
Package: ConsRankClass (via r-universe)
August 27, 2024

Type Package

Title Classification and Clustering of Preference Rankings

Version 1.0.1

Date 2021-09-28

Maintainer Antonio D'Ambrosio <antdambr@unina.it>

Depends ConsRank

Imports janitor, methods, pracma, rlist, proxy

Description Tree-based classification and soft-clustering method for
preference rankings, with tools for external validation of
fuzzy clustering. It contains the recursive partitioning
algorithm for preference rankings, non-parametric tree-based
method for a matrix of preference rankings as a response
variable. It contains also the distribution-free soft
clustering method for preference rankings, namely the K-median
cluster component analysis (CCA). The package depends on the
'ConsRank' R package. Options for validate the tree-based
method are both test-set procedure and V-fold cross validation.
The package contains the routines to compute the adjusted
concordance index (a fuzzy version of the adjusted rand index)
and the normalized degree of concordance (the corresponding
fuzzy version of the rand index). Essential references:
D'Ambrosio, A., Amodio, S., Iorio, C., Pandolfo, G., and
Siciliano, R. (2021) <doi:10.1007/s00357-020-09367-0>
D'Ambrosio, A., and Heiser, W.J. (2019)
<doi:10.1007/s41237-018-0069-5>; D'Ambrosio, A., and Heiser
W.J. (2016) <doi:10.1007/s11336-016-9505-1>; Hullermeier, E.,
Rifqi, M., Henzgen, S., and Senge, R. (2012)
<doi:10.1109/TFUZZ.2011.2179303>.

License GPL-3

Encoding UTF-8

URL https://www.r-project.org/

Repository CRAN

1

https://doi.org/10.1007/s00357-020-09367-0
https://doi.org/10.1007/s41237-018-0069-5
https://doi.org/10.1007/s11336-016-9505-1
https://doi.org/10.1109/TFUZZ.2011.2179303
https://www.r-project.org/

2 cca

RoxygenNote 7.1.1

NeedsCompilation no

Author Antonio D'Ambrosio [aut, cre]

Date/Publication 2021-09-28 10:10:02 UTC

Contents

cca . 2
ccacontrol . 4
EVS . 5
fuzzyconcordance . 7
getsubtree . 9
Irish . 10
layouttree . 11
nodepath . 12
plot.ranktree . 13
predict.ranktree . 14
print.cca . 15
print.ranktree . 16
ranktree . 16
ranktreecontrol . 19
summary.cca . 21
summary.ranktree . 21
treepaths . 22
Univranks . 23
validatetree . 25

Index 27

cca K-Median Cluster Component Analysis

Description

K-Median Cluster Component Analysis, a distribution-free soft-clustering method for preference
rankings.

Usage

cca(X, k, control = ccacontrol(...), ...)

cca 3

Arguments

X A n by m data matrix containing preference rankings, in which there are n judges
and m objects to be judged. Each row is a ranking of the objects which are
represented by the columns.

k The number of cluster components

control a list of options that control details of the cca algorithm governed by the func-
tion ccacontrol. The options govern maximum number of iterations of cca
(itercca=1 is the default), the algorithm chosen to compute the median ranking
(default, "quick"), and other options related to the consrank algorithm, which is
called by cca

... arguments passed bypassing ccacontrol

Details

The user can use any algorithm implemented in the consrank function from the ConsRank pack-
age. All algorithms allow the user to set the option ’full=TRUE’ if the median ranking(s) must be
searched in the restricted space of permutations instead of in the unconstrained universe of rankings
of n items including all possible ties. There are two classification uncertainty measures: Us and
Uprods. "Us" is the geometric mean of the membership probabilities of each individual, normal-
ized in such a way that in the case of maximum uncertainty Us=1. "Ucca" is the average of all the
"Us". "Uprods" is the product of the membership probabilities of each individual, normalized in
such a way that in the case of maximum uncertainty Uprods=1. "Uprodscca" is the average of all
the "Uprods".

Value

An object of the class "cca". It contains:

pk the membership probability matrix
clc cluster centers
oclc cluster centers in terms of orderings
idc crisp partition: id of the cluster component associated with the highest membership probability
Hcca Global homogeneity measure (tau_X rank correlation coefficient)
hk Homogeneity within cluster
props estimated proportion of cases within cluster
Us Uncertainty measure per-individual (see details)
Ucca Global uncertainty measure
Uprods Uncertainty measure per-individual (see details)
Uprodscca Global uncertainty measure
consrankout complete output of rank aggregation algorithm, containing eventually multiple median rankings

Author(s)

Antonio D’Ambrosio <antdambr@unina.it>

4 ccacontrol

References

D’Ambrosio, A. and Heiser, W.J. (2019). A Distribution-free Soft Clustering Method for Preference
Rankings. Behaviormetrika , vol. 46(2), pp. 333–351, DOI: 10.1007/s41237-018-0069-5

Heiser W.J., and D’Ambrosio A. (2013). Clustering and Prediction of Rankings within a Kemeny
Distance Framework. In Berthold, L., Van den Poel, D, Ultsch, A. (eds). Algorithms from and for
Nature and Life.pp-19-31. Springer international. DOI: 10.1007/978-3-319-00035-0_2.

Ben-Israel, A., and Iyigun, C. (2008). Probabilistic d-clustering. Journal of Classification, 25(1),
pp.5-26. DOI: 10.1007/s00357-008-9002-z

See Also

ccacontrol

ranktree

Examples

data(Irish)
set.seed(135) #for reproducibility
CCA with four components
ccares <- cca(Irish$rankings, 4, itercca=10)
summary(ccares)

ccacontrol Utility function

Description

Utility function to use to set the control arguments of cca

Usage

ccacontrol(
algorithm = "quick",
full = FALSE,
itercca = 1,
consrankitermax = 10,
np = 15,
gl = 100,
ff = 0.4,
cr = 0.9,
proc = FALSE,
ps = FALSE

)

EVS 5

Arguments

algorithm The algorithm used to compute the median ranking. One among"BB", "quick"
(default), "fast" and "decor"

full Specifies if the median ranking must be searched in the universe of rankings
including all the possible ties. Default: FALSE

itercca Number of iterations of cca
consrankitermax

Number of iterations for "fast" and "decor" algorithms. itermax=10 is the default
option.

np (for "decor" only) the number of population individuals. np=15 is the default
option.

gl (for"decor" only) generations limit, maximum number of consecutive genera-
tions without improvement. gl=100 is the default option.

ff (for"decor" only) the scaling rate for mutation. Must be in [0,1]. ff=0.4 is the
default option.

cr (for"decor" only) the crossover range. Must be in [0,1]. cr=0.9 is the default
option.

proc (for "BB" only) proc=TRUE allows the branch and bound algorithm to work
in difficult cases, i.e. when the number of objects is larger than 15 or 25.
proc=FALSE is the default option

ps If PS=TRUE, on the screen some information about how many branches are
processed are displayed. Default value: FALSE

Value

A list containing all the control parameters

Author(s)

Antonio D’Ambrosio <antdambr@unina.it>

See Also

cca

EVS European Values Studies (EVS) data

Description

Random sub-sample of 3584 cases of the survey conducted in 1999 in 32 countries analyzed by
Vermunt (2003).

6 EVS

Usage

data("EVS")

Format

The format is: List of 3

$ data:’data.frame’: 1911 obs. of 11 variables:

country, gender ,yearbird, mstatus (marital status), eduage (age of education completion), employ-
ment (Employment status: ordinal scale 1-8), householdinc (Household income: ordinal scale 1-
10), A (Maintain order in Nation),Give people more say in Government decisions, (C) Fight rising
prices, (D) Protect freedom of speech.

$ predictors:’data.frame’ with all the predictors

$ rankings : matrix with the preferencres for "A" (Maintain order in Nation), "B" (Give people more
say in Government decisions), "C" (Fight rising prices), "D" (Protect freedom of speech).

Details

Rankings were obtained by applying the post-materialism scale developed by Inglehart (1977). The
scale is based upon an experiment of the type “pick 2 out of 4” most important political goals
for your Governments. For this reason, replace the ’NA’s with 3 before using the rankings with
codes ’ranktree’ or ’cca’ (see D’Ambrosio and Heiser, 2016). About the predictors, the coding
of the Countries are: G1 (Austria, Denmark, Netherlands, Sweden), G2 (Belgium, Croatia, France,
Greece, Ireland, Northern Ireland, Spain), G3 (Bulgaria, Czechnia, East, Germany, Finland, Iceland,
Luxembourg, Malta, Portugal, Romania, Slovenia, West Germany), G4 (Belarus, Estonia, Hungary,
Latvia, Lithuania, Poland, Russia, Slovakia, Ukraine). Coding of predictor "mstatus" are: mar
(married), wid (widowed), div (divorced), sep (separated), nevm (never married).

Source

http://statisticalinnovations.com/technicalsupport/choice_datasets.html

References

Vermunt, J. K. (2003). Multilevel latent class models. Sociological Methodology, 33(1), 213–239.

Inglehart, R. (1977). The silent revolution: Changing values and political styles among Western
Publics. Princeton, NJ: Princeton University Press.

D’Ambrosio, A., and Heiser W.J. (2016). A recursive partitioning method for the prediction of
preference rankings based upon Kemeny distances. Psychometrika, vol. 81 (3), pp.774-94.

Examples

data(EVS)

EVS$rankings[is.na(EVS$rankings)] <- 3 #place unranked objects in a tie to the third position
ccares <- cca(EVS$rankings,4) #solution with 4 components

fuzzyconcordance 7

fuzzyconcordance Normalized Degree of Concordance (NDC) and Adjusted Concor-
dance Index (ACI)

Description

Given two fuzzy (Ruspini) partitions, it compute the NDC and the ACI. NDC is the fuzzy version
of the Rand Index, as well as ACI is the fuzzy version of the Adjusted Rand Index

Usage

fuzzyconcordance(P, Q, nperms = 1000)

Arguments

P A fuzzy partition. It has to be a matrix with n rows and k columns. Each column
is expression of the degree of membership of the i-th row over the k partitions
(see details).

Q A fuzzy partition. It has to be a matrix with n rows and h columns. Each column
is expression of the degree of membership of the i-th row over the h partitions
(see details).

nperms number of permutations necessary to compute ACI. Default: 1000

Details

Both P and Q, or only one of those, can be crisp (or hard) partitions. In this case, each row must
contain either 0 or 1, and the sum of the i-th row must be 1. In other words, either P or Q (or both)
are expressed in terms of dummy coding. If both partitions are crisp, then NDC is equal to Rand
Index and ACI is equal to Adjusted Rand Index. This function can be used to externally validate
the output of any fuzzy clustering method

Value

A list containing:

ACI the Adjusted Concordance Index
NDC the Normalized Degree of Concordance

Author(s)

Antonio D’Ambrosio <antdambr@unina.it>

8 fuzzyconcordance

References

D’Ambrosio, A., Amodio, S., Iorio, C., Pandolfo, G. and Siciliano, R. (2021). Adjusted Concor-
dance Index: an Extension of the Adjusted Rand Index to Fuzzy Partitions. Journal of Classification
vol. 38(1), pp. 112–128 (2021). DOI: 10.1007/s00357-020-09367-0

Hullermeier, E., Rifqi, M., Henzgen, S., and Senge, R. (2012). Comparing fuzzy partitions: a
generalization of the Rand index and related measures. IEEE Transactions on Fuzzy Systems,
20(3), 546–556. DOI: 10.1109/TFUZZ.2011.2179303

See Also

cca

Examples

#two random fuzzy partitions
P = rbind(c(0.5259, 0.1656, 0.3085),
c(0.5623, 0.1036, 0.3341),
c(0.2508, 0.1849, 0.5643),
c(0.5654, 0.1934, 0.2413),
c(0.4529, 0.1679, 0.3792),
c(0.2390, 0.1758, 0.5852),
c(0.3114, 0.1743, 0.5143),
c(0.4188, 0.1392, 0.4420),
c(0.5830, 0.1655, 0.2514),
c(0.5860, 0.1171, 0.2969),
c(0.2630, 0.1706, 0.5664),
c(0.5882, 0.1032, 0.3086),
c(0.5829, 0.1277, 0.2894),
c(0.3942, 0.1046, 0.5012),
c(0.5201, 0.1097, 0.3702),
c(0.2568, 0.1823, 0.5609),
c(0.3687, 0.1695, 0.4618),
c(0.5663, 0.1317, 0.3020),
c(0.5169, 0.1950, 0.2881),
c(0.5838, 0.1034, 0.3128))

Q = rbind(c(0.4494, 0.3755, 0.1751),
c(0.5219, 0.3526, 0.1255),
c(0.3432, 0.5062, 0.1506),
c(0.3120, 0.5181, 0.1699),
c(0.5362, 0.2747, 0.1891),
c(0.4082, 0.3959, 0.1959),
c(0.4670, 0.3782, 0.1547),
c(0.4276, 0.4585, 0.1139),
c(0.4013, 0.4837, 0.1149),
c(0.3724, 0.5019, 0.1258),
c(0.5055, 0.3104, 0.1841),
c(0.4027, 0.4719, 0.1254),
c(0.3565, 0.4620, 0.1814),
c(0.6106, 0.2650, 0.1244),
c(0.5595, 0.2476, 0.1929),

getsubtree 9

c(0.4657, 0.3993, 0.1350),
c(0.2964, 0.5839, 0.1197),
c(0.5387, 0.3362, 0.1251),
c(0.4043, 0.4341, 0.1616),
c(0.5631, 0.2895, 0.1473))

ci <- fuzzyconcordance(P,Q)

#generate a random fuzzy partition with two components (clusters)
Q2 <- matrix(runif(20),ncol=1)
Q2 <- cbind(Q2,1-Q2)

ci2 <- fuzzyconcordance(P,Q2)

#generate a random crisp partition
P2 <- t(rmultinom(20,1,c(0.3,0.3,0.4)))

ci3 <- fuzzyconcordance(P2,Q)
#--------------------
Not run:
install.packages("Rankcluster")
library("Rankcluster") # model-based clustering algorithm for

ranking data by Biernacki and Jacques (2013)
<doi:10.1016/j.csda.2012.08.008>

data(APA)
set.seed(136) #for reproducibility
rcres <- rankclust(APA$data,K=3) # solution with 3 centers, it takes about 75 seconds
##
ccares <- cca(APA$data,k=3) #solution with 3 components, it takes about 7 seconds
##
ci <- fuzzyconcordance(rcres[3]@tik,ccares$pk)
ci$ACI # 0.0226 means that the two partitions are similar (see NDC below),

but their similarity is mainly due to chance
ci$NDC

End(Not run)

getsubtree Determine a tree from the main tree-based structure

Description

Given a tree belonging to the class "ranktree", determine a subtree with a given number of terminal
nodes

Usage

getsubtree(Tree, cut, tokeep = NULL)

10 Irish

Arguments

Tree An object of the class "ranktree" coming form te function ranktree

cut The maximum number of terminal nodes that the Tree must have

tokeep parameter invoked by other internal functions

Details

If the pruning sequence returns a series of subtrees with, say, 1,2,4,7,9 terminal nodes and the user
set cut=8, the function extract the subtree with 7 terminal nodes.

Value

An object of the class "ranktree", containing the same information of the output of the function
ranktree

Author(s)

Antonio D’Ambrosio <antdambr@unina.it>

Examples

data("Univranks")
tree <- ranktree(Univranks$rankings,Univranks$predictors,num=50)
#see how many terminal nodes have the trees compomimg the nested sequence of subtrees
infoprun <- tree$pruneinfo$termnodes
#select the tree with, say, 6 terminal nodes
tree6 <- getsubtree(tree,6)

Irish Irish Election data set

Description

An opinion poll conducted by Irish Marketing Surveys one month prior to the election in 1997.
Interviews were conducted on about 1100 respondents, drawn from 100 sampling areas. Interviews
took place at randomly located homes, with respondents selected according to a socioeconomic
quota. A range of sociological questions was asked of each respondent, as was their voting prefer-
ence, if any, for each of the candidates.

Usage

data("Irish")

layouttree 11

Format

The format is: List of 3

$ IrishElection: ’data.frame’: 1083 obs. of 11 variables: Gender (male, housewife, nonhousewife),
marital status (single, married, separated), age, socialclass (five unordered categories), Area (rural,
city, town), government satisfaction (no opinion,m satisfied, dissatisfied), Bano , Roch, McAl, Nall,
Scal

$ predictors :’data.frame’ with all the predictors

$ rankings : matrix with the preferencres for "Bano" "Roch" "McAl" "Nall"

Details

In the original version of the data, the ranking matrix contains NAs. Here, NAs are replaced with
the number 7, to indicate that all the non-stated preferences are in a tie at the last position (see
D’Ambrosio and Heiser, 2016). For details about the data set see Gormley and Murphy, 2008.

Source

https://projecteuclid.org/journals/annals-of-applied-statistics/volume-2/issue-4/A-mixture-of-experts-
model-for-rank-data-with/10.1214/08-AOAS178.full?tab=ArticleLinkSupplemental

References

Gormley, I.C., and Murphy, T.B. (2008). A mixture of experts model for rank data withapplications
in election studies. Annals of Applied Statistics 2(4): 1452-1477. DOI: 10.1214/08-AOAS178

D’Ambrosio, A., and Heiser W.J. (2016). A recursive partitioning method for the prediction of
preference rankings based upon Kemeny distances. Psychometrika, vol. 81 (3), pp.774-94. DOI:
10.1007/s11336-016-9505-1.

Examples

data(Irish)

layouttree Utility function

Description

A utility function completing the output of the function ranktree.

Usage

layouttree(Tree)

Arguments

Tree an object of the class "ranktree"

12 nodepath

Value

an object of the class "ranktree" completing the output of the function ranktree

Author(s)

Antonio D’Ambrosio <antdambr@unina.it>

nodepath Path of a terminal node

Description

Given an object of the class "ranktree", it visualize the path leading to the terminal node

Usage

nodepath(termnode, Tree)

Arguments

termnode The terminal node of which the path has to be extracted

Tree An object of the class "ranktree"

Value

The path leading to the terminal node

Author(s)

Antonio D’Ambrosio <antdambr@unina.it>

See Also

ranktree, treepaths, getsubtree

Examples

data(Irish)
#build the tree with default options
tree <- ranktree(Irish$rankings,Irish$predictors)
#get information about all the paths leading to terminal nodes
paths <- treepaths(tree)
#see the path for terminal node number 8
nodepath(termnode=8,tree)

plot.ranktree 13

plot.ranktree Plot tree-based structure or pruning sequence of ranktree

Description

Plot the tree coming from the ranktree or the pruning sequence of the ranktree

Usage

S3 method for class 'ranktree'
plot(
x,
plot.type = "tree",
dispclass = FALSE,
valtree = NULL,
taos = TRUE,
...

)

Arguments

x An object of the class "ranktree"

plot.type One among "tree" or "pruningseq"

dispclass Display the median ranking above terminal nodes. Default option: FALSE

valtree If plot.type="pruningseq", it shows the Tau_x rank correlation coefficient or the
error along the pruning sequence on the training set. If valtree is the output of the
function validatetree, it shows either the Tau_x rank correlation coefficient
or the error along the pruning sequence of also the decision tree (validated by
wither test set or cross-validation)

taos If plot.type="pruningseq", it plots the Tau_x rank correlation coefficient along
the pruning sequence. If taos=FALSE, it plots the error.

... System reserved (No specific usage)

Value

the plot of either the tree or the pruning sequence

Author(s)

Antonio D’Ambrosio <antdambr@unina.it>

See Also

ranktree, validatetree

14 predict.ranktree

Examples

data("Univranks")
tree <- ranktree(Univranks$rankings,Univranks$predictors,num=50)
plot(tree,dispclass=TRUE)

data(EVS)
EVS$rankings[is.na(EVS$rankings)] <- 3
set.seed(654)
training=sample(1911,1434)
tree <- ranktree(EVS$rankings[training,],EVS$predictors[training,],decrmin=0.001,num=50)
plot(tree,dispclass=TRUE)
#test set validation
vtreetest <- validatetree(tree,testX=EVS$predictors[-training,],EVS$rankings[-training,])
dtree <- getsubtree(tree,vtreetest$best_tau)
plot(dtree,dispclass=TRUE)
#see the global weigthted tau_X rank correlation coefficients
plot(tree,plot.type="pruningseq",valtree=vtreetest)
#see the error rates
plot(tree,plot.type="pruningseq",valtree=vtreetest, taos=FALSE)

predict.ranktree Predict the median rankings for new observations

Description

Predict the median rankings in a tree-based structure built with ranktree for new observations

Usage

S3 method for class 'ranktree'
predict(object, newx, ...)

Arguments

object An object of the class "ranktree"

newx A dataframe of the same nature of the predictor dataframe with which the tree
has been built

... System reserved (No specific usage)

Value

A list containing:

rankings the fit in terms of rankings
orderings the fit in terms of orderings

print.cca 15

info dataframe containing the terminal nodes in which the new x fall down, then the new x and the fit (in terms of rankings)

Author(s)

Antonio D’Ambrosio <antdambr@unina.it>

See Also

ranktree validatetree

Examples

data(EVS)
EVS$rankings[is.na(EVS$rankings)] <- 3
set.seed(654)
training=sample(1911,1434)
tree <- ranktree(EVS$rankings[training,],EVS$predictors[training,],decrmin=0.001,num=50)
#use the function predict ro predict rankings for new predictors
rankfit <- predict(tree,newx=EVS$predictors[-training,])
#fit in terms of rankings
rankfit$rankings
#fit in terms of orderings
rankfit$orderings
information about the fit (terminal node, predictor and fit (in terms of rankings))
rankfit$info

print.cca S3 methods for cca

Description

Print methods for objects of class cca

Usage

S3 method for class 'cca'
print(x, ...)

Arguments

x An object of the class "cca"
... not used

Value

print a brief summary of the CCA

16 ranktree

print.ranktree S3 methods for ranktree

Description

Print methods for objects of class ranktree

Usage

S3 method for class 'ranktree'
print(x, ...)

Arguments

x An object of the class "ranktree"

... not used

Value

print a brief summary of the prediction tree

Examples

data("Univranks")
tree <- ranktree(Univranks$rankings,Univranks$predictors,num=50)
tree

ranktree Recursive partitioning method for the prediction of preference rank-
ings based upon Kemeny distances

Description

Recursive partitioning method for the prediction of preference rankings based upon Kemeny dis-
tances.

Usage

ranktree(Y, X, prunplot = FALSE, control = ranktreecontrol(...), ...)

ranktree 17

Arguments

Y A n by m data matrix, in which there are n judges and m objects to be judged.
Each row is a ranking of the objects which are represented by the columns.

X A dataframe containing the predictor, that must have n rows.

prunplot prunplot=TRUE returns the plot of the pruning sequence. Default value: FALSE

control a list of options that control details of the ranktree algorithm governed by the
function ranktreecontrol. The options govern the minimum size within node
to split (the default value is 0.1*n, where n is the total sample size), the bound
on the decrease in impurity, (default, 0.01), the algorithm chosen to compute
the median ranking (default, "quick"), and other options related to the consrank
algorithm, which is called by ranktree

... arguments passed bypassing ranktreecontrol

Details

The user can use any algorithm implemented in the consrank function from the ConsRank pack-
age. All algorithms allow the user to set the option ’full=TRUE’ if the median ranking(s) must be
searched in the restricted space of permutations instead of in the unconstrained universe of rankings
of n items including all possible ties. The output consists in a object of the class "ranktree". It
contains:

X the predictors: it must be a dataframe
Y the response variable: the matrix of the rankings
node a list containing teh tree-based structure:

number node number
terminal logical: TRUE is terminal node
father father node number of the current node
idfather id of the father node of the current node
size sample size within node
impur impurity at node
wimpur weighted impurity at node
idatnode id of the observations within node
class median ranking within node in terms of orderings
nclass median ranking within node in terms of rankings
mclass eventual multiple median rankings
tau Tau_x rank correlation coefficient at node
wtau weighted Tau_x rank correlation coefficient at node
error error at node
werror weighted error at node
varsplit variables generating split
varsplitid id of variables generating split
cutspli splitting point
children children nodes generated by current node
idchildren id of children nodes generated by current node
. . . other info about node

control parameters used to build the tree
numnodes number of nodes of the tree

18 ranktree

tsynt list containing the synthesis of the tree:
children list containing all information about leaves
parents list containing all information about parent nodes

geneaoly data frame containing information about all nodes
idgenealogy data frame containing information about all nodes in terms of nodes id
idparents id of the parents of all the nodes
goodness goodness -and badness- of fit measures of the tree: Tau_X, error, impurity
nomin information about nature of the predictors
alpha alpha parameter for pruning sequence
pruneinfo list containing information about the pruning sequence:

prunelist information about the pruning
tau tau_X rank correlation coefficient of each subtree
error error of each subtree
termnodes number of terminal nodes of each subtree

subtrees list of each subtree created with the cost-complexity pruning procedure

Value

An object of the class ranktree. See details for detailed information.

Author(s)

Antonio D’Ambrosio <antdambr@unina.it>

References

D’Ambrosio, A., and Heiser W.J. (2016). A recursive partitioning method for the prediction of
preference rankings based upon Kemeny distances. Psychometrika, vol. 81 (3), pp.774-94.

See Also

ranktreecontrol, plot.ranktree, summary.ranktree, getsubtree, validatetree, treepaths,
nodepath

Examples

data("Univranks")
tree <- ranktree(Univranks$rankings,Univranks$predictors,num=50)

data(Irish)
#build the tree with default options
tree <- ranktree(Irish$rankings,Irish$predictors)

#plot the tree
plot(tree,dispclass=TRUE)

#visualize information
summary(tree)

ranktreecontrol 19

#get information about the paths leading to terminal nodes (all the paths)
infopaths <- treepaths(tree)

#the terminal nodes
infopaths$leaves

#sample size within each terminal node
infopaths$size

#visualize the path of the second leave (terminal node number 8)
infopaths$paths[[2]]

#alternatively
nodepath(termnode=8,tree)

set.seed(132) #for reproducibility
#validation of the tree via v-fold cross-validation (default value of V=5)
vtree <- validatetree(tree,method="cv")

#extract the "best" tree
dtree <- getsubtree(tree,vtree$best_tau)

summary(dtree)

#plot the validated tree
plot(dtree,dispclass=TRUE)

#predicted rankings
rankfit <- predict(dtree,newx=Irish$predictors)

#fit of rankings
rankfit$rankings

#fit in terms of orderings
rankfit$orderings

#all info about the fit (id og the leaf, predictor values, and fit)
rankfit$orderings

ranktreecontrol Utility function

Description

Utility function to use to set the control arguments of ranktree

20 ranktreecontrol

Usage

ranktreecontrol(
num = NULL,
decrmin = 0.01,
algorithm = "quick",
full = FALSE,
itermax = 10,
np = 15,
gl = 100,
ff = 0.4,
cr = 0.9,
proc = FALSE,
ps = FALSE

)

Arguments

num The maximum number of observations in a node to be split: default, 10% of the
sample size

decrmin Minimum decrease in impurity
algorithm The algorithm used to compute the median ranking. One among"BB", "quick"

(default), "fast" and "decor"
full Specifies if the median ranking must be searched in the universe of rankings

including all the possible ties. Default: FALSE
itermax Number of iterations for "fast" and "decor" algorithms. itermax=10 is the default

option.
np (for "decor" only) the number of population individuals. np=15 is the default

option.
gl (for"decor" only) generations limit, maximum number of consecutive genera-

tions without improvement. gl=100 is the default option.
ff (for"decor" only) the scaling rate for mutation. Must be in [0,1]. ff=0.4 is the

default option.
cr (for"decor" only) the crossover range. Must be in [0,1]. cr=0.9 is the default

option.
proc (for "BB" only) proc=TRUE allows the branch and bound algorithm to work

in difficult cases, i.e. when the number of objects is larger than 15 or 25.
proc=FALSE is the default option

ps If PS=TRUE, on the screen some information about how many branches are
processed are displayed. Default value: FALSE

Value

A list containing all the control parameters

Author(s)

Antonio D’Ambrosio <antdambr@unina.it>

summary.cca 21

See Also

ranktree

summary.cca S3 methods for ranktree

Description

Summary methods for objects of class cca

Usage

S3 method for class 'cca'
summary(object, ...)

Arguments

object An object of the class "cca"

... not used

Value

it shows the summary of the prediction tree

summary.ranktree S3 methods for ranktree

Description

Summary methods for objects of class ranktree

Usage

S3 method for class 'ranktree'
summary(object, ...)

Arguments

object An object of the class "ranktree"

... not used

Value

it shows the summary of the prediction tree

22 treepaths

Examples

data("Univranks")
tree <- ranktree(Univranks$rankings,Univranks$predictors,num=50)
summary(tree)

treepaths Path of a terminal node

Description

Given an object of the class "ranktree", it extracts the paths of all terminal nodes

Usage

treepaths(Tree)

Arguments

Tree An object of the class "ranktree"

Value

A list containing:

leaves the number of the terminal nodes
size the sample size within each terminal nodes
paths a list containing all the paths

Author(s)

Antonio D’Ambrosio <antdambr@unina.it>

See Also

ranktree, nodepath, getsubtree

Examples

data(Irish)
#build the tree with default options
tree <- ranktree(Irish$rankings,Irish$predictors)
#get information about all the paths leading to terminal nodes
paths <- treepaths(tree)
#
#the terminal nodes
paths$leaves
#
#sample size within each terminal node

Univranks 23

paths$size
#
#visualize the path of the second leave (terminal node number 8)
paths$paths[[2]]

Univranks University rankings dataset.

Description

University rankings dataset was analysed by Dittrich, Hatzinger and Katzenbeisser (1998) to inves-
tigate paired comparison data concerning European universities and student’s characteristics with
the goal to show that university rankings are different for different groups of students. Here both
raw data (with paired comparisons) and the version with rankings are preesented (see details). A
survey of 303 students studying at the Vienna University of Economics was carried out to examine
the student’s preference of six universities, namely London, Paris, Milan, St. Gallen, Barcelona
and Stockholm. The data set contains 23 variables. The first 15 digits in each row indicate the
preferences of a student. For a given comparison, responses were coded by 1 if the first preference
was preferred, by 2 if the second university was preferred, and by 3 if universities are tied. All rows
containing missing ranked Universities were skipped.

Usage

data("Univranks")

Format

The format is: List of 3

$ rawdata: ’data.frame’: 212 obs. of 23 variables: the first 15 are the paired comparisons coded as
follows: (1: the first is preferred to the second; 2: the second is preferred to the fisrt; 3 tied)

$ LP : comparison of London to Paris

$ LM : comparison of London to Milan

$ PM : comparison of London to Milan

$ LSg : comparison of London to St. Gallen

$ PSg : comparison of Paris to St. Gallen

$ MSg : comparison of Milan to St. Gallen

$ LB : comparison of London to Barcelona

$ PB : comparison of Paris to Barcelona

$ MB : comparison of Milan to Barcelona

$ SgB : comparison of St. Gallen to Barcelona

$ LSt : comparison of London to Stockholm

24 Univranks

$ PSt : comparison of Paris to Stockholm

$ MSt : comparison of Milan to Stockholm

$ SgSt: comparison of St. Gallen to Stockholm

$ BSt : comparison of Barcelona to Stockholm

$ Stud: Factor w/ 2 levels "commerce","other"

$ Eng : Factor w/ 2 levels "good","poor""

$ Fra : Factor w/ 2 levels "good","poor"

$ Spa : Factor w/ 2 levels "good","poor"

$ Ita : Factor w/ 2 levels "good","poor"

$ Wor : Factor w/ 2 levels "no","yes"

$ Deg : Factor w/ 2 levels "no","yes"

$ Sex : Factor w/ 2 levels "female","male"

$ predictors:’data.frame’: 212 obs. of 8 variables(the last 8 variables of the "rawdata" dataframe

$ rankings : matrix of preference rankings. The columns are: "L" (London), "P" (Paris), "M"
(Milan), "Sg" (St. Gallen), "B" (Barcerlona), "St" (Stockholm)

Details

To obtain the preference rankings from the paired comparisons the procedure has been the follow-
ing: the first row of the raw data is [1 3 2 1 2 1 1 2 1 1 1 2 1 1 2]. London is preferred to Paris,
St. Gallen, Barcelona Stockholm (LP, LM, LSg, LB and LSt are always equal to 1), and there is
no preference between London and Milan (they are tied); Milan is preferred to Paris (PM = 2),
St. Gallen, Barcelona and Stockholm; and so on. The first ordering is then <L M Sg St B P>
corresponding to a ranking [1,5,1,2,4,3], where the columns indicate L P M Sg B St.

Source

http://www.blackwellpublishers.co.uk/rss

References

Dittrich, R., Hatzinger, R., and Katzenbeisser, W. (1998). Modelling the effect of subject-specific
covariates in paired comparison studies with an application to university rankings. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 47(4), 511-525. DOI: 10.1111/1467-
9876.00125

D’Ambrosio, A. (2008). Tree based methods for data editing and preference rankings. Ph.D. thesis,
University of Naples Federico II. https://www.doi.org/10.6092/UNINA/FEDOA/2746

Examples

data(Univranks)

https://www.doi.org/10.6092/UNINA/FEDOA/2746

validatetree 25

validatetree Validation of the tree for preference rankings

Description

Validation of the tree either with a test set procedure or with v-fold cross validation

Usage

validatetree(
Tree,
testX = NULL,
testY = NULL,
method = "test",
V = 5,
plotting = TRUE

)

Arguments

Tree An object of the class "ranktree" coming form te function ranktree

testX The data frame containing the test set (predictors)

testY The matrix ontaining the test set (response)

method One between "test" (default) or "cv"

V The cross-validation parameter. Default V=5

plotting With the defaul option plotting=TRUE, the pruning sequence plot is visualized

Value

A list containing:

tau the Tau_x rank correlation coefficient of the sequence of the trees
error the error of the sequence of the trees
termnodes the number of terminal nodes of the sequence of the trees
best_tau the best tree in terms of Tau_x rank correlation coefficient
best_error the best tree in terms of error (it is the same)
validation information about the validation procedure

#’

Author(s)

Antonio D’Ambrosio <antdambr@unina.it>

26 validatetree

Examples

data(EVS)
EVS$rankings[is.na(EVS$rankings)] <- 3
set.seed(654)
training=sample(1911,1434)
tree <- ranktree(EVS$rankings[training,],EVS$predictors[training,],decrmin=0.001,num=50)
#test set validation
vtreetest <- validatetree(tree,testX=EVS$predictors[-training,],EVS$rankings[-training,])
#cross-validation
vtreecv <- validatetree(tree,method="cv",V=10)

Index

∗ Adjusted
cca, 2

∗ Concordance
cca, 2

∗ Degree
cca, 2

∗ Index
cca, 2

∗ Normalized
cca, 2

∗ Preference
cca, 2
ranktree, 16

∗ Recursive
ranktree, 16

∗ Soft
cca, 2

∗ Tree-based
plot.ranktree, 13
ranktree, 16

∗ clustering
cca, 2

∗ datasets
EVS, 5
Irish, 10
Univranks, 23

∗ method
ranktree, 16

∗ of
cca, 2

∗ partitioning
ranktree, 16

∗ pruning
plot.ranktree, 13

∗ rankings
cca, 2
ranktree, 16

∗ sequence
plot.ranktree, 13

∗ structure
plot.ranktree, 13

cca, 2, 5, 8
ccacontrol, 4

EVS, 5

fuzzyconcordance, 7

getsubtree, 9, 12, 22

Irish, 10

layouttree, 11

nodepath, 12, 22

plot.ranktree, 13
predict.ranktree, 14
print.cca, 15
print.ranktree, 16

ranktree, 12, 13, 15, 16, 21, 22
ranktreecontrol, 19

summary.cca, 21
summary.ranktree, 21

treepaths, 12, 22

Univranks, 23

validatetree, 13, 15, 25

27

	cca
	ccacontrol
	EVS
	fuzzyconcordance
	getsubtree
	Irish
	layouttree
	nodepath
	plot.ranktree
	predict.ranktree
	print.cca
	print.ranktree
	ranktree
	ranktreecontrol
	summary.cca
	summary.ranktree
	treepaths
	Univranks
	validatetree
	Index

