Package 'ConnectednessApproach'

Title: Connectedness Approach
Description: The estimation of static and dynamic connectedness measures is created in a modular and user-friendly way. Besides, the time domain connectedness approaches, this package further allows to estimate the frequency connectedness approach, the joint spillover index and the extended joint connectedness approach. In addition, all connectedness frameworks can be based upon orthogonalized and generalized VAR, QVAR, LASSO VAR, Ridge VAR, Elastic Net VAR and TVP-VAR models. Furthermore, the package includes the conditional, decomposed and partial connectedness measures as well as the pairwise connectedness index, influence index and corrected total connectedness index. Finally, a battery of datasets are available allowing to replicate a variety of connectedness papers.
Authors: David Gabauer [aut, cre]
Maintainer: David Gabauer <[email protected]>
License: GPL-3
Version: 1.0.4
Built: 2025-03-01 03:36:49 UTC
Source: CRAN

Help Index


Dataset of Adekoya, Akinseye, Antonakakis, Chatziantoniou, Gabauer and Oliyide (2022)

Description

For detailed information see: Adekoya, O. B., Akinseye, A., Antonakakis, N., Chatziantoniou, I., Gabauer, D., and Oliyide, J. A. (2021). Crude oil and Islamic sectoral stocks: Asymmetric connectedness and investment strategies. Available at SSRN.

Usage

data(aaacgo2022)

Format

zoo data.frame


Dataset of Antonakakis, Chatziantoniou and Gabauer (2020)

Description

For detailed information see: Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84.

Usage

data(acg2020)

Format

zoo data.frame


Aggregated Connectedness Measures

Description

This function results in aggregated connectedness measures.

Usage

AggregatedConnectedness(dca, groups, start = NULL, end = NULL)

Arguments

dca

Dynamic connectedness object

groups

List of at least two group vectors

start

Start index

end

End index

Value

Get connectedness measures

Author(s)

David Gabauer

References

Stenfors, A., Chatziantoniou, I., & Gabauer, D. (2022). Independent Policy, Dependent Outcomes: A Game of Cross-Country Dominoes across European Yield Curves. Journal of International Financial Markets, Institutions and Money.

Examples

#Replication of Gabauer and Gupta (2018)
data("gg2018")
dca = ConnectednessApproach(gg2018, 
                            nlag=1, 
                            nfore=10, 
                            model="VAR",
                            connectedness="Time")
ac = AggregatedConnectedness(dca, groups=list("US"=c(1,2,3,4), "JP"=c(5,6,7,8)))

Bayes Prior

Description

Get Bayes prior

Usage

BayesPrior(x, size = NULL, nlag)

Arguments

x

zoo data matrix

size

Sample size used to calculate prior parameters

nlag

Lag length

Value

Get Bayes Prior

Author(s)

David Gabauer

References

Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. The Review of Economic Studies, 72(3), 821-852.

Examples

data("dy2012")
prior = BayesPrior(dy2012, nlag=1)

Dataset of Broadstock, Chatziantoniou and Gabauer (2022)

Description

For detailed information see: Broadstock, D., Broadstock, D. C., Chatziantoniou, I., & Gabauer, D. (2022). Minimum connectedness portfolios and the market for green bonds: Advocating socially responsible investment (SRI) activity. In Applications in Energy Finance (pp. 217-253). Palgrave Macmillan, Cham.

Usage

data(bcg2022)

Format

zoo data.frame


Dataset of Balcilar, Gabauer and Umar (2021)

Description

For detailed information see: Balcilar, M., Gabauer, D., & Umar, Z. (2021). Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach. Resources Policy, 73, 102219.

Usage

data(bgu2021)

Format

zoo data.frame


Bivariate DCC-GARCH

Description

This function multiple Bivariate DCC-GARCH models that captures more accurately conditional covariances and correlations

Usage

BivariateDCCGARCH(
  x,
  spec,
  copula = "mvt",
  method = "Kendall",
  transformation = "parametric",
  time.varying = TRUE,
  asymmetric = FALSE,
  eval.se = FALSE
)

Arguments

x

zoo dataset

spec

A cGARCHspec A cGARCHspec object created by calling cgarchspec.

copula

"mvnorm" or "mvt" (see, rmgarch package)

method

"Kendall" or "ML" (see, rmgarch package)

transformation

"parametric", "empirical" or "spd" (see, rmgarch package)

time.varying

Boolean value to either choose DCC-GARCH or CCC-GARCH

asymmetric

Whether to include an asymmetry term to the DCC model (thus estimating the aDCC).

eval.se

Boolean value to compute standard errors

Value

Estimate Bivariate DCC-GARCH

Author(s)

David Gabauer

References

Cocca, T., Gabauer, D., & Pomberger, S. (2024). Clean energy market connectedness and investment strategies: New evidence from DCC-GARCH R2 decomposed connectedness measures. Energy Economics.

Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339-350.


Kroner and Ng (1998) optimal bivariate portfolio weights

Description

This function calculates the optimal portfolio weights according to Kroner and Ng (1998)

Usage

BivariatePortfolio(
  x,
  H,
  method = c("cumsum", "cumprod"),
  long = TRUE,
  statistics = c("Fisher", "Bartlett", "Fligner-Killeen", "Levene", "Brown-Forsythe"),
  metric = "StdDev",
  digit = 2
)

Arguments

x

zoo return matrix (in percentage)

H

Residual variance-covariance, correlation or pairwise connectedness matrix

method

Cumulative sum or cumulative product

long

Allow only long portfolio position

statistics

Hedging effectiveness statistic

metric

Risk measure of Sharpe Ratio (StdDev, VaR, or CVaR)

digit

Number of decimal places

Value

Get bivariate portfolio weights

Author(s)

David Gabauer

References

Kroner, K. F., & Ng, V. K. (1998). Modeling asymmetric comovements of asset returns. The Review of Financial Studies, 11(4), 817-844.

Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of Finance, 34(1), 157-170.

Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & de Gracia, F. P. (2020). Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness. Energy Economics, 91, 104762.

Examples

data("g2020")
fit = VAR(g2020, configuration=list(nlag=1))
bpw = BivariatePortfolio(g2020/100, fit$Q, method="cumsum", statistics="Fisher")
bpw$TABLE

Dataset of Chatziantoniou, Elsayed, Gabauer and Gozgor (2022)

Description

For detailed information see: Chatziantoniou, I., Elsayed, AH., Gabauer, D. and Gozgor, G. (2021). Oil price shocks and exchange rate dynamics: New evidence from internal, external and partial connectedness measures for oil importing and exporting countries

Usage

data(cegg2022)

Format

zoo data.frame


Dataset of Chatziantoniou and Gabauer (2021)

Description

For detailed information see: Chatziantoniou, I., & Gabauer, D. (2021). EMU risk-synchronisation and financial fragility through the prism of dynamic connectedness. The Quarterly Review of Economics and Finance, 79, 1-14.

Usage

data(cg2021)

Format

zoo data.frame


Dataset of Chatziantoniou, Gabauer and Gupta (2022)

Description

For detailed information see: Chatziantoniou, I., Gabauer, D., & Gupta, R. (2021). Integration and Risk Transmission in the Market for Crude Oil: A Time-Varying Parameter Frequency Connectedness Approach.

Usage

data(cgg2022)

Format

zoo data.frame


Dataset of Cocca, Gabauer, and Pomberger (2024)

Description

For detailed information see: Cocca, T., Gabauer, D., & Pomberger, S. (2024). Clean energy market connectedness and investment strategies: New evidence from DCC-GARCH R2 decomposed connectedness measures. Energy Economics.

Usage

data(cgp2024)

Format

zoo data.frame


Dataset of Chatziantoniou, Gabauer and Stenfors (2021)

Description

For detailed information see: Chatziantoniou, I., Gabauer, D., & Stenfors, A. (2021). Interest rate swaps and the transmission mechanism of monetary policy: A quantile connectedness approach. Economics Letters, 204, 109891.

Usage

data(cgs2021)

Format

zoo data.frame


Dataset of Chatziantoniou, Gabauer and Stenfors (2022)

Description

For detailed information see: Chatziantoniou, I., Gabauer, D., & Stenfors, A. Independent Policy, Dependent Out-comes: A Game of Cross-Country Dom-inoes across European Yield Curves.

Usage

data(cgs2022)

Format

zoo data.frame


ConditionalConnectedness

Description

This function computes the conditional connectedness measures.

Usage

ConditionalConnectedness(dca, group = c(1, 2, 3), start = NULL, end = NULL)

Arguments

dca

Dynamic connectedness object

group

Group vector

start

Start index

end

End index

Value

Get connectedness measures

Author(s)

David Gabauer

References

Stenfors, A., Chatziantoniou, I., & Gabauer, D. (2022). Independent Policy, Dependent Outcomes: A Game of Cross-Country Dominoes across European Yield Curves. Journal of International Financial Markets, Institutions and Money.

Examples

#Replication of Chatzianzoniou, Gabauer and Stenfors (2022)
data("cgs2022")
dca = ConnectednessApproach(cgs2022, 
                            nlag=1, 
                            nfore=10, 
                            window.size=250,
                            model="VAR",
                            connectedness="Time")
cc = ConditionalConnectedness(dca, group=c(1,4,7,10,13,16))

Partial Conditional Correlations

Description

Compute partial conditional correlations

Usage

ConditionalCorrelation(Q)

Arguments

Q

Variance-covariance matrix of dimension

Value

Get partial conditional correlations

Author(s)

David Gabauer

Examples

data("dy2012")
fit = VAR(dy2012, configuration=list(nlag=1))
pcc = ConditionalCorrelation(fit$Q)

Connectedness Approach

Description

This function provides a modular framework combining various models and connectedness frameworks.

Usage

ConnectednessApproach(
  x,
  nlag = 1,
  nfore = 10,
  window.size = NULL,
  corrected = FALSE,
  model = c("VAR", "QVAR", "LAD", "LASSO", "Ridge", "Elastic", "TVP-VAR", "DCC-GARCH"),
  connectedness = c("Time", "Frequency", "Joint", "Extended Joint", "R2"),
  VAR_config = list(QVAR = list(tau = 0.5, method = "fn"), ElasticNet = list(nfolds = 10,
    alpha = NULL, loss = "mae", n_alpha = 10), TVPVAR = list(kappa1 = 0.99, kappa2 =
    0.99, prior = "BayesPrior", gamma = 0.01)),
  DCC_config = list(standardize = FALSE),
  Connectedness_config = list(TimeConnectedness = list(generalized = TRUE),
    FrequencyConnectedness = list(partition = c(pi, pi/2, 0), generalized = TRUE,
    scenario = "ABS"), R2Connectedness = list(method = "pearson", decomposition = TRUE,
    relative = FALSE))
)

Arguments

x

zoo data matrix

nlag

Lag length

nfore

H-step ahead forecast horizon

window.size

Rolling-window size or Bayes Prior sample size

corrected

Boolean value whether corrected or standard TCI should be computed

model

Estimation model

connectedness

Type of connectedness approach

VAR_config

Config for VAR model

DCC_config

Config for DCC-GARCH model

Connectedness_config

Config for connectedness approach

Value

Get connectedness measures

Author(s)

David Gabauer

References

Adekoya, O. B., Akinseye, A. B., Antonakakis, N., Chatziantoniou, I., Gabauer, D., & Oliyide, J. (2022). Crude oil and Islamic sectoral stocks: Asymmetric TVP-VAR connectedness and investment strategies. Resources Policy.

Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management.

Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & de Gracia, F. P. (2020). Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness. Energy Economics.

Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2021). The impact of Euro through time: Exchange rate dynamics under different regimes. International Journal of Finance & Economics.

Balcilar, M., Gabauer, D., & Umar, Z. (2021). Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach. Resources Policy.

Balli, F., Balli, H. O., Dang, T. H. N., & Gabauer, D. (2023). Contemporaneous and lagged R2 decomposed connectedness approach: New evidence from the energy futures market. Finance Research Letters.

Barunik, J., & Krehlik, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. Journal of Financial Econometrics.

Broadstock, D. C., Chatziantoniou, I., & Gabauer, D. (2022). Minimum connectedness portfolios and the market for green bonds: Advocating socially responsible investment (SRI) activity. In Applications in energy finance: The energy sector, economic activity, financial markets and the environment. Cham: Springer International Publishing.

Chatziantoniou, I., & Gabauer, D. (2021). EMU risk-synchronisation and financial fragility through the prism of dynamic connectedness. The Quarterly Review of Economics and Finance.

Chatziantoniou, I., Gabauer, D., & Stenfors, A. (2021). Interest rate swaps and the transmission mechanism of monetary policy: A quantile connectedness approach. Economics Letters.

Chatziantoniou, I., Gabauer, D., & Gupta, R. (2023). Integration and risk transmission in the market for crude oil: New evidence from a time-varying parameter frequency connectedness approach. Resources Policy.

Chatziantoniou, I., Aikins Abakah, E. J., Gabauer, D., & Tiwari, A. K. (2022). Quantile time-frequency price connectedness between green bond, green equity, sustainable investments and clean energy markets. Journal of Cleaner Production.

Chatziantoniou, I., Elsayed, A. H., Gabauer, D., & Gozgor, G. (2023). Oil price shocks and exchange rate dynamics: Evidence from decomposed and partial connectedness measures for oil importing and exporting economies. Energy Economics.

Cocca, T., Gabauer, D., & Pomberger, S. (2024). Clean energy market connectedness and investment strategies: New evidence from DCC-GARCH R2 decomposed connectedness measures. Energy Economics.

Cunado, J., Chatziantoniou, I., Gabauer, D., de Gracia, F. P., & Hardik, M. (2023). Dynamic spillovers across precious metals and oil realized volatilities: Evidence from quantile extended joint connectedness measures. Journal of Commodity Markets.

Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal.

Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting.

Gabauer, D. (2020). Volatility impulse response analysis for DCC-GARCH models: The role of volatility transmission mechanisms. Journal of Forecasting.

Gabauer, D. (2021). Dynamic measures of asymmetric & pairwise connectedness within an optimal currency area: Evidence from the ERM I system. Journal of Multinational Financial Management.

Gabauer, D., Chatziantoniou, I., & Stenfors, A. (2023). Model-free connectedness measures. Finance Research Letters.

Gabauer, D., Gupta, R., Marfatia, H. A., & Miller, S. M. (2024). Estimating US housing price network connectedness: Evidence from dynamic Elastic Net, Lasso, and ridge vector autoregressive models. International Review of Economics & Finance.

Gabauer, D., & Stenfors, A. (2024). Quantile-on-quantile connectedness measures: Evidence from the US treasury yield curve. Finance Research Letters, 60, 104852.

Lastrapes, W. D., & Wiesen, T. F. (2021). The joint spillover index. Economic Modelling, 94, 681-691.

Naeem, M. A., Chatziantoniou, I., Gabauer, D., & Karim, S. (2024). Measuring the G20 stock market return transmission mechanism: Evidence from the R2 connectedness approach. International Review of Financial Analysis.

Stenfors, A., Chatziantoniou, I., & Gabauer, D. (2022). Independent policy, dependent outcomes: A game of cross-country dominoes across European yield curves. Journal of International Financial Markets, Institutions and Money.

Zhang, Y., Gabauer, D., Gupta, R., & Ji, Q. (2024). How connected is the oil-bank network? Firm-level and high-frequency evidence. Energy Economics.

Examples

data("acg2020")
dca = ConnectednessApproach(acg2020, 
                            nlag=1, 
                            nfore=12,
                            model="VAR",
                            connectedness="Time",
                            VAR_config=list(TVPVAR=list(kappa1=0.99, kappa2=0.96,
                                            prior="MinnesotaPrior", gamma=0.1)))
dca$TABLE

Connectedness table

Description

This function provides standard connectedness table.

Usage

ConnectednessTable(FEVD, digit = 2)

Arguments

FEVD

Forecast error variance decomposition

digit

Number of decimal places

Value

Get connectedness table

Examples

data("dy2012")
fit = VAR(dy2012, configuration=list(nlag=1))
fevd = FEVD(Phi=fit$B, Sigma=fit$Q, nfore=10, type="time", generalized=TRUE)$FEVD
dca = ConnectednessTable(fevd)

DCC-GARCH selection specification

Description

This function calculates the optimal DCC-GARCH specification

Usage

DCCGARCHselection(
  x,
  distributions = c("norm", "snorm", "std", "sstd", "ged", "sged"),
  models = c("sGARCH", "eGARCH", "gjrGARCH", "iGARCH", "TGARCH", "AVGARCH", "NGARCH",
    "NAGARCH", "APARCH", "ALLGARCH"),
  prob = 0.05,
  conf.level = 0.9,
  lag = 20,
  ar = 0,
  ma = 0
)

Arguments

x

zoo data matrix

distributions

Vector of distributions

models

Vector of GARCH models

prob

The quantile (coverage) used for the VaR.

conf.level

Confidence level of VaR test statistics

lag

Lag length of weighted Portmanteau statistics

ar

AR(p)

ma

MA(q)

Value

Get best DCC-GARCH

Author(s)

David Gabauer

References

Ghalanos, A. (2014). rugarch: Univariate GARCH models, R package version 1.3-3.

Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2021). The impact of Euro through time: Exchange rate dynamics under different regimes. International Journal of Finance & Economics, 26(1), 1375-1408.


Dataset of Diebold and Yilmaz (2009)

Description

For detailed information see: Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158-171.

Usage

data(dy2009)

Format

A zoo data.frame containing 30x1141 observations.

Source

Yahoo Finance


Dataset of Diebold and Yilmaz (2012)

Description

For detailed information see: Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of forecasting, 28(1), 57-66.

Usage

data(dy2012)

Format

A zoo data.frame containing 30x1141 observations.

Source

Yahoo Finance


Elastic Net vector autoregression

Description

Estimation of a VAR using equation-by-equation LASSO, Ridge or Elastic Net regressions.

Usage

ElasticNetVAR(
  x,
  configuration = list(nlag = 1, nfolds = 10, loss = "mae", alpha = NULL, n_alpha = 10)
)

Arguments

x

zoo data matrix

configuration

Model configuration

nlag

Lag length

nfolds

N-fold cross validation

loss

Loss function

alpha

LASSO is alpha equal 1 and Ridge if alpha equal 0

n_alpha

Creates n-equidistant alpha values

Value

Estimate VAR model

Author(s)

David Gabauer

References

Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J., & Tibshirani, R. J. (2012). Strong rules for discarding predictors in lasso‐type problems. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(2), 245-266.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the royal statistical society: series B (statistical methodology), 67(2), 301-320.

Gabauer, D., Gupta, R., Marfatia, H. A., & Miller, S. M. (2024). Estimating US housing price network connectedness: Evidence from dynamic Elastic Net, Lasso, and ridge vector autoregressive models. International Review of Economics & Finance, 89, 349-362.

Examples

data("dy2012")
fit = ElasticNetVAR(dy2012, configuration=list(nlag=1, alpha=1, nfolds=10, loss="mae"))

Equally weighted portfolio

Description

This function calculates the equality weighted portfolio

Usage

EquallyWeightedPortfolio(
  x,
  method = c("cumsum", "cumprod"),
  statistics = c("Fisher", "Bartlett", "Fligner-Killeen", "Levene", "Brown-Forsythe"),
  metric = "StdDev",
  digit = 2
)

Arguments

x

zoo return matrix (in percentage)

method

Cumulative sum or cumulative product

statistics

Hedging effectiveness statistic

metric

Risk measure of Sharpe Ratio (StdDev, VaR, or CVaR)

digit

Number of decimal places

Value

Get portfolio weights

Author(s)

David Gabauer

References

Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of Finance, 34(1), 157-170.

Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & de Gracia, F. P. (2020). Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness. Energy Economics, 91, 104762.

Examples

data("g2020")
mcp = EquallyWeightedPortfolio(g2020/100, statistics="Fisher")
mcp$TABLE

Exclusive Connectedness Measures

Description

This function results in exclusive connectedness measures

Usage

ExclusiveConnectedness(dca, group = c(1, 2), start = NULL, end = NULL)

Arguments

dca

Dynamic connectedness object

group

Vector of group indices

start

Start index

end

End index

Value

Get connectedness measures

Author(s)

David Gabauer

References

Chatziantoniou, I., Elsayed, A. H., Gabauer, D., & Gozgor, G. (2023). Oil price shocks and exchange rate dynamics: Evidence from decomposed and partial connectedness measures for oil importing and exporting economies. Energy Economics, 120, 106627.

Examples

#Replication of Chatziantoniou, et al. (2022)
data("cegg2022")
dca = ConnectednessApproach(cegg2022,
                            nlag=1,
                            nfore=20,
                            model="VAR",
                            connectedness="Time",
                            corrected=TRUE)
exc = ExclusiveConnectedness(dca, group=c(1,2,3))

Balcilar et al. (2021) extended joint connectedness approach

Description

This function provides extended joint connectedness measures.

Usage

ExtendedJointConnectedness(Phi, Sigma, nfore = 10)

Arguments

Phi

VAR coefficient matrix

Sigma

Residual variance-covariance matrix

nfore

H-step ahead forecast horizon

Value

Get connectedness measures

Author(s)

David Gabauer

References

Balcilar, M., Gabauer, D., & Umar, Z. (2021). Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach. Resources Policy, 73, 102219.

Examples

#Replication of Balcilar et al. (2021)
data("bgu2021")
fit = VAR(bgu2021, configuration=list(nlag=1))
dca = ExtendedJointConnectedness(Phi=fit$B, Sigma=fit$Q, nfore=20)
dca$TABLE

External Connectedness Measures

Description

This function provides external connectedness measures

Usage

ExternalConnectedness(
  dca,
  groups = list(c(1), c(2:ncol(dca$NET))),
  start = NULL,
  end = NULL
)

Arguments

dca

Dynamic connectedness object

groups

List of at least two group vectors

start

Start index

end

End index

Value

Get connectedness measures

Author(s)

David Gabauer

References

Gabauer, D., & Gupta, R. (2018). On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach. Economics Letters, 171, 63-71.

Examples

data("gg2018")
dca = ConnectednessApproach(gg2018, model="VAR",
                            connectedness="Time",
                            nlag=1, nfore=10, window.size=200)
ext = ExternalConnectedness(dca, groups=list("US"=c(1,2,3,4), "JP"=c(5,6,7,8)))

Forecast error variance decomposition

Description

This function computes the orthogonalized/generalized forecast error variance decomposition

Usage

FEVD(
  Phi,
  Sigma,
  nfore = 100,
  type = c("time", "frequency"),
  generalized = TRUE,
  range = NULL
)

Arguments

Phi

VAR coefficient matrix

Sigma

Residual variance-covariance matrix

nfore

H-step ahead forecast horizon

type

Time or Frequency connectedness approach

generalized

Generalized or orthogonalized FEVD

range

Partition range for frequency approach only.

Value

Orthogonalized/generalized time/frequency forecast error variance decomposition

References

Stiassny, A. (1996). A spectral decomposition for structural VAR models. Empirical Economics, 21(4), 535-555.

Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1), 119-147.

Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17-29.

Examples

data("dy2012")
fit = VAR(dy2012, configuration=list(nlag=1))
fevd = FEVD(Phi=fit$B, Sigma=fit$Q, nfore=10, type="time", generalized=TRUE)$FEVD

Baruník and Křehlík (2018) frequency connectedness approach

Description

This function calculates the Baruník and Křehlík (2018) frequency connectedness measures.

Usage

FrequencyConnectedness(
  Phi,
  Sigma,
  nfore = 100,
  partition = c(pi, pi/2, 0),
  generalized = TRUE,
  orth = FALSE,
  scenario = "ABS",
  corrected = FALSE
)

Arguments

Phi

VAR coefficient matrix

Sigma

Residual variance-covariance matrix

nfore

H-step ahead forecast horizon

partition

Frequency spectrum

generalized

Orthorgonalized/generalized FEVD

orth

Orthorgonalized shocks

scenario

ABS or WTH

corrected

Boolean value whether corrected or standard TCI should be computed

Value

Get connectedness measures

Author(s)

David Gabauer

References

Baruník, J., & Křehlík, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. Journal of Financial Econometrics, 16(2), 271-296.

Examples

data("dy2012")
partition = c(pi+0.00001, pi/4, 0)
fit = VAR(dy2012, configuration=list(nlag=4))
dca = FrequencyConnectedness(Phi=fit$B, Sigma=fit$Q, nfore=100, partition=partition)

Dataset of Gabauer (2020)

Description

For detailed information see: Gabauer, D. (2020). Volatility impulse response analysis for DCC-GARCH models: The role of volatility transmission mechanisms. Journal of Forecasting, 39(5), 788-796.

Usage

data(g2020)

Format

zoo data.frame


Univariate GARCH selection criterion

Description

This function estimates and evaluates a combination of GARCH models with different distributions and suggests the best GARCH models among all alternatives given some test statistics

Usage

GARCHselection(
  x,
  distributions = c("norm", "snorm", "std", "sstd", "ged", "sged"),
  models = c("sGARCH", "eGARCH", "gjrGARCH", "iGARCH", "TGARCH", "AVGARCH", "NGARCH",
    "NAGARCH", "APARCH", "ALLGARCH"),
  prob = 0.05,
  conf.level = 0.9,
  lag = 20,
  ar = 0,
  ma = 0
)

Arguments

x

zoo data matrix

distributions

Vector of distributions

models

Vector of GARCH models

prob

The quantile (coverage) used for the VaR.

conf.level

Confidence level of VaR test statistics

lag

Lag length of weighted Portmanteau statistics

ar

AR(p)

ma

MA(q)

Value

Get optimal univariate GARCH model specification

Author(s)

David Gabauer

References

Ghalanos, A. (2014). rugarch: Univariate GARCH models, R package version 1.3-3.

Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2021). The impact of Euro through time: Exchange rate dynamics under different regimes. International Journal of Finance & Economics, 26(1), 1375-1408.


Univariate GARCH test statistics

Description

This function provides the results of multiple univariate GARCH test statistics

Usage

GARCHtests(fit, lag = 20, prob = 0.05, conf.level = 0.9)

Arguments

fit

Fitted univariate GARCH

lag

Lag length of weighted Portmanteau statistics

prob

The quantile (coverage) used for the VaR.

conf.level

Confidence level of VaR test statistics

Value

Get best univariate GARCH

Author(s)

David Gabauer

References

Ghalanos, A. (2014). rugarch: Univariate GARCH models, R package version 1.3-3.

Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2021). The impact of Euro through time: Exchange rate dynamics under different regimes. International Journal of Finance & Economics, 26(1), 1375-1408.


Dataset of Chatziantoniou, Abakah, Gabauer & Tiwari (2022)

Description

For detailed information see: Chatziantoniou, I., Abakah, E. J., Gabauer, D., & Tiwari, A. K. (2022). Quantile time-frequency price connectedness between green bond, green equity, sustainable investments and clean energy markets: Implications for eco-friendly investors. Available at SSRN 3970746.

Usage

data(gcat2022)

Format

zoo data.frame


Dataset of Gabauer and Gupta (2018)

Description

For detailed information see, Gabauer, D., & Gupta, R. (2018). On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach. Economics Letters, 171, 63-71.

Usage

data(gg2018)

Format

zoo data.frame


Dataset of Gabauer, Gupta, Haradik and Miller (2020)

Description

For detailed information see: Gabauer, D., Gupta, R., Marfatia, H., and Miller, S. M. (2020). Estimating us housing price network connectedness: Evidence from dynamic elastic net, lasso, and ridge vector autoregressive models.

Usage

data(gghm2022)

Format

zoo data.frame


Kroner and Sultan (1993) hedge ratios

Description

This function calculates the hedge ratios of Kroner and Sultan (1993)

Usage

HedgeRatio(
  x,
  H,
  method = c("cumsum", "cumprod"),
  statistics = c("Fisher", "Bartlett", "Fligner-Killeen", "Levene", "Brown-Forsythe"),
  metric = "StdDev",
  digit = 2
)

Arguments

x

zoo return matrix (in percentage)

H

Residual variance-covariance, correlation or pairwise connectedness matrix

method

Cumulative sum or cumulative product

statistics

Hedging effectiveness statistic

metric

Risk measure of Sharpe Ratio (StdDev, VaR, or CVaR)

digit

Number of decimal places

Value

Get hedge ratios

Author(s)

David Gabauer

References

Kroner, K. F., & Sultan, J. (1993). Time-varying distributions and dynamic hedging with foreign currency futures. Journal of Financial and Quantitative Analysis, 28(4), 535-551.

Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of Finance, 34(1), 157-170.

Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & de Gracia, F. P. (2020). Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness. Energy Economics, 91, 104762.

Examples

data("g2020")
fit = VAR(g2020, configuration=list(nlag=1))
hr = HedgeRatio(g2020/100, fit$Q)
hr$TABLE

Inclusive Connectedness Measures

Description

This function results in inclusive connectedness measures

Usage

InclusiveConnectedness(dca, group = c(1, 2), start = NULL, end = NULL)

Arguments

dca

Dynamic connectedness object

group

Vector of group indices

start

Start index

end

End index

Value

Get connectedness measures

Author(s)

David Gabauer

References

Chatziantoniou, I., Elsayed, A. H., Gabauer, D., & Gozgor, G. (2023). Oil price shocks and exchange rate dynamics: Evidence from decomposed and partial connectedness measures for oil importing and exporting economies. Energy Economics, 120, 106627.

Examples

data("cegg2022")
dca = ConnectednessApproach(cegg2022,
                            model="VAR",
                            connectedness="Time",
                            nlag=1,
                            nfore=20,
                            corrected=TRUE)
inc = InclusiveConnectedness(dca, group=c(1,2,3))

Internal Connectedness Measures

Description

This function provides internal connectedness measures

Usage

InternalConnectedness(
  dca,
  groups = list(c(1), c(2:ncol(dca$NET))),
  start = NULL,
  end = NULL
)

Arguments

dca

Dynamic connectedness object

groups

List of at least two group vectors

start

Start index

end

End index

Value

Get connectedness measures

Author(s)

David Gabauer

References

Gabauer, D., & Gupta, R. (2018). On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach. Economics Letters, 171, 63-71.

Examples

data("gg2018")
dca = ConnectednessApproach(gg2018, 
                            nlag=1, 
                            nfore=10, 
                            window.size=200,
                            model="VAR",
                            connectedness="Time")
int = InternalConnectedness(dca, groups=list("US"=c(1,2,3,4), "JP"=c(5,6,7,8)))

Impulse response functions

Description

This function calculates orthorgonalized/generalized impulse response functions of time or frequency domain.

Usage

IRF(Phi, Sigma, nfore = 10, orth = TRUE)

Arguments

Phi

VAR coefficient matrix

Sigma

Residual Variance-Covariance Matrix

nfore

H-step ahead forecast horizon

orth

Boolean

Value

Orthorgonal/generalized time/frequency impulse response functions

Author(s)

David Gabauer

References

Stiassny, A. (1996). A spectral decomposition for structural VAR models. Empirical Economics, 21(4), 535-555.

Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1), 119-147.

Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17-29.

Examples

data("dy2012")
fit = VAR(dy2012, configuration=list(nlag=1))
irf = IRF(Phi=fit$B, Sigma=fit$Q, nfore=10, orth=TRUE)

Dataset of Juncal, Chatziantoniou, Gabauer, Garcia & Hardik (2022)

Description

For detailed information see: Juncal, C., Chatziantoniou, I., Gabauer, D., De Gracia, F. P., & Hardik, M. (2022). Dynamic spillovers across precious metals and energy realized volatilities: Evidence from quantile extended joint connectedness measures.

Usage

data(jcggh2022)

Format

zoo data.frame


Lastrapes and Wiesen (2021) joint connectedness approach

Description

This function calculates the Lastrapes and Wiesen (2021) joint connectedness measures.

Usage

JointConnectedness(Phi, Sigma, nfore)

Arguments

Phi

VAR coefficient matrix

Sigma

Residual variance-covariance matrix

nfore

H-step ahead forecast horizon

Value

Get connectedness measures

Author(s)

David Gabauer

References

Lastrapes, W. D., & Wiesen, T. F. (2021). The joint spillover index. Economic Modelling, 94, 681-691.

Examples

data("lw2021")
fit = VAR(lw2021, configuration=list(nlag=2))
dca = JointConnectedness(Phi=fit$B, Sigma=fit$Q, nfore=30)
dca$TABLE

Least absolute deviation vector autoregression

Description

Estimation of a LAD VAR using equation-by-equation LAD regressions.

Usage

LADVAR(x, configuration = list(nlag = 1))

Arguments

x

zoo data matrix

configuration

model configuration

nlag

Lag length

Value

Estimate LAD VAR model

Author(s)

David Gabauer

Examples

data("dy2012")
fit = LADVAR(dy2012, configuration=list(nlag=1))

Dataset of Lastrapes and Wiesen (2021)

Description

For detailed information see: Lastrapes, W. D., & Wiesen, T. F. (2021). The joint spillover index. Economic Modelling, 94, 681-691.

Usage

data(lw2021)

Format

zoo data.frame


Minimum connectedness portfolio

Description

This function calculates the minimum connectedness portfolio

Usage

MinimumConnectednessPortfolio(
  x,
  H,
  method = c("cumsum", "cumprod"),
  statistics = c("Fisher", "Bartlett", "Fligner-Killeen", "Levene", "Brown-Forsythe"),
  long = TRUE,
  metric = "StdDev",
  digit = 2
)

Arguments

x

zoo return matrix (in percentage)

H

Pairwise connectedness matrix or alternatively variance-covariance or correlation matrix

method

Cumulative sum or cumulative product

statistics

Hedging effectiveness statistic

long

Allow only long portfolio position

metric

Risk measure of Sharpe Ratio (StdDev, VaR, or CVaR)

digit

Number of decimal places

Value

Get portfolio weights

Author(s)

David Gabauer

References

Broadstock, D. C., Chatziantoniou, I., & Gabauer, D. (2022). Minimum connectedness portfolios and the market for green bonds: Advocating socially responsible investment (SRI) activity. In Applications in Energy Finance (pp. 217-253). Palgrave Macmillan, Cham.

Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of Finance, 34(1), 157-170.

Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & de Gracia, F. P. (2020). Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness. Energy Economics, 91, 104762.

Examples

data("g2020")
fit = VAR(g2020, configuration=list(nlag=1))
dca = TimeConnectedness(Phi=fit$B, Sigma=fit$Q, nfore=10, generalized=TRUE)
mcp = MinimumConnectednessPortfolio(g2020/100, dca$PCI, statistics="Fisher")
mcp$TABLE

Minnesota Prior

Description

Get Minnesota Prior

Usage

MinnesotaPrior(gamma = 0.1, k, nlag)

Arguments

gamma

Diagonal value of variance-covariance matrix

k

Number of series

nlag

Lag length

Value

Get Minnesota Prior

Author(s)

David Gabauer

References

Koop, G., & Korobilis, D. (2010). Bayesian multivariate time series methods for empirical macroeconomics. Now Publishers Inc.

Examples

prior = MinnesotaPrior(0.1, k=4, nlag=1)

Multivariate Hedging Portfolio

Description

This function calculates the multivariate hedging portfolio of Cocca et al. (2024)

Usage

MultivariateHedgingPortfolio(
  x,
  H,
  method = c("cumsum", "cumprod"),
  statistics = c("Fisher", "Bartlett", "Fligner-Killeen", "Levene", "Brown-Forsythe"),
  metric = "StdDev",
  digit = 2
)

Arguments

x

zoo return matrix (in percentage)

H

Residual variance-covariance, correlation or pairwise connectedness matrix

method

Cumulative sum or cumulative product

statistics

Hedging effectiveness statistic

metric

Risk measure of Sharpe Ratio (StdDev, VaR, or CVaR)

digit

Number of decimal places

Value

Get hedge ratios

Author(s)

David Gabauer

References

Cocca, T., Gabauer, D., & Pomberger, S. (2024). Clean energy market connectedness and investment strategies: New evidence from DCC-GARCH R2 decomposed connectedness measures. Energy Economics.

Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of Finance, 34(1), 157-170.

Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & de Gracia, F. P. (2020). Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness. Energy Economics, 91, 104762.

Examples

data("g2020")
fit = VAR(g2020, configuration=list(nlag=1))
mhp = MultivariateHedgingPortfolio(g2020/100, fit$Q)
mhp$TABLE

Partial Contemporaneous Correlations

Description

Get partial contemporaneous correlations

Usage

PartialCorrelations(Q)

Arguments

Q

variance-covariance matrix

Value

Get partial contemporaneous correlations

Author(s)

David Gabauer

References

Dahlhaus, R., & Eichler, M. (2003). Causality and graphical models in time series analysis. Oxford Statistical Science Series, 115-137.

Examples

data(dy2012)
fit = VAR(dy2012, configuration=list(nlag=1))
pcc = PartialCorrelations(fit$Q)

Dynamic from total directional connectedness plot

Description

Visualize dynamic from total directional connectedness

Usage

PlotFROM(
  dca,
  ca = NULL,
  path = NULL,
  ylim = c(NULL, NULL),
  width = 10,
  height = 7,
  ...
)

Arguments

dca

Connectedness object

ca

Compare dca object with a single connectedness object or a list of of connectedness objects

path

Path where plots should be saved

ylim

A vector including the lower and upper limit of the y-axis

width

The width of the graphics region in inches

height

The height of the graphics region in inches

...

Arguments to be passed to methods, such as graphical parameters (see par).

Value

Return connectedness plot


Dynamic influence connectedness plot

Description

Visualize dynamic influence connectedness

Usage

PlotINF(
  dca,
  ca = NULL,
  path = NULL,
  ylim = c(NULL, NULL),
  selection = NULL,
  width = 10,
  height = 7,
  ...
)

Arguments

dca

Connectedness object

ca

Compare dca object with a single connectedness object or a list of of connectedness objects

path

Path where plots should be saved

ylim

A vector including the lower and upper limit of the y-axis

selection

Indidcator of the illustrated series

width

The width of the graphics region in inches

height

The height of the graphics region in inches

...

Arguments to be passed to methods, such as graphidcal parameters (see par).

Value

Return connectedness plot


Dynamic net total directional connectedness plot

Description

Visualize dynamic net total directional connectedness

Usage

PlotNET(
  dca,
  ca = NULL,
  path = NULL,
  ylim = c(NULL, NULL),
  width = 10,
  height = 7,
  ...
)

Arguments

dca

Connectedness object

ca

Compare dca object with a single connectedness object or a list of of connectedness objects

path

Path where plots should be saved

ylim

A vector including the lower and upper limit of the y-axis

width

The width of the graphics region in inches

height

The height of the graphics region in inches

...

Arguments to be passed to methods, such as graphical parameters (see par).

Value

Return connectedness plot


Network plot

Description

Visualize net pairwise or pairwise connectedness measures

Usage

PlotNetwork(
  dca,
  method = "NPDC",
  path = NULL,
  name_length = NULL,
  threshold = 0,
  width = 10,
  height = 10,
  ...
)

Arguments

dca

Connectedness object

method

Either visualizing NPDC or PCI

path

Path where plots should be saved

name_length

Length of variable names in the network plot

threshold

Threshold for bivariate connections between 0 and 1

width

The width of the graphics region in inches

height

The height of the graphics region in inches

...

Arguments to be passed to methods, such as graphical parameters (see par).

Value

Return connectedness plot


Dynamic net pairwise connectedness plot

Description

Visualize dynamic net pairwise connectedness

Usage

PlotNPDC(
  dca,
  ca = NULL,
  path = NULL,
  ylim = c(NULL, NULL),
  selection = NULL,
  width = 10,
  height = 7,
  ...
)

Arguments

dca

Connectedness object

ca

Compare dca object with a single connectedness object or a list of of connectedness objects

path

Path where plots should be saved

ylim

A vector including the lower and upper limit of the y-axis

selection

Indicator of the illustrated series

width

The width of the graphics region in inches

height

The height of the graphics region in inches

...

Arguments to be passed to methods, such as graphical parameters (see par).

Value

Return connectedness plot


Dynamic net pairwise transmission plot

Description

Visualize dynamic net total directional connectedness

Usage

PlotNPT(dca, ca = NULL, path = NULL, width = 10, height = 7, ...)

Arguments

dca

Connectedness object

ca

Compare dca object with a single connectedness object or a list of of connectedness objects

path

Path where plots should be saved

width

The width of the graphics region in inches

height

The height of the graphics region in inches

...

Arguments to be passed to methods, such as graphidcal parameters (see par).

Value

Return connectedness plot


Dynamic pairwise connectedness plot

Description

Visualize dynamic pairwise connectedness

Usage

PlotPCI(
  dca,
  ca = NULL,
  path = NULL,
  ylim = c(NULL, NULL),
  selection = NULL,
  width = 10,
  height = 7,
  ...
)

Arguments

dca

Connectedness object

ca

Compare dca object with a single connectedness object or a list of of connectedness objects

path

Path where plots should be saved

ylim

A vector including the lower and upper limit of the y-axis

selection

Indidcator of the illustrated series

width

The width of the graphics region in inches

height

The height of the graphics region in inches

...

Arguments to be passed to methods, such as graphidcal parameters (see par).

Value

Return connectedness plot


Dynamic total connectedness plot

Description

Visualize dynamic total connectedness

Usage

PlotTCI(
  dca,
  ca = NULL,
  path = NULL,
  ylim = c(NULL, NULL),
  width = 10,
  height = 5,
  ...
)

Arguments

dca

Connectedness object

ca

Compare dca object with a single connectedness object or a list of of connectedness objects

path

Path where plots should be saved

ylim

A vector including the lower and upper limit of the y-axis

width

The width of the graphics region in inches

height

The height of the graphics region in inches

...

Arguments to be passed to methods, such as graphical parameters (see par).

Value

Return connectedness plot


Dynamic to total directional connectedness plot

Description

Visualize dynamic to total directional connectedness

Usage

PlotTO(
  dca,
  ca = NULL,
  path = NULL,
  ylim = c(NULL, NULL),
  width = 10,
  height = 7,
  ...
)

Arguments

dca

Connectedness object

ca

Compare dca object with a single connectedness object or a list of of connectedness objects

path

Path where plots should be saved

ylim

A vector including the lower and upper limit of the y-axis

width

The width of the graphics region in inches

height

The height of the graphics region in inches

...

Arguments to be passed to methods, such as graphical parameters (see par).

Value

Return connectedness plot


Quantile vector autoregression

Description

Estimation of a QVAR using equation-by-equation quantile regressions.

Usage

QVAR(x, configuration = list(nlag = 1, tau = 0.5, method = "fn"))

Arguments

x

zoo data matrix

configuration

model configuration

nlag

Lag length

tau

quantile between 0 and 1

method

See methods for rq in quantreg package. Default is "fn".

Value

Estimate QVAR model

Author(s)

David Gabauer

References

White, H., Kim, T. H., & Manganelli, S. (2015). VAR for VaR: Measuring tail dependence using multivariate regression quantiles. Journal of Econometrics, 187(1), 169-188.

Chatziantoniou, I., Gabauer, D., & Stenfors, A. (2021). Interest rate swaps and the transmission mechanism of monetary policy: A quantile connectedness approach. Economics Letters, 204, 109891.

Examples

data("dy2012")
fit = QVAR(dy2012, configuration=list(nlag=1, tau=0.5))

R2 connectedness approach

Description

This function computes the R2 connectedness measures

Usage

R2Connectedness(
  x,
  window.size = NULL,
  nlag = 0,
  method = "pearson",
  relative = FALSE,
  corrected = FALSE
)

Arguments

x

zoo data matrix

window.size

Rolling-window size or Bayes Prior sample size

nlag

Lag length

method

"pearson", "spearman", or "kendall". "pearson" is default.

relative

Boolean whether relative or absolute R2 should be used

corrected

Boolean value whether corrected or standard TCI should be computed

Value

Get R2 connectedness measures

Author(s)

David Gabauer

References

Naeem, M. A., Chatziantoniou, I., Gabauer, D., & Karim, S. (2023). Measuring the G20 Stock Market Return Transmission Mechanism: Evidence From the R2 Connectedness Approach. International Review of Financial Analysis.

Balli, F., Balli, H. O., Dang, T. H. N., & Gabauer, D. (2023). Contemporaneous and lagged R2 decomposed connectedness approach: New evidence from the energy futures market. Finance Research Letters, 57, 104168.

Examples

data("dy2012")
dca = R2Connectedness(dy2012, window.size=NULL, nlag=0, method="pearson")
dca$TABLE

R2 decomposed connectedness from correlations

Description

This function computes the R2 decomposed connectedness measures from correlations

Usage

R2Correlations(R)

Arguments

R

zoo correlation data matrix

Value

Get R2 connectedness measures from correlation matrix

Author(s)

David Gabauer

References

Naeem, M. A., Chatziantoniou, I., Gabauer, D., & Karim, S. (2023). Measuring the G20 Stock Market Return Transmission Mechanism: Evidence From the R2 Connectedness Approach. International Review of Financial Analysis.

Balli, F., Balli, H. O., Dang, T. H. N., & Gabauer, D. (2023). Contemporaneous and lagged R2 decomposed connectedness approach: New evidence from the energy futures market. Finance Research Letters, 57, 104168.


Minimum connectedness portfolio

Description

This function calculates the minimum connectedness portfolio

Usage

RiskParityPortfolio(
  x,
  H,
  method = c("cumsum", "cumprod"),
  statistics = c("Fisher", "Bartlett", "Fligner-Killeen", "Levene", "Brown-Forsythe"),
  long = TRUE,
  metric = "StdDev",
  digit = 2
)

Arguments

x

zoo return matrix (in percentage)

H

Pairwise connectedness matrix or alternatively variance-covariance or correlation matrix

method

Cumulative sum or cumulative product

statistics

Hedging effectiveness statistic

long

Allow only long portfolio position

metric

Risk measure of Sharpe Ratio (StdDev, VaR, or CVaR)

digit

Number of decimal places

Value

Get portfolio weights

Author(s)

David Gabauer

References

Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of Finance, 34(1), 157-170.

Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & de Gracia, F. P. (2020). Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness. Energy Economics, 91, 104762.

Examples

data("g2020")
fit = VAR(g2020, configuration=list(nlag=1))
mcp = RiskParityPortfolio(g2020/100, fit$Q, statistics="Fisher")
mcp$TABLE

Summary Statistics

Description

Get comprehensive summary statistics

Usage

SummaryStatistics(
  x,
  portmanteau = c("Ljung-Box", "Box-Pierce", "Monti"),
  correlation = c("kendall", "spearman", "pearson"),
  nlag = 20,
  digit = 3
)

Arguments

x

zoo data matrix

portmanteau

portmanteau statistics: "Box-Pierce", "Ljung-Box", "Monti"

correlation

correlation coefficient: "pearson", "kendall", "spearman".

nlag

number of lags for Weighted Portmanteau statistics

digit

digit Number of decimal places

Value

Get summary statistics

Author(s)

David Gabauer

Examples

data(dy2012)
SummaryStatistics(dy2012)

Diebold and Yilmaz (2009, 2012) connectedness approach

Description

This function allows to calculate the Diebold and Yilmaz (2009, 2012) connectedness measures.

Usage

TimeConnectedness(
  Phi = NULL,
  Sigma = NULL,
  nfore = 10,
  generalized = TRUE,
  corrected = FALSE,
  FEVD = NULL
)

Arguments

Phi

VAR coefficient matrix

Sigma

Residual variance-covariance matrix

nfore

H-step ahead forecast horizon

generalized

Orthorgonalized/generalized FEVD

corrected

Boolean value whether corrected or standard TCI should be computed

FEVD

Alternatively, to provide Phi and Sigma it is also possible to use FEVD directly.

Value

Get connectedness measures

Author(s)

David Gabauer

References

Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158-171.

Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66.

Examples

#Replication of DY2012
data("dy2012")
fit = VAR(dy2012, configuration=list(nlag=4))
dca = TimeConnectedness(Phi=fit$B, Sigma=fit$Q, nfore=10, generalized=TRUE)
dca$TABLE

Time-varying parameter vector autoregression

Description

Estimate TVP-VAR model

Usage

TVPVAR(x, configuration = list(l = c(0.99, 0.99), nlag = 1, prior = NULL))

Arguments

x

zoo data matrix

configuration

model configuration

nlag

Lag length

prior

List of prior VAR coefficients and variance-covariance matrix

l

forgetting factors (kappa1, kappa2)

Value

Estimate TVP-VAR model

Author(s)

David Gabauer

References

Koop, G., & Korobilis, D. (2014). A new index of financial conditions. European Economic Review, 71, 101-116.

Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84.

Examples

data("dy2012")
prior = BayesPrior(dy2012, nlag=1)
fit = TVPVAR(dy2012, configuration=list(nlag=1, prior=prior, l=c(0.99,0.99)))

Uninformative Prior

Description

Get Uninformative Prior

Usage

UninformativePrior(k, nlag)

Arguments

k

Number of series

nlag

Lag length

Value

Get Uninformative Prior

Author(s)

David Gabauer

References

Koop, G., & Korobilis, D. (2010). Bayesian multivariate time series methods for empirical macroeconomics. Now Publishers Inc.

Examples

prior = UninformativePrior(k=4, nlag=1)

Vector autoregression

Description

Estimation of a VAR using equation-by-equation OLS regressions.

Usage

VAR(x, configuration = list(nlag = 1))

Arguments

x

zoo data matrix

configuration

model configuration

nlag

Lag length

Value

Estimate VAR model

Author(s)

David Gabauer

References

Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 1-48.

Examples

data("dy2012")
fit = VAR(dy2012, configuration=list(nlag=1))

Variance Test

Description

VarianceTest performs variance homogeneity tests including Ftest, Bartlett, Brown-Forsythe and Fligner-Killeen tests.

Usage

VarianceTest(
  formula,
  data,
  alpha = 0.05,
  method = c("Bartlett", "Brown-Forsythe", "Fligner-Killeen", "Fisher", "Levene"),
  na.rm = TRUE
)

Arguments

formula

a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the corresponding groups.

data

a tibble or data frame containing the variables in the formula formula

alpha

the level of significance to assess variance homogeneity. Default is set to alpha = 0.05.

method

a character string to select one of the variance homogeneity tests: "Bartlett", "Brown-Forsythe", "Fisher" and "Fligner-Killeen".

na.rm

Ha logical value indicating whether NA values should be stripped before the computation proceeds.

Value

Get bivariate portfolio weights

Author(s)

David Gabauer

References

Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & de Gracia, F. P. (2020). Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness. Energy Economics, 91, 104762.


Generalized volatility forecast error variance decomposition and volatility impulse response functions

Description

This function provides the volatility impulse responses and the forecast error variance decomposition of DCC-GARCH models.

Usage

VFEVD(fit, nfore = 100, standardize = FALSE)

Arguments

fit

Fitted DCC-GARCH model

nfore

H-step ahead forecast horizon

standardize

Boolean value whether GIRF should be standardized

Value

Get volatility impulse response functions and forecast error variance decomposition

Author(s)

David Gabauer

References

Gabauer, D. (2020). Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms. Journal of Forecasting, 39(5), 788-796.


WeightedBoxTest

Description

Weighted portmanteau tests for testing the null hypothesis of adequate ARMA fit and/or for detecting nonlinear processes. Written in the style of Box.test() and is capable of performing the traditional Box Pierce (1970), Ljung Box (1978) or Monti (1994) tests.

Usage

WeightedBoxTest(
  x,
  lag = 1,
  type = c("Box-Pierce", "Ljung-Box", "Monti"),
  fitdf = 0,
  sqrd.res = FALSE,
  log.sqrd.res = FALSE,
  abs.res = FALSE,
  weighted = TRUE
)

Arguments

x

a numeric vector or univariate time series, or residuals of a fitted time series

lag

the statistic will be based on lag autocorrelation coefficients. lag=1 by default

type

test to be performed, partial matching is used. "Box-Pierce" by default

fitdf

number of degrees of freedom to be subtracted if x is a series of residuals, set at 0 by default

sqrd.res

A flag, should the series/residuals be squared to detect for nonlinear effects?, FALSE by default

log.sqrd.res

A flag, should a log of the squared series/residuals be used to detect for nonlinear effects? FALSE by default

abs.res

A flag, should the absolute series or residuals be used to detect for nonlinear effects? FALSE by default

weighted

A flag determining if the weighting scheme should be utilized. TRUE by default. If set to FALSE, the traditional test is performed with no weights

Value

Get Uninformative Prior

Author(s)

David Gabauer

References

Box, G. E. P. and Pierce, D. A. (1970), Distribution of residual correlations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association, 65, 1509-1526.

Fisher, T. J. and Gallagher, C. M. (2012), New Weighted Portmanteau Statistics for Time Series Goodness-of-Fit Testing. Journal of the American Statistical Association, accepted.

Ljung, G. M. and Box, G. E. P. (1978), On a measure of lack of fit in time series models. Biometrika 65, 297-303.

Mahdi, E. and McLeod, A. I. (2012), Improved multivariate portmanteau test. Journal of Time Series Analysis 65(2), 297-303.

Monti, A. C. (1994), A proposal for a residual autocorrelation test in linear models. Biometrika 81(4), 776-780.

Pena, D. and Rodriguez, J. (2002) A powerful portmanteau test of lack of fit for time series. Journal of the American Statistical Association 97(458), 601-610.


Wold representation theorem

Description

Transform VAR to VMA coefficients

Usage

Wold(x, nfore = 10)

Arguments

x

VAR coefficients

nfore

H-step ahead forecast horizon

Value

Get VMA coefficients

Author(s)

David Gabauer

Examples

data("dy2012")
fit = VAR(dy2012, configuration=list(nlag=1))
wold = Wold(fit$B, nfore=10)