its application to epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65: 141-51.

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Examples

n=200
theta_true=2 ## association parameter ##
r1_true=1 ## hazard for X
r2_true=1 ## hazard for Y

set.seed(1)
V1=runif(n)
V2=runif(n)
X=-1/r1_true*log(1-V1)
W=(1-V1)^(-theta_true)
Y=1/theta_true/r2_true*log(  1-W+W*(1-V2)^(-theta_true/(theta_true+1))  )
C=runif(n,min=0,max=5)

x.obs=pmin(X,C)
y.obs=pmin(Y,C)
dx=X<=C
dy=Y<=C

U1.Clayton(x.obs,y.obs,dx,dy)

Estimation of an association parameter via the unweighted estimator

Description

Estimate the association parameter of the Gumbel copula using bivariate survival data. The estimator was derived by Emura, Lin and Wang (2010).

Usage

U1.Gumbel(x.obs,y.obs,dx,dy,lower=0.01,upper=50,U.plot=TRUE)

Arguments

x.obs

censored times for X

y.obs

censored times for Y

dx

censoring indicators for X

dy

censoring indicators for Y

lower

lower bound for the association parameter

upper

upper bound for the association parameter

U.plot

if TRUE, draw the plot of U_1(theta)

Details

Details are seen from the references.

Value

theta

association parameter

tau

Kendall's tau (=theta/(theta+2))

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Examples

x.obs=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
y.obs=c(2,1,4,5,6,8,3,7,10,9,11,12,13,14,15)
dx=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
dy=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
U1.Gumbel(x.obs,y.obs,dx,dy)

Estimation of an association parameter via the unweighted estimator

Description

Estimate the association parameter of the Clayton copula using bivariate survival data. The estimator was defined as the unweighted estimator in Emura, Lin and Wang (2010).

Usage

U2.Clayton(x.obs,y.obs,dx,dy)

Arguments

x.obs

censored times for X

y.obs

censored times for Y

dx

censoring indicators for X

dy

censoring indicators for Y

Details

Details are seen from the references.

Value

theta

association parameter

tau

Kendall's tau (=theta/(theta+2))

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Examples

n=200
theta_true=2 ## association parameter ##
r1_true=1 ## hazard for X
r2_true=1 ## hazard for Y

set.seed(1)
V1=runif(n)
V2=runif(n)
X=-1/r1_true*log(1-V1)
W=(1-V1)^(-theta_true)
Y=1/theta_true/r2_true*log(  1-W+W*(1-V2)^(-theta_true/(theta_true+1))  )
C=runif(n,min=0,max=5)

x.obs=pmin(X,C)
y.obs=pmin(Y,C)
dx=X<=C
dy=Y<=C

U2.Clayton(x.obs,y.obs,dx,dy)

Estimation of an association parameter via the pseudo-likelihood

Description

Estimate the association parameter of the Gumbel copula using bivariate survival data. The estimator was derived by Emura, Lin and Wang (2010).

Usage

U2.Gumbel(x.obs,y.obs,dx,dy,lower=0.01,upper=50,U.plot=TRUE)

Arguments

x.obs

censored times for X

y.obs

censored times for Y

dx

censoring indicators for X

dy

censoring indicators for Y

lower

lower bound for the association parameter

upper

upper bound for the association parameter

U.plot

if TRUE, draw the plot of U_1(theta)

Details

Details are seen from the references.

Value

theta

association parameter

tau

Kendall's tau (=theta/(theta+1))

Author(s)

Takeshi Emura

References

Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43

Examples

x.obs=c(1,2,3,4,5)
y.obs=c(2,1,4,5,6)
dx=c(1,1,1,1,1)
dy=c(1,1,1,1,1)
U2.Gumbel(x.obs,y.obs,dx,dy)

Weibull regression under the BB1 copula

Description

See Section 2.6.3 of Emura et al. (2019).

Usage

Weib.reg.BB1(x.obs,y.obs,dx,dy,zx,zy,convergence.par=FALSE)

Arguments

x.obs

censored times for X

y.obs

censored times for Y

dx

censoring indicators for X

dy

censoring indicators for Y

zx

matrix of covariates for X

zy

matrix of covariates for Y

convergence.par

if TRUE, show the details

Details

Details are seen from the references.

Value

beta_x

regression coefficients for X

beta_y

regression coefficients for Y

Author(s)

Takeshi Emura

References

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

#TBA

Weibull regression under the BB1 copula with known "delta"

Description

See Section 2.6.3 of Emura et al. (2019).

Usage

Weib.reg.BB1.0(x.obs,y.obs,dx,dy,zx,zy,delta=0,convergence.par=FALSE)

Arguments

x.obs

censored times for X

y.obs

censored times for Y

dx

censoring indicators for X

dy

censoring indicators for Y

zx

matrix of covariates for X

zy

matrix of covariates for Y

delta

known copula parameter (d>=0)

convergence.par

if TRUE, show the details

Details

Details are seen from the references.

Value

beta_x

regression coefficients for X

beta_y

regression coefficients for Y

Author(s)

Takeshi Emura

References

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

#TBA

Weibull regression under the Clayton copula

Description

See Section 2.6.3 of Emura et al. (2019).

Usage

Weib.reg.Clayton(x.obs,y.obs,dx,dy,zx,zy,convergence.par=FALSE)

Arguments

x.obs

censored times for X

y.obs

censored times for Y

dx

censoring indicators for X

dy

censoring indicators for Y

zx

matrix of covariates for X

zy

matrix of covariates for Y

convergence.par

if TRUE, show the details

Details

Details are seen from the references.

Value

beta_x

regression coefficients for X

beta_y

regression coefficients for Y

Author(s)

Takeshi Emura

References

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

#TBA

Weibull regression under the Frank copula

Description

See Section 2.6.3 of Emura et al. (2019).

Usage

Weib.reg.Frank(x.obs,y.obs,dx,dy,zx,zy,convergence.par=FALSE)

Arguments

x.obs

censored times for X

y.obs

censored times for Y

dx

censoring indicators for X

dy

censoring indicators for Y

zx

matrix of covariates for X

zy

matrix of covariates for Y

convergence.par

if TRUE, show the details

Details

Details are seen from the references.

Value

beta_x

regression coefficients for X

beta_y

regression coefficients for Y

Author(s)

Takeshi Emura

References

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

#TBA

Weibull regression under the Gumbel copula

Description

See Section 2.6.3 of Emura et al. (2019).

Usage

Weib.reg.Gumbel(x.obs,y.obs,dx,dy,zx,zy,convergence.par=FALSE)

Arguments

x.obs

censored times for X

y.obs

censored times for Y

dx

censoring indicators for X

dy

censoring indicators for Y

zx

matrix of covariates for X

zy

matrix of covariates for Y

convergence.par

if TRUE, show the details

Details

Details are seen from the references.

Value

beta_x

regression coefficients for X

beta_y

regression coefficients for Y

Author(s)

Takeshi Emura

References

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

Examples

#TBA