Package 'ConfMatrix'

Title: Confusion Matrix
Description: Thematic quality indices are provided to facilitate the evaluation and quality control of geospatial data products (e.g. thematic maps, remote sensing classifications, etc.). The indices offered are based on the so-called confusion matrix. This matrix is constructed by comparing the assigned classes or attributes of a set of pairs of positions or objects in the product and the ground truth. In this package it is considered that the classes of the ground truth correspond to the columns and that the classes of the product to be valued correspond to the rows. The package offers two object classes with their methods: 'ConfMatrix' (Confusion matrix) and 'QCCS' (Quality Control Columns Set). The 'ConfMatrix' class of objects offers more than 20 methods based on the confusion matrix. The 'QCCS' class of objects offers a different perspective in which the ground truth is considered to allow the values of the column marginals to be fixed, see Ariza López et al. (2019) <doi:10.3390/app9204240> and Canran Liu et al. (2007) <doi:10.1016/j.rse.2006.10.010> for more details. The package was created with 'R6'.
Authors: Francisco Javier Ariza-Lopez [aut], Paola Barba-Ceballos [aut], Silverio Vilchez-Lopez [aut, cre], Jose Rodriguez-Avi [aut], Maria Virtudes Alba-Fernandez [aut], Jose Luis Garcia-Balboa [aut]
Maintainer: Silverio Vilchez-Lopez <[email protected]>
License: GPL
Version: 0.1.0
Built: 2025-01-03 06:47:33 UTC
Source: CRAN

Help Index


Confusion matrix

Description

The ConfMatrix class works with confusion matrices, thus providing the possibility of calculating several indices with their corresponding variances and confidence intervals. A confusion matrix is constructed by comparing a sample of a set of common positions in the product and the ground truth. Appropriate sampling methods must be applied to generate the confusion matrix. It is considered that the classes of the ground truth correspond to the columns and that the classes of the product to be valued correspond to the rows. First, an object of this class of object must be created (instantiated) and then the methods that offer the index calculations will be invoked. Mnemonic method names are proposed and are therefore long, for example methods that provide averages start with "AV" and those that provide combinations start with "Comb". Methods related to a specific thematics class end with the ending "_i".

Mathematical elements

  • xiix_{ii}: diagonal element of the matrix.

  • xijx_{ij}: element i,ji,j of the matrix.

  • xi+x_{i+}: sum of all elements in rows ii.

  • x+jx_{+j}: sum of all elements in column jj.

  • MM: number of classes.

  • xi+\overline{x}_{i+}: sum of all elements of row ii except element ii of the diagonal.

  • x+i\overline{x}_{+i}: sum of all elements of column ii except element ii of the diagonal.

  • NTotalN_{Total}:Total count of elements in the instance's Confusion Matrix.

    NTotal=i,jMxijN_{Total}=\sum_{i,j}^M x_{ij}

  • Ni/NjN_i / N_j: Total count of elements in row ii or column jj.

    Ni=xi+N_{i}=x_{i+}

    Nj=x+jN_{j}=x_{+j}

  • NijN_{ij}: Total count of elements in row ii and column jj.

    Nij=xi++x+jxiiN_{ij}=x_{i+}+x_{+j}-x_{ii}

Public fields

Values

⁠ Matrix of integer values. An matrix must be added. ⁠

ID

⁠ Identifier. It is a character string with a maximum length of 50 characters. By default,⁠ CMiCM_i ⁠will be taken as identification. Where⁠ i[1,999]i \in [1,999] ⁠will be the number of ConfMatrix instances already defined in the session. ⁠

Date

⁠ Date provided by the user in format DDMMYYYY, "DD-MM-YYYY", "DD/MM/YYYY". By default the date provided by the system will be taken. ⁠

ClassNames

⁠ Name of the classes. It is given by a character strings vector whose elements are the name of the classes. Each element of the vector is a string of maximum 20 characters. By default for the column elements they will be⁠ PCiPC_i (Producer class) ⁠and for the elements of row⁠ UCiUC_i⁠ (User class), with⁠ ii ⁠being the correspond- ing row or column number. ⁠

Source

⁠ Indicates where the matrix comes from (article, project, etc.). It is suggest- ed to enter a reference or a DOI. A character string with a maximum length of 80 characters can be entered. By default, is NULL. ⁠

Methods

Public methods


Method new()

Public method to create an instance of the ConfMatrix class. When creating it, values must be given to the matrix. The values of the matrix must be organized in such a way that the columns represent the classes in the reference and the rows represent the classes in the product being evaluated. The creation of a ConfMatrix instance includes a series of checks on the data. If checks are not met, the system generates coded error messages. The optional possibility of adding metadata to the matrix is offered.

Usage
ConfMatrix$new(
  Values,
  ID = NULL,
  Date = NULL,
  ClassNames = NULL,
  Source = NULL
)
Arguments
Values

⁠ Matrix of integer values. A matrix must be added. ⁠

ID

⁠ Identifier. It is a character string with a maximum length of 50 characters. By default,⁠ CMiCM_i ⁠will be taken as identification. Where⁠ i[1,999]i \in [1,999] ⁠will be the number of ConfMatrix instances already defined in the session. ⁠

Date

⁠ Date provided by the user in format DDMMYYYY, "DD-MM-YYYY", "DD/MM/YYYY". By default the date provided by the system will be taken. ⁠

ClassNames

⁠ Name of the classes. It is given by a character strings vector whose elements are the name of the classes. Each element of the vector is a string of maximum 20 characters. By default for the column elements they will be⁠ PCiPC_i (Producer class) ⁠and for the elements of row⁠ UCiUC_i⁠ (User class), with⁠ ii ⁠being the correspond- ing row or column number. ⁠

Source

⁠ Indicates where the matrix comes from (article, project, etc.). It is suggest- ed to enter a reference or a DOI. A character string with a maximum length of 80 characters can be entered. By default, is NULL. ⁠

Returns

Object of the ConfMatrix class, or an error message.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
cm<-ConfMatrix$new (A,ID="5",Date="27-10-2023",Source="Congalton and Green,
2008")


Method plot.index()

Public method that provides a graph of the indices of the functions ConfMatrix$OverallAcc, ConfMatrix$Kappa, ConfMatrix$Tau, ConfMatrix$AvHellAcc and ConfMatrix$AvShortAcc with their corresponding standard deviations.

Usage
ConfMatrix$plot.index()
Returns

A graph of the indices of the functions OverallAcc, Kappa, Tau, AvHellAcc, AvShortAcc with their corresponding standard deviations.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90), nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$plot.index()


Method plot.UserProdAcc()

Public method that provides a graph for the user’s and producer’s accuracies and standard deviations.

Usage
ConfMatrix$plot.UserProdAcc()
Returns

The graph of the accuracy index of users and producers with their corresponding standard desviation.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90), nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$plot.UserProdAcc()


Method print()

Public method that shows all the data entered by the user for a instance.

Usage
ConfMatrix$print()
Returns

ConfMatrix object identifier, date, class name, data source and confusion matrix.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90), nrow=4,ncol=4)
p<-ConfMatrix$new(A,ClassNames=c("Deciduous","conifer","agriculture",
"shrub"),Source="Congalton and Green 2008")
p$print()


Method AllParameters()

Public method in which multiple parameters are calculated for the given confusion matrix. This method is equivalent to ConfMatrix$OverallAcc,ConfMatrix$UserAcc, ConfMatrix$ProdAcc,ConfMatrix$Kappa and ConfMatrix$MPseudoZeroes.

Usage
ConfMatrix$AllParameters()
Returns

The following list of elements: the confusion matrix, dimension, total sum of cell values, overall accuracy, overall accuracy variance, global kappa index, global kappa simplified variance, producer accuracy by class, user accuracy by class, and pseudoceros matrix.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90), nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$AllParameters()


Method UserAcc()

Public method for deriving the index called user’s accuracy for all the classes in a ConfMatrix object instance. The user's accuracy for the class ii of a thematic product is calculated by dividing the value in the diagonal of class ii by the sum of all values in the row of the class ii (row marginal). The method also offers the variance and confidence interval. The reference Congalton and Green (2008) is followed for the computations.

UserAcc=xiixi+UserAcc=\dfrac{x_{ii}}{x_{i+}}

σUserAcc2=UserAcc(1UserAcc)Ni\sigma^2_{UserAcc}=\dfrac{UserAcc \cdot (1-UserAcc)}{N_{i}}

Usage
ConfMatrix$UserAcc(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of vectors, containing the user’s accuracy real values for all classes, their variances and confidence intervals for each class, respectively.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90), nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$UserAcc()


Method UserAcc_i()

Public method for deriving the index called user’s accuracy for a specific class ii in a ConfMatrix object instance. The user’s accuracy for the class ii of a thematic product is calculated by dividing the value in the diagonal of class ii by the sum of all values in the row of the class i (row marginal). The method also offers the variance and confidence interval. The reference Congalton and Green (2008) is followed for the computations.

UserAcci=xiixi+UserAcc_{i}=\dfrac{x_{ii}}{x_{i+}}

σUserAcci2=UserAcci(1UserAcci)Ni\sigma^2_{UserAcc_i}=\dfrac{UserAcc_i \cdot (1-UserAcc_i)}{N_{i}}

Usage
ConfMatrix$UserAcc_i(i, a = NULL)
Arguments
i

⁠ Class to evaluate, where⁠ iZ{0}i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the user’s accuracy for class i, its variance, and its confidence interval.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90), nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$UserAcc_i(2)


Method AvUserAcc()

Public method that provides the arithmetic average, without weighing, of all user’s accuracies of a ConfMatrix object instance. The method also offers the variance and confidence interval. The reference Tung and LeDrew (1988) is followed for the calculations.

AvUserAcc=1Mi=1Mxiixi+AvUserAcc=\dfrac{1}{M} \sum^M_{i=1} \dfrac{x_{ii}} { x_{i+}}

σAvUserAcc2=AvUserAcc(1AvUserAcc)NTotal\sigma^2_{AvUserAcc}=\dfrac{AvUserAcc \cdot (1-AvUserAcc)}{N_{Total}}

Usage
ConfMatrix$AvUserAcc(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the average user’s accuracy, its variance, and its confidence interval.

Examples
A<-matrix(c(352,43,89,203),nrow=2,ncol=2)
p<-ConfMatrix$new(A,Source="Tung and LeDrew 1988")
p$AvUserAcc()


Method CombUserAcc()

Public method that provides the combined user's accuracy. Which is the average of the overall accuracy and the average user's accuracy. The method also offers the variance and confidence interval. The reference Tung and LeDrew (1988) is followed for the calculations.

CombUserAcc=OverallAcc+AvUserAcc2CombUserAcc=\dfrac{OverallAcc+AvUserAcc}{2}

σCombUserAcc2=CombUserAcc(1CombUserAcc)NTotal\sigma^2_{CombUserAcc}=\dfrac{CombUserAcc \cdot (1-CombUserAcc)}{N_{Total}}

where:

  1. OverallAccOverallAcc: overall accuracy.

Usage
ConfMatrix$CombUserAcc(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the combined accuracy from the user's perspective, its variation and confidence interval.

Examples
A<-matrix(c(352,43,89,203),nrow=2,ncol=2)
p<-ConfMatrix$new(A,Source="Tung and LeDrew 1988")
p$CombUserAcc()


Method ProdAcc()

Public method for deriving the index called producer’s accuracy for all the classes in a ConfMatrix object instance. The producer’s accuracy for the class i of a thematic product is calculated by dividing the value in the diagonal of class ii by the sum of all values in the row of the class ii (column marginal). The method also offers the variance and confidence interval. The reference Congalton and Green (2008) if followed for the computations.

ProdAcc=xiix+jProdAcc=\dfrac{x_{ii}}{x_{+j}}

σProdAcc2=ProdAcc(1ProdAcc)Nj\sigma^2_{ProdAcc}=\dfrac{ProdAcc \cdot (1-ProdAcc)}{N_{j}}

Usage
ConfMatrix$ProdAcc(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of vectors each one containing the producer’s accuracy real values for all classes, their variances and confidence intervals for each class, respectively.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$ProdAcc()


Method ProdAcc_i()

Public method for deriving the index called producer’s accuracy for a specific class ii in a ConfMatrix object instance. The user’s accuracy for the class ii of a thematic product is calculated by dividing the value in the diagonal of class ii by the sum of all values in the column of the class ii (column marginal). The method also offers the variance and confidence interval. The reference Congalton and Green (2008) is followed for the calculations.

ProdAcci=xiix+jProdAcc_{i}=\dfrac{x_{ii}}{x_{+j}}

σProdAcci2=ProdAcci(1ProdAcci)Nj\sigma^2_{ProdAcc_i}=\dfrac{ProdAcc_i \cdot (1-ProdAcc_i)}{N_{j}}

Usage
ConfMatrix$ProdAcc_i(i, a = NULL)
Arguments
i

⁠ Producer class to evaluate, where⁠ iZ{0}.i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the producer’s accuracy for class i, its variance, and its confidence interval.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$ProdAcc_i(1)


Method AvProdAcc()

Public method that provides the arithmetic average of all producer’s accuracies of a ConfMatrix object instance. The method also offers the variance and confidence interval. The reference Tung and LeDrew (1988) is followed for the calculations.

AvProdAcc=1Mi=1Mxiix+jAvProdAcc=\dfrac{1}{M} \sum^M_{i=1} \dfrac{x_{ii}} { x_{+j}}

σAvProdAcc2=AvProdAcc(1AvProdAcc)NTotal\sigma^2_{AvProdAcc}=\dfrac{AvProdAcc \cdot (1-AvProdAcc)}{N_{Total}}

Usage
ConfMatrix$AvProdAcc(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the average producer’s accuracy, its variance, and its confidence interval.

Examples
A<-matrix(c(352,43,89,203),nrow=2,ncol=2)
p<-ConfMatrix$new(A,Source="Tung and LeDrew 1988")
p$AvProdAcc()


Method CombProdAcc()

Public method that provides the combined producer's accuracy. Which is the average of the overall accuracy and the average producer accuracy. The method also offers the variance and confidence interval. The reference Tung and LeDrew (1988) is followed for the calculations.

CombProdAcc=OverallAcc+AvProdAcc2CombProdAcc=\dfrac{OverallAcc+AvProdAcc}{2}

σCombProdAcc2=CombProdAcc(1CombProdAcc)NTotal\sigma^2_{CombProdAcc}=\dfrac{CombProdAcc \cdot (1-CombProdAcc)}{N_{Total}}

where:

  1. OverallAccOverallAcc: overall accuracy.

  2. AvProdAccAvProdAcc: average accuracy from producer's perspective.

Usage
ConfMatrix$CombProdAcc(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the combined accuracy from producer's perspective, its variance and confidence interval.

Examples
A<-matrix(c(352,43,89,203),nrow=2,ncol=2)
p<-ConfMatrix$new(A,Source="Tung and LeDrew 1988")
p$CombProdAcc()


Method UserProdAcc()

Public method that calculates the user’s and the producer’s indexes jointly. This method is equivalent to the methods ConfMatrix$UserAcc and ConfMatrix$ProdAcc.

Usage
ConfMatrix$UserProdAcc()
Returns

A list containing the producer's and user's accuracies and their standard deviations, respectively.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$UserProdAcc()


Method CombUserProdAcc()

Public method that provides the combined accuracy, defined by the average of the overall accuracy and the Hellden's average accuracy, which refers to the average user's and producer's accuracies. The method also offers the variance and confidence interval. The reference Liu et al. (2007) is followed for the calculations.

CombUserProdAcc=OverallAcc+AvHellAcc2CombUserProdAcc=\dfrac{OverallAcc+AvHellAcc}{2}

σCombUserProdAcc2=CombUserProdAcc(1CombUserProdAcc)NTotal\sigma^2_{CombUserProdAcc}=\dfrac{CombUserProdAcc \cdot (1-CombUserProdAcc)}{N_{Total}}

where:

  1. OverallAccOverallAcc: overall accuracy.

  2. AvHellAccAvHellAcc: average of Hellden's mean accuracy index.

Usage
ConfMatrix$CombUserProdAcc(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the combined accuracy from both user's and producer's perspectives, its variance and confidence interval.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$CombUserProdAcc()


Method AvUserProdAcc()

Public method that provides the arithmetic average of all user’s and producer’s accuracy indexes of a ConfMatrix object instance. The method also offers the variance and confidence interval. The reference Liu et al. (2007) is followed for the calculations.

AvUserProdAcc=AvUserAcc+AvProdAcc2AvUserProdAcc=\dfrac{AvUserAcc+AvProdAcc}{2}

σAvUserProdAcc2=AvUserProdAcc(1AvUserProdAcc)NTotal\sigma^2_{AvUserProdAcc}=\dfrac{AvUserProdAcc \cdot (1-AvUserProdAcc)}{N_{Total}}

where:

  1. AvUserAccAvUserAcc: average accuracy from user's perspective.

  2. AvProdAccAvProdAcc: average accuracy from producer's perspective.

Usage
ConfMatrix$AvUserProdAcc(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the average mean precision values from the user's and producer's perspective, their variance and confidence interval.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$AvUserProdAcc()


Method AvUserProdAcc_i()

Public method that provides the average of user’s and producer’s accuracies for a specific class i. The method also offers the variance and confidence interval. The reference Liu et al. (2007) is followed for the calculations.

AvUserProdAcci=UserAcci+ProdAcci2AvUserProdAcc_i=\dfrac{UserAcc_i+ProdAcc_i}{2}

σAvUserProdAcci2=AvUserProdAcci(1AvUserProdAcci)Nij\sigma^2_{AvUserProdAcc_i}=\dfrac{AvUserProdAcc_i \cdot (1-AvUserProdAcc_i)}{N_{ij}}

where:

  1. UserAcciUserAcc_i: user accuracy index for class i.

  2. ProdAcciProdAcc_i: producer accuracy index for class i.

Usage
ConfMatrix$AvUserProdAcc_i(i, a = NULL)
Arguments
i

⁠ Class to evaluate, where⁠ iZ{0}i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the average of user’s and producer’s accuracies, its variance and confidence interval for class i.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$AvUserProdAcc_i(2)


Method UserProdAcc_W()

Public method that calculates the weighted user's, producer’s and overall accuracies and their standard deviations. The reference Congalton and Green (2008) is followed for the computations.

Be

OverallW=i=1Mpiii,j=1MpijOverall_W=\dfrac{\sum^M_{i=1} p_{ii} }{\sum^M_{i,j=1} p_{ij}}

where pij=xiji,j=1Mxijp_{ij}=\dfrac{x_{ij}}{\sum^M_{i,j=1} x_{ij}}

UserAccW=poi+pi+UserAcc_W=\dfrac{p_{o_{i+}}}{p_{i+}}

ProdAccW=po+jp+jProdAcc_W=\dfrac{p_{o_{+j}}}{p_{+j}}

σUserAccW2=UserAccW(1UserAccW)Ni\sigma^2_{UserAcc_W}=\dfrac{UserAcc_W \cdot (1-UserAcc_W)}{N_i}

σProdAccW2=ProdAccW(1ProdAccW)Nj\sigma^2_{ProdAcc_W}=\dfrac{ProdAcc_W \cdot (1-ProdAcc_W)}{N_j}

where po=i,j=1Mwijpijp_o=\sum^M_{i,j=1} w_{ij}p_{ij} and 0wij10 \leq w_{ij} \leq 1 for iji \neq j and wii=1w_{ii}=1 for i=ji = j.

Usage
ConfMatrix$UserProdAcc_W(WM)
Arguments
WM

Weight matrix (as matrix)

Returns

A list with the weight matrix, the product of the confusion matrix and the weight matrix, overall, user and producer weighted accuracies and their standard deviations.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
WM<- t(matrix(c(1,0,0.67,1,0,1,0,0,1,0,1,1,0.91,0,0.61,1),nrow=4,ncol=4))
p$UserProdAcc_W(WM)


Method OverallAcc()

Public method to calculate the global index called Overall Accuracy. The Overall Accuracy is calculated by dividing the sum of the entries that form the major diagonal (i.e., the number of correct classifications) by the total number of cases. The method also offers the variance and confidence interval. The reference Congalton and Green (2008) is followed for the computations.

OverallAcc=i=1Mxiii,j=1MxijOverallAcc = \dfrac{\sum_{i=1}^{M} x_{ii}}{\sum_{i, j=1}^{M} x_{ij}}

σOverallAcc2=OverallAcc(1OverallAcc)NTotal\sigma^2_{OverallAcc}=\dfrac{OverallAcc \cdot (1-OverallAcc)}{N_{Total}}

Usage
ConfMatrix$OverallAcc(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the overall accuracy, its variance, and its confidence interval.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A)
p$OverallAcc()


Method Kappa()

Public method that provides Kappa coefficient, which measures the relationship between the observed proportion of agreement and the proportion expected to occur by chance. The method also offers the variance and confidence interval. The reference Cohen (1960) is followed for the calculations.

Kappa=OverallAccExpAcc1ExpAccKappa=\dfrac{OverallAcc-ExpAcc}{1-ExpAcc}

ExpAcc=x+ixi+(i,j=1Mxij)2ExpAcc= \dfrac{x_{+ i}x_{i +}}{ ( \sum_{i,j=1}^M x_{ij} )^{2} }

σKappa2=OverallAccExpAcc(1ExpAcc)2NTotal\sigma^2_{Kappa}=\dfrac{OverallAcc-ExpAcc}{(1-ExpAcc)^2 \cdot N_{Total}}

where:

  1. OverallAccOverallAcc: overall accuracy.

  2. ExpAccExpAcc: expected accuracy of agreement if agreement were purely random.

Usage
ConfMatrix$Kappa(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing with kappa coefficient, its variance and confidence interval.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$Kappa()


Method ModKappa()

Public method that provides the overall modified kappa coefficient. The method also offers the variance and confidence interval. The references Stehman (1997) and Foody (1992) are followed for the calculations.

ModKappa=OverallAcc1M11MModKappa=\dfrac{OverallAcc-\dfrac{1}{M}}{1-\dfrac{1}{M}}

σModKappa2=OverallAcc(1OverallAcc)(11M)2NTotal\sigma^2_{ModKappa}=\dfrac{OverallAcc \cdot (1- OverallAcc)} { \left(1-\dfrac{1}{M} \right)^2 \cdot N_{Total}}

where:

  1. OverallAccOverallAcc: overall accuracy.

Usage
ConfMatrix$ModKappa(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing modified coefficient kappa, its variance and its confidence interval.

Examples
A <- matrix(c(317,61,2,35,23,120,4,29,0,0,60,0,0,0,0,8),nrow=4,ncol=4)
p <- ConfMatrix$new(A,Source="Foody 1992")
p$ModKappa()


Method UserKappa_i()

Public method derived by the kappa coefficient evaluated from the user's perspective, for a specific class i. The method also offers the variance and confidence interval. The reference Rosenfield and Fitzpatrick-Lins (1986) is followed for the calculations.

UserKappai=UserAccixi+i,j=1Mxij1xi+i,j=1MxijUserKappa_i=\dfrac{UserAcc_i-\dfrac{ x_{i + }} {\sum^M_{i,j=1} x_{ij}}}{1-\dfrac{ x_{i + }} {\sum^M_{i,j=1} x_{ij}}}

σUserKappai2=UserAcci(1UserAcci)(1xi+i,j=1Mxij)2Ni\sigma^2_{UserKappa_i}=\dfrac{UserAcc_i \cdot (1-UserAcc_i)} { \left(1-\dfrac{ x_{i + }} {\sum^M_{i,j=1} x_{ij}}\right)^2 \cdot N_{i}}

where:

  1. UserAcciUserAcc_i: user accuracy index for class i.

Usage
ConfMatrix$UserKappa_i(i, a = NULL)
Arguments
i

⁠ Class to evaluate, where⁠ iZ{0}i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the kappa coefficient (user’s perspective), its variance and its confidence interval.

Examples
A<-matrix(c(73,13,5,1,0,21,32,13,3,0,16,39,35, 29,13,3,5,7,28,48,1,0,2,3,17),
nrow=5,ncol=5)
p<-ConfMatrix$new(A,Source="Næsset 1996")
p$UserKappa_i(2)


Method ModKappaUser_i()

Public method, derived from the general modified kappa coefficient, which provides the modified kappa coefficient from the user's perspective and for a specific class i. Equitable probabilities of belonging to each class are assumed. The method also offers the variance and confidence interval. The references Stehman (1997) and Foody (1992) are followed for the calculations.

ModKappaUseri=UserAcci1M11MModKappaUser_i=\dfrac{UserAcc_i-\dfrac{1}{M}} {1-\dfrac{1}{M}}

σModKappaUseri2=UserAcci(1UserAcci)(11M)2Ni\sigma^2_{ModKappaUser_i}=\dfrac{UserAcc_i \cdot (1- UserAcc_i)}{ \left(1- \dfrac{1}{M} \right)^2 \cdot N_{i}}

where:

  1. UserAcciUserAcc_i: user accuracy index for class i.

Usage
ConfMatrix$ModKappaUser_i(i, a = NULL)
Arguments
i

⁠ Class to evaluate, where⁠ iZ{0}i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the modified kappa coefficient from the user's perspective, its variance and confidence interval.

Examples
A<-matrix(c(0,12,0,0,12,0,0,0,0,0,0,12,0,0,12,0),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Liu et al. 2007")
p$ModKappaUser_i(2)


Method ProdKappa_i()

Public method derived by the kappa coefficient evaluated from the producer's perspective, for a specific class i. The method also offers the variance and confidence interval. The reference Rosenfield and Fitzpatrick-Lins (1986) is followed for the calculations.

ProdKappai=ProdAccix+ii,j=1Mxij1x+ii,j=1MxijProdKappa_i=\dfrac{ProdAcc_i-\dfrac{ x_{ + i }} {\sum^M_{i,j=1} x_{ij}}}{1-\dfrac{ x_{+ i }} {\sum^M_{i,j=1} x_{ij}}}

σProdKappai2=ProdAcci(1ProdAcci)(1x+ii,j=1Mxij)2Nj\sigma^2_{ProdKappa_i}=\dfrac{ProdAcc_i \cdot (1- ProdAcc_i)} {\left(1-\dfrac{ x_{+ i }} {\sum^M_{i,j=1} x_{ij}} \right)^2 \cdot N_{j}}

where:

  1. ProdAcciProdAcc_i: producer accuracy index for class i.

Usage
ConfMatrix$ProdKappa_i(i, a = NULL)
Arguments
i

⁠ Class to evaluate, where⁠ iZ{0}i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the coefficient kappa (producer’s), its variance and its confidence interval.

Examples
A <- matrix(c(73,13,5,1,0,21,32,13,3,0,16,39,35,29,13,3,5,7,28,48,1,0,2,3,17),
nrow=5,ncol=5)
p<-ConfMatrix$new(A,Source="Næsset 1996")
p$ProdKappa_i(2)


Method ModKappaProd_i()

Public method, derived from the general modified kappa coefficient, which provides the modified kappa coefficient from the producer's perspective and for a specific class i. Equitable probabilities of belonging to each class are assumed. The method also offers the variance and confidence interval. The references Stehman (1997) and Foody (1992) are followed for the calculations.

ModKappaProdi=ProdAcci1M11MModKappaProd_i=\dfrac{ProdAcc_i-\dfrac{1}{M}} {1-\dfrac{1}{M}}

σModKappaProdi2=ProdAcci(1ProdAcci)(11M)2Nj\sigma^2_{ModKappaProd_i}=\dfrac{ProdAcc_i \cdot (1- ProdAcc_i)}{ \left( 1-\dfrac{1}{M} \right)^2 \cdot N_{j}}

where:

  1. ProdAcciProdAcc_i: producer accuracy index for class i.

Usage
ConfMatrix$ModKappaProd_i(i, a = NULL)
Arguments
i

⁠ Class to evaluate, where⁠ iZ{0}i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the modified kappa coefficient from the producer's perspective, its variance and confidence interval.

Examples
A<-matrix(c(317,61,2,35,23,120,4,29,0,0,60,0,0,0,0,8),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Foody 1992")
p$ModKappaProd_i(2)


Method DetailKappa()

Public method that calculates the general Kappa agreement index, its standard deviation and the test statistic to test its significance. The delta method has been used to calculate the sample variance. The reference Congalton and Green (2008) is followed for the computations.

Kappa=OverallAccExpAcc1ExpAccKappa=\dfrac{OverallAcc-ExpAcc}{1-ExpAcc}

ExpAcc=x+jxi+(i,j=1Mxij)2ExpAcc= \dfrac{x_{+ j} \cdot x_{i +}}{\sum_{(i,j=1}^M x_{ij})^{2}}

σKappa2=1NTotal(θ1(1θ1)(1θ2)2+2(1θ1)(2θ1θ2θ3)(1θ2)3+(1θ1)2(θ44θ22)(1θ2)4)\sigma^2_{Kappa} = \dfrac{1}{N_{Total}} \left( \dfrac{\theta_1 (1-\theta_1) }{(1-\theta_2)^2} + \dfrac{2(1-\theta_1)(2\theta_1\theta_2-\theta_3)}{(1-\theta_2)^3} + \dfrac{(1-\theta_1)^2(\theta_4-4\theta_2^2)}{(1-\theta_2)^4} \right)

where

θ1=OverallAcc=i,j=1Mxiixij\theta_1=OverallAcc= \sum_{i, j=1}^{M} \dfrac{ x_{ii}}{ x_{ij}}

θ2=ExpAcc=i=1M(x+ij=1Mxijxi+j=1Mxij)\theta_2=ExpAcc=\sum^M_{i=1} \left( \dfrac{x_{+ i}}{\sum_{j=1}^M x_{ij}} \cdot \dfrac{x_{i +}}{\sum_{j=1}^M x_{ij}} \right)

θ3=i=1M(xiix+ij=1Mxijxiixi+j=1Mxij)\theta_3=\sum^M_{i=1} \left( \dfrac{x_{ii} x_{+ i}}{\sum_{j=1}^M x_{ij}} \cdot \dfrac{x_{ii} x_{i +}}{\sum_{j=1}^M x_{ij}} \right)

θ4=1(i,j=1Mxij)3i,j=1Mxij(xj++x+i)2\theta_4=\dfrac{1}{ ( \sum_{i,j=1}^M x_{ij})^3} \sum_{i,j=1}^M x_{ij} (x_{j+}+x_{+i})^2

Z=KappaσKappa2Z=\dfrac{Kappa}{\sqrt{\sigma^2_{Kappa}}}

Where:

  1. ExpAccExpAcc: expected accuracy of agreement if agreement were purely random.

  2. OverallAccOverallAcc: overall accuracy.

  3. θ1,θ2,θ3,θ4\theta_1, \theta_2, \theta_3, \theta_4: real values.

  4. ZZ: the test statistic.

Usage
ConfMatrix$DetailKappa()
Returns

A list of real values containing the kappa coefficient, its standard deviation, and the value of its test statistic.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$DetailKappa()


Method DetailCondKappa()

Public method that calculates the Kappa class agreement index (conditional Kappa) from the perspective of user (i) and producer (j) and its standard deviations. The reference Congalton and Green (2008) is followed for the computations.

CondKappauser=xiixi+x+j1x+jCondKappa_{user}=\dfrac{\dfrac{x_{ii}}{x_{i+}}-x_{+j}}{1-x_{+j}}

CondKappaproducer=xiix+jxi+1xi+CondKappa_{producer}=\dfrac{\dfrac{x_{ii}}{x_{+j}}-x_{i+}}{1-x_{i+}}

σCondKappaproducer2=1NTotalx+jxiix+j3(1xi+)3((x+jxii)(x+jxi+xii)+xii(1x+jxi++xii))\sigma^2_{CondKappa_{producer}}=\dfrac{1}{N_{Total}} \cdot \dfrac{x_{+j}-x_{ii}}{x_{+j}^3 (1-x_{i+})^3} \cdot ((x_{+j}-x_{ii})\cdot (x_{+j}x_{i+}-x_{ii}) + x_{ii} (1-x_{+j}-x_{i+}+x_{ii}) )

σCondKappauser2\sigma^2_{CondKappa_{user}} is done in an analogous way by exchanging xi+x_{i+} to x+jx_{+j}.

Usage
ConfMatrix$DetailCondKappa()
Returns

A list of real values containing conditional Kappa index of the user's and the producer's, and its corresponding standard deviation.

Examples
A<-matrix(c(0.2361,0.0694,0.1389,0.0556,0.1667,0.0417,0.1111,0,0.1806),
ncol=3,nrow=3)
p<-ConfMatrix$new(A,Source="Czaplewski 1994")
p$DetailCondKappa ()


Method DetailWKappa()

Public method that calculates the general Kappa agreement index (weighted) and its standard deviation. The reference Fleiss et al. (1969); Næsset (1996) and Congalton and Green (2008) are followed for the computations.

Be pij=xiji,jMxijp_{ij}=\dfrac{x_{ij}}{\sum^M_{i,j} x_{ij}} for each element i,ji,j for the matrix and 0wij10 \leq w_{ij} \leq 1 for iji \neq j and wii=1w_{ii}=1 for i=ji = j. If the elements of the weight are greater than 1, their value must be given as a percentage.

Therefore, let:

po=i,j=1Mwijpijp_o=\sum^M_{i,j=1} w_{ij}p_{ij}

be the weighted agreement, and

pc=i,j=1Mwijpi+p+jp_c=\sum^M_{i,j=1} w_{ij}p_{i+}p_{+j}

with pi+,p+jp_{i+}, p_{+j} analogous to xi+,x+jx_{i+}, x_{+j}.

Then, the weighted Kappa is defined by

Kappaw=popc1pcKappa_w=\dfrac{p_o-p_c}{1-p_c}

The variance may be estimated by

σKappaw2=1NTotal(1pc)4(i,j=1Mpij[wij(1pc)(wi++w+j)(1po)]2(popc2pc+po)2)\sigma^2_{Kappa_w}=\dfrac{1}{N_{Total} (1-p_c)^4} \left( \sum^M_{i,j=1} p_{ij} [ w_{ij} (1-p_c)-(\overline{w}_{i+}+\overline{w}_{+j}) (1-p_o)]^2 -(p_op_c-2p_c+p_o)^2 \right)

where wi+=j=1Mwijp+j\overline{w}_{i+}=\sum^M_{j=1} w_{ij}p_{+j} and w+j=i=1Mwijpi+\overline{w}_{+j}=\sum^M_{i=1} w_{ij}p_{i+}

Its statistic is given by:

Z=KappaWσKappaW2Z=\dfrac{Kappa_W}{\sqrt{\sigma^2_{Kappa_W}}}

Usage
ConfMatrix$DetailWKappa(WM)
Arguments
WM

Weight matrix (as matrix).

Returns

A list with the weight matrix, kappa index obtained from the original matrix and the weight matrix, its standard deviations and the value of its test statistic.

Examples
A <- matrix(c(1,1,0,0,0,5,55,27,23,0,3,30,68,74,4,0,8,8,39,26,0,0,2,4,26),
nrow=5)
WM <- matrix(c(1,0.75,0.5,0.25,0,0.75,1,0.75,0.5,0.25,0.5,0.75,1,0.75,0.5,
0.25,0.5,0.75,1,0.75,0,0.25,0.5,0.75,1),nrow=5)
p<-ConfMatrix$new(A, Source="Næsset 1996")
p$DetailWKappa(WM)


Method Tau()

Public method that calculates the Tau index and its variance. Its value indicates how much the classification has improved compared to a random classification of the N elements into M groups. The method also offers the variance and confidence interval. The reference Ma and Redmond (1995) is followed for the computations.

Tau=OverallAccPrAgCoef1PrAgCoefTau = \dfrac{OverallAcc-PrAgCoef}{1-PrAgCoef}

PrAgCoef=1MPrAgCoef=\dfrac{1}{M}

σTau2=OverallAcc(1OverallAcc)NTotal(1PrAgCoef)2\sigma^2_{Tau}=\dfrac{OverallAcc \cdot (1-OverallAcc)} {N_{Total} \cdot (1-PrAgCoef)^2}

Where:

  1. OverallAccOverallAcc: overall accuracy.

  2. PrAgCoefPrAgCoef: a priori random agreement coefficient.

Usage
ConfMatrix$Tau(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the Tau index, its variance and confidence interval.

Examples
A<-matrix(c(238051,7,132,0,0,24,9,2,189,1,4086,188,0,4,16,45,1,0,939,5082,
51817,0,34,500,1867,325,17,0,0,5,11148,1618,78,0,0,0,0,48,4,834,2853,340,
32,0,197,5,151,119,135,726,6774,75,1,553,0,105,601,110,174,155,8257,8,0,
29,36,280,0,0,6,5,2993,0,115,2,0,4,124,595,0,0,4374),nrow=9,ncol=9)
p<-ConfMatrix$new(A,Source="Muñoz 2016")
p$Tau()


Method DetailWTau()

Public method that calculates the general Tau concordance index (weighted) and its standard deviation.

Be pij=xiji,jMxijp_{ij}=\dfrac{x_{ij}}{\sum^M_{i,j} x_{ij}} for each element i,ji,j for the matrix and 0wij10 \leq w_{ij} \leq 1 for iji \neq j and wii=1w_{ii}=1 for i=ji = j. If the elements of the weight are greater than 1, their value must be given as a percentage. The following real values are defined:

θ1=iMpii\theta_1=\sum_{i}^{M} p_{ii}

θ2=i=1Mwijpi+\theta_2=\sum^M_{i=1} w_{ij}p_{i+}

θ3=i=1M(pii(wij+p+j))\theta_3=\sum^M_{i=1} \left( p_{ii} (w_{ij}+p_{+j}) \right)

θ4=i,j=1Mpijmij\theta_4=\sum^M_{i,j=1} p_{ij} m_{ij}

where mijm_{ij} are the elements of a matrix, which are given by (wij+p+j)2(w_{ij}+p_{+j})^2

Therefore,

TauW=θ1θ21θ2Tau_W=\dfrac{\theta_1-\theta_2}{1-\theta_2}

σTauW2=1NTotal(θ1(1θ1)(1θ2)2+21θ1(1θ2)3(2θ1θ2θ3)+(1θ1)2(1θ2)4(θ44θ22))\sigma^2_{Tau_W}=\dfrac{1}{N_{Total}} \left( \dfrac{\theta_1 (1-\theta_1)}{(1-\theta_2)^2} + 2 \dfrac{1-\theta_1}{(1-\theta_2)^3} (2 \theta_1 \theta_2-\theta_3) + \dfrac{(1-\theta_1)^2}{(1-\theta_2)^4} (\theta_4 - 4 \theta_2^2) \right)

The statistic is given by

Z=TauWσTauW2Z=\dfrac{Tau_W}{\sqrt{\sigma^2_{Tau_W}}}

Where:

  1. θ1,θ2,θ3,θ4\theta_1, \theta_2, \theta_3, \theta_4: real values.

  2. ZZ: the test statistic.

Usage
ConfMatrix$DetailWTau(WV)
Arguments
WV

⁠ Weights vector (as matrix) ⁠

Returns

A list with the weighted Tau index, the weight matrix, its standard deviation and its statistics.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
WV <-matrix(c(0.4, 0.1, 0.4, 0.1),ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$DetailWTau(WV)


Method Ent()

Public method for calculating product entropy,which refers to the lack of orden and predictability that the product presents. The method also offers the variance and confidence interval. The reference Finn (1993) is followed for the calculations.

Ent=i,j=1M(xiji,j=1Mxijlog(xijxi+x+ji,j=1Mxij))Ent=\sum^M_{i,j=1} \left(\dfrac{x_{ij}}{\sum^M_{i,j=1} x_{ij}} \cdot \log \left(\dfrac{x_{ij}}{\dfrac{ x_{i+} \cdot x_{+j}}{\sum^M_{i,j=1} x_{ij}}} \right) \right)

σEnt2=Ent(1Ent)NTotal\sigma^2_{Ent}=\dfrac{Ent \cdot (1-Ent)}{N_{Total}}

Usage
ConfMatrix$Ent(a = NULL, v = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

v

⁠ Base of the logarithm, where⁠ vR+{1}v \in \mathbb{R}^{+}-\{1\}. ⁠By default v=10(units Hartleys), v=2(units bits), v=e(units nats).⁠

Returns

A list of real values containing the entropy, its variance and confidence interval.

Examples
A<-matrix(c(35,4,12,2,14,11,9,5,11,3,38,12,1,0,4,2),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Finn 1993")
p$Ent(v=2)


Method AvNormEnt()

Public method that calculates normalized entropy using the arithmetic mean of the entropies on the product and the reference. The method also offers the variance and confidence interval. The reference Strehl and Ghosh (2002) is followed for the calculations.

AvNormEnt=2EntEnti(A)+Enti(B)AvNormEnt=\dfrac{2Ent}{Ent_i(A)+Ent_i(B)}

Enti(A)=j=1M((x+ji,j=1Mxij)log(x+ji,j=1Mxij))Ent_i(A)=-\sum^M_{j=1} \left( \left(\dfrac{ x_{+j}} {\sum^M_{i,j=1} x_{ij} }\right) \cdot \log \left(\dfrac{ x_{+j}} {\sum^M_{i,j=1} x_{ij} }\right) \right)

Enti(B)=i=1M((xi+i,j=1Mxij)log(xi+i,j=1Mxij))Ent_i(B)=-\sum^M_{i=1}\left( \left(\dfrac{ x_{i+}} {\sum^M_{i,j=1} x_{ij} }\right) \cdot \log \left(\dfrac{x_{i+}} {\sum^M_{i,j=1} x_{ij} }\right) \right)

σAvNormEnt2=AvNormEnt(1AvNormEnt)NTotal\sigma^2_{AvNormEnt}=\dfrac{AvNormEnt \cdot (1-AvNormEnt)}{N_{Total}}

where:

  1. EntEnt: product entropy.

  2. Enti(A)Ent_i(A): entropy with respect to the classes i of the product. A is a matrix.

  3. Enti(B)Ent_i(B): entropy with respect to the class i on the reference. B is a matrix.

Usage
ConfMatrix$AvNormEnt(a = NULL, v = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

v

⁠ Base of the logarithm, where⁠ vR+{1}v \in \mathbb{R}^{+}-\{1\}. ⁠By default v=10(units Hartleys), v=2(units bits), v=e(units nats).⁠

Returns

A list of real values containing the normalized entropy (arithmetic mean of the entropies on the product and reference), its variance and confidence interval.

Examples
A<-matrix(c(0,12,0,0,12,0,0,0,0,0,0,12,0,0,12,0),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Liu et al. 2007")
p$AvNormEnt(v=2)


Method GeomAvNormEnt()

Public method that calculates the normalized entropy using the geometric mean of the product and reference entropies. The method also offers the variance and confidence interval. The reference Ghosh et al. (2002) is followed for the calculations.

GeomAvNormEnt=EntEnti(A)Enti(B)GeomAvNormEnt=\dfrac{Ent}{\sqrt{Ent_i(A) \cdot Ent_i(B)}}

Enti(A)=j=1M((x+ji,j=1Mxij)log(x+ji,j=1Mxij))Ent_i(A)=-\sum^M_{j=1} \left( \left(\dfrac{ x_{+j}} {\sum^M_{i,j=1} x_{ij} }\right) \cdot \log \left(\dfrac{ x_{+j}} {\sum^M_{i,j=1} x_{ij} }\right) \right)

Enti(B)=i=1M((xi+i,j=1Mxij)log(xi+i,j=1Mxij))Ent_i(B)=-\sum^M_{i=1}\left( \left(\dfrac{ x_{i+}} {\sum^M_{i,j=1} x_{ij} }\right) \cdot \log \left(\dfrac{ x_{i+}} {\sum^M_{i,j=1} x_{ij} }\right) \right)

σGeomAvNormEnt2=GeomAvNormEnt(1GeomAvNormEnt)NTotal\sigma^2_{GeomAvNormEnt}= \dfrac{GeomAvNormEnt \cdot (1-GeomAvNormEnt)}{N_{Total}}

where:

  1. EntEnt: product entropy.

  2. Enti(A)Ent_i(A): entropy with respect to the classes i of the product. A is a matrix.

  3. Enti(B)Ent_i(B): entropy with respect to the class i of the reference. B is a matrix.

Usage
ConfMatrix$GeomAvNormEnt(a = NULL, v = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

v

⁠ Base of the logarithm, where⁠ vR+{1}v \in \mathbb{R}^{+}-\{1\}. ⁠By default v=10(units Hartleys), v=2(units bits), v=e(units nats).⁠

Returns

A list of real values containing the normalized entropy (geometric mean of the entropies on the product and reference), its variance and confidence interval.

Examples
A<-matrix(c(0,12,0,0,12,0,0,0,0,0,0,12,0,0,12,0),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Liu et al. 2007")
p$GeomAvNormEnt(v=2)


Method AvMaxNormEnt()

Public method that provides normalized entropy using the arithmetic mean of the maximum entropies of the product and reference. The method also offers the variance and confidence interval. The reference Strehl (2002) is followed for the calculations.

AvMaxNormEnt=2Entmax(Enti(A))+max(Enti(B))=EntlogMAvMaxNormEnt=\dfrac{2 Ent}{max(Ent_i(A))+max(Ent_i(B))}= \dfrac{Ent}{\log M}

Enti(A)=j=1M((x+ji,j=1Mxij)log(x+ji,j=1Mxij))Ent_i(A)=-\sum^M_{j=1} \left( \left(\dfrac{ x_{+j}} {\sum^M_{i,j=1} x_{ij} }\right) \cdot \log \left(\dfrac{ x_{+j}} {\sum^M_{i,j=1} x_{ij} }\right) \right)

Enti(B)=i=1M((xi+i,j=1Mxij)log(xi+i,j=1Mxij))Ent_i(B)=-\sum^M_{i=1}\left( \left(\dfrac{ x_{i+}} {\sum^M_{i,j=1} x_{ij} }\right) \cdot \log \left(\dfrac{ x_{i+}} {\sum^M_{i,j=1} x_{ij} }\right) \right)

σAvMaxNormEnt2=AvMaxNormEnt(1AvMaxNormEnt)NTotal\sigma^2_{AvMaxNormEnt}= \dfrac{AvMaxNormEnt \cdot (1-AvMaxNormEnt)}{N_{Total}}

where:

  1. EntEnt: product entropy.

  2. Enti(A)Ent_i(A): entropy with respect to the classes i of the product. A is a matrix.

  3. Enti(B)Ent_i(B): entropy with respect to the class i on the reference. B is a matrix.

Usage
ConfMatrix$AvMaxNormEnt(a = NULL, v = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

v

⁠ Base of the logarithm, where⁠ vR+{1}v \in \mathbb{R}^{+}-\{1\}. ⁠By default v=10(units Hartleys), v=2(units bits), v=e(units nats).⁠

Returns

A list of real values containing the normalized entropy (arithmetic mean of the maximum entropies of the product and of reference), its variance, and its confidence interval.

Examples
A<-matrix(c(8,0,0,0,0,16,0,0,0,0,8,0,0,0,0,16),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Liu et al. 2007")
p$AvMaxNormEnt(v=2)


Method EntUser_i()

Public method that calculates relative change of entropy for a given class ii of the product. The method also offers the variance and confidence interval. The reference Finn (1993) is followed for the calculations.

EntUseri=Enti(A)Enti(Abi)Enti(A)EntUser_i= \dfrac{Ent_i(A)-Ent_i(A|b_i)}{Ent_i(A)}

Enti(A)=j=1M((x+ji,j=1Mxij)log(x+ji,j=1Mxij))Ent_i(A)=-\sum^M_{j=1} \left( \left(\dfrac{ x_{+j}} {\sum^M_{i,j=1} x_{ij} }\right) \cdot \log \left(\dfrac{ x_{+j}} {\sum^M_{i,j=1} x_{ij} }\right) \right)

Enti(Abi)=j=1M((xijxi+)log(xijxi+))Ent_i(A|b_i)=-\sum^M_{j=1} \left( \left(\dfrac{ x_{ij}} { x_{i+} }\right) \cdot \log \left(\dfrac{x_{ij}} { x_{i+}}\right) \right)

σEntUseri2=EntUseri(1EntUseri)NTotal\sigma^2_{EntUser_i}= \dfrac{EntUser_i \cdot (1-EntUser_i)}{N_{Total}}

where:

  1. Enti(A)Ent_i(A): entropy with respect to the classes i of the product. A is a matrix.

  2. Enti(Abi)Ent_i(A|b_i): Producer entropy knowing that the location corresponding to reference B is in class bib_i. B is a matrix.

Usage
ConfMatrix$EntUser_i(i, a = NULL, v = NULL)
Arguments
i

⁠ Class to evaluate, where⁠ iZ{0}i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

v

⁠ Base of the logarithm, where⁠ vR+{1}v \in \mathbb{R}^{+}-\{1\}. ⁠By default v=10(units Hartleys), v=2(units bits), v=e(units nats).⁠

Returns

A list of real values containing the relative change of entropy for given class i, its variance, its confidence interval, producer's entropy, and producer's entropy knowing that the location corresponding to reference B is in class bib_i.

Examples
A<-matrix(c(35,4,12,2,14,11,9,5,11,3,38,12,1,0,4,2),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Finn 1993")
p$EntUser_i(1,v=2)


Method NormEntUser()

Public method that calculates normalized entropy of the product. The method also offers the variance and confidence interval. The reference Finn (1993) is followed for the calculations.

NormEntUser=EntEnti(B)NormEntUser=\dfrac{Ent}{Ent_i(B)}

Enti(B)=i=1M((xi+i,j=1Mxij)log(xi+i,j=1Mxij))Ent_i(B)=-\sum^M_{i=1} \left( \left( \dfrac {x_{i+}} {\sum^M_{i,j=1} x_{ij} }\right) \cdot \log \left( \dfrac{ x_{i+}} {\sum^M_{i,j=1} x_{ij} }\right) \right)

σNormEntUser2=NormEntUser(1NormEntUser)NTotal\sigma^2_{NormEntUser}=\dfrac{NormEntUser \cdot (1-NormEntUser)}{N_{Total}}

where:

  1. EntEnt: product entropy.

  2. Enti(B)Ent_i(B): entropy with respect to the class i on the reference. B is a matrix.

Usage
ConfMatrix$NormEntUser(a = NULL, v = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

v

⁠ Base of the logarithm, where⁠ vR+{1}v \in \mathbb{R}^{+}-\{1\}. ⁠By default v=10(units Hartleys), v=2(units bits), v=e(units nats).⁠

Returns

A list of real values containing with normalized entropy of the product class i, conditioned to reference data, its variance and confidence interval.

Examples
A<-matrix(c(35,4,12,2,14,11,9,5,11,3,38,12,1,0,4,2),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Finn 1993")
p$NormEntUser(v=2)


Method EntProd_i()

Public method that calculates relative change of entropy for a given a class ii of the reference from the producer's perspective. The method also offers the variance and confidence interval. The reference Stehman (1997) is followed for the calculations.

EntProdi=Enti(B)Enti(Baj)Enti(B)EntProd_i= \dfrac{Ent_i(B)-Ent_i(B|a_j)}{Ent_i(B)}

Enti(B)=i=1M((xi+i,j=1Mxij)log(xi+i,j=1Mxij))Ent_i(B)=-\sum^M_{i=1} \left( \left(\dfrac{ x_{i+}} {\sum^M_{i,j=1} x_{ij} }\right) \cdot \log \left(\dfrac{ x_{i+}} {\sum^M_{i,j=1} x_{ij} }\right) \right)

Enti(Baj)=i=1M((xijx+j)log(xijx+j))Ent_i(B|a_j)=-\sum^M_{i=1}\left( \left(\dfrac{ x_{ij}} { x_{+j} }\right) \cdot \log \left(\dfrac{x_{ij}} { x_{+j}}\right) \right)

σEntProdi2=EntProdi(1EntProdi)NTotal\sigma^2_{EntProd_i}= \dfrac{EntProd_i \cdot (1-EntProd_i)}{N_{Total}}

where:

  1. Enti(B)Ent_i(B): entropy with respect to the class i on the reference. B is a matrix.

  2. Enti(Baj)Ent_i(B|a_j): Entropy of reference B knowing that the location of product A is in the class aja_j.

Usage
ConfMatrix$EntProd_i(i, a = NULL, v = NULL)
Arguments
i

⁠ Class to evaluate, where⁠ iZ{0}i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

v

⁠ Base of the logarithm, where⁠ vR+{1}v \in \mathbb{R}^{+}-\{1\}. ⁠ By default v=10(units Hartleys), v=2(units bits), v=e(units nats). ⁠

Returns

A list of real values containing the relative change of entropy for given class i, its variance, its confidence interval, entropy with respect to reference classes, and entropy with respect to reference classes knowing that the location corresponding to A is in class aja_j.

Examples
A<-matrix(c(35,4,12,2,14,11,9,5,11,3,38,12,1,0,4,2),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Finn 1993")
p$EntProd_i(3,v=2)


Method NormEntProd()

Public method that calculates normalized entropy of the reference from the producer's perspective. The method also offers the variance and confidence interval. The reference Finn (1993) is followed for the calculations.

NormEntProd=EntEnti(A)NormEntProd=\dfrac{Ent}{Ent_i(A)}

Enti(A)=j=1M((x+ji,j=1Mxij)log(x+ji,j=1Mxij))Ent_i(A)=-\sum^M_{j=1}\left( \left(\dfrac{ x_{+j}} {\sum^M_{i,j=1} x_{ij} }\right) \cdot \log \left( \dfrac{x_{+j}} {\sum^M_{i,j=1} x_{ij} }\right) \right)

σNormEntProd2=NormEntProd(1NormEntProd)NTotal\sigma^2_{NormEntProd}=\dfrac{NormEntProd \cdot (1-NormEntProd)}{N_{Total}}

where:

  1. EntEnt: product entropy.

  2. Enti(A)Ent_i(A): entropy with respect to the classes i of the product. A is a matrix.

Usage
ConfMatrix$NormEntProd(a = NULL, v = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

v

⁠ Base of the logarithm, where⁠ vR+{1}v \in \mathbb{R}^{+}-\{1\}.⁠ By default v=10(units Hartleys), v=2(units bits), v=e(units nats).⁠

Returns

A list of real values containing the normalized entropy of the reference class ii from the producer's perspective, its variance and confidence interval.

Examples
A<-matrix(c(35,4,12,2,14,11,9,5,11,3,38,12,1,0,4,2),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Finn 1993")
p$NormEntProd(v=2)


Method Sucess()

Public method that provides the Classification Success Index (CSI) which considers all classes and gives an overall estimation of classification effectiveness. The method also offers the variance and confidence interval. The references Koukoulas and Blackburn (2001) and Türk (2002) are followed for the calculations.

Sucess=1(1AvUserAcc+1AvProdAcc)=AvUserAcc+AvProdAcc1Sucess=1-(1-AvUserAcc+1-AvProdAcc)=AvUserAcc+AvProdAcc-1

σSucess2=Sucess(1Sucess)NTotal\sigma^2_{Sucess}=\dfrac{Sucess \cdot (1-Sucess)}{N_{Total}}

where:

  1. AvUserAccAvUserAcc: average accuracy from user's perspective.

  2. AvProdAccAvProdAcc: average accuracy from producer's perspective.

Usage
ConfMatrix$Sucess(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the ICSI, its variance and its confidence interval.

Examples
A<-matrix(c(0.3,0.02,0.01,0.12,0.19,0.03,0.02,0.01,0.3),nrow=3,ncol=3)
p<-ConfMatrix$new(A,Source="Labatut and Cherifi 2011")
p$Sucess()


Method Sucess_i()

Public method that provides the Individual Classification Success Index (ICSI) which considers the classification effectiveness for one particular class of interest. The method also offers the variance and confidence interval. The references Koukoulas and Blackburn (2001) and Türk (2002) are followed for the calculations.

Sucessi=1(1UserAcci+1ProdAcci)=UserAcci+ProdAcci1Sucess_i=1-(1-UserAcc_i+1-ProdAcc_i)=UserAcc_i+ProdAcc_i-1

σSucessi2=Sucessi(1Sucessi)Nij\sigma^2_{Sucess_i}=\dfrac{Sucess_i \cdot (1-Sucess_i)}{N_{ij}}

where:

  1. UserAcciUserAcc_i: user accuracy index for class i.

  2. ProdAcciProdAcc_i: producer accuracy index for class i.

Usage
ConfMatrix$Sucess_i(i, a = NULL)
Arguments
i

⁠ Class to evaluate, where⁠ iZ{0}i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the ICSI, its variance and its confidence interval.

Examples
A<-matrix(c(0.3,0.02,0.01,0.12,0.19,0.03,0.02,0.01,0.3),nrow=3,ncol=3)
p<-ConfMatrix$new(A,Source="Labatut and Cherifi 2011")
p$Sucess_i(2)


Method AvHellAcc()

Public method that provides the average value of the Hellden mean precision index. Denoted by the probability that a randomly chosen position or element assigned to a specific class on the product has a correspondence of the same class in the homologous position or element in the reference, and that a randomly chosen point or element assigned to a specific class on the reference has a correspondence of the same class in the homologous position or element in the product. The method also offers the variance and confidence interval. The reference Liu et al. (2007) is followed for the calculations.

AvHellAcc=1M2i=1Mxiix+i+xi+AvHellAcc=\dfrac{1}{M} 2 \sum^M_{i=1} \dfrac{ x_{ii}} { x_{+i} + x_{i+}}

σAvHellAcc2=AvHellAcc(1AvHellAcc)NTotal\sigma^2_{AvHellAcc}=\dfrac{AvHellAcc \cdot (1-AvHellAcc)}{N_{Total}}

Usage
ConfMatrix$AvHellAcc(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the average of Hellden's mean accuracy index, its variance and confidence interval.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$AvHellAcc()


Method AvHellAcc_i()

Public method that provides the Hellden’ average accuracy for the specified class. The method also offers the variance and confidence interval. The references Hellden (1980) and Rosenfield and Fitzpatrick-Lins (1986) are followed for the calculations.

AvHellAcci=21UserAcci+1ProdAcci=2UserAcciProdAcciUserAcci+ProdAcciAvHellAcc_i=\dfrac{2}{\dfrac{1}{UserAcc_i}+\dfrac{1}{ProdAcc_i}}= \dfrac{2 UserAcc_i \cdot ProdAcc_i}{UserAcc_i + ProdAcc_i}

σAvHellAcci2=AvHellAcci(1AvHellAcci)Nij\sigma^2_{AvHellAcc_i}=\dfrac{AvHellAcc_i \cdot (1-AvHellAcc_i)}{N_{ij}}

where:

  1. UserAcciUserAcc_i: user accuracy index for class i.

  2. ProdAcciProdAcc_i: producer accuracy index for class i.

Usage
ConfMatrix$AvHellAcc_i(i, a = NULL)
Arguments
i

⁠ Class to evaluate, where⁠ iZ{0}i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the Hellden’s mean accuracy, its variance and its confidence interval.

Examples
A <- matrix(c(148,1,8,2,0,0,50,15,3,0,1,6,39,7,1,1,0,6,25,1,1,0,0,1,6),nrow=5,
ncol=5)
p<-ConfMatrix$new(A,Source="Rosenfield and Fitzpatrick 1986")
p$AvHellAcc_i(2)


Method AvShortAcc()

Public method that provides the average of the Short's mapping accuracy index. It is determined as the quotient between the well-classified elements (value on the diagonal) and the subtraction of that same value on the errors of omission and commission (rest of values in the column and row) corresponding to each class. The method also offers the variance and confidence interval. The reference Liu et al. (2007) is followed for the calculations.

AvShortAcc=1Mi=1Mxiix+i+xi+xiiAvShortAcc=\dfrac{1}{M} \sum^M_{i=1} \dfrac{x_{ii}} { \overline{x}_{+ i}+ \overline{x}_{i +}-x_{ii}}

σAvShortAcc2=AvShortAcc(1AvShortAcc)NTotal\sigma^2_{AvShortAcc}=\dfrac{AvShortAcc \cdot (1-AvShortAcc)}{N_{Total}}

Usage
ConfMatrix$AvShortAcc(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the average of Short's mapping accuracy index, its variance and confidence interval.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$AvShortAcc()


Method ShortAcc_i()

Public method that provides the Short's mapping accuracy for each class. The method also offers the variance and confidence interval. The references Rosenfield and Fitzpatrick-Lins (1986) and Short (1982) are followed for the calculations.

ShortAcci=xiix+i+xi+xiiShortAcc_i=\dfrac{x_{ii}}{ \overline{x}_{+ i}+ \overline{x}_{i +}-x_{ii}}

σShortAcci2=ShortAcci(1ShortAcci)Nij\sigma^2_{ShortAcc_i}=\dfrac{ShortAcc_i \cdot (1-ShortAcc_i)}{N_{ij}}

Usage
ConfMatrix$ShortAcc_i(i, a = NULL)
Arguments
i

⁠ Class to evaluate, where⁠ iZ{0}i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

Returns

A list of real values containing the Short's mapping accuracy, its variance and its confidence interval.

Examples
A <- matrix(c(148,1,8,2,0,0,50,15,3,0,1,6,39,7,1,1,0,6,25,1,1,0,0,1,6),nrow=5,
ncol=5)
p<-ConfMatrix$new(A,Source="Rosenfield and Fitzpatrick-Lins 1986")
p$ShortAcc_i(2)


Method GroundTruth()

Public method that calculates the Ground Truth index, its variance and confidence interval.The reference Türk (1979) is followed for the computations.

To calculate RR we begin the following iterative process:

Be Uj(0)=fj0U_j^{(0)}=f_j^0 with fj0=xi+i=1Mxi+f_j^0=\dfrac{\overline{x}_{i+}}{\sum_{i=1}^M \overline{x}_{i+}} and fi0=x+ii=1Mx+if_i^0=\dfrac{\overline{x}_{+i}}{\sum_{i=1}^M \overline{x}_{+i}}

Where 2m2m with m=1,2,m=1,2,\cdots

Vi,2m1=fi0U+,2m2Ui,2m2V_{i,2m-1}=\dfrac{f_i^0}{U_{+,2m-2}-U_{i,2m-2}}

where U+,2m=i=1MUj,2mU_{+,2m}=\sum_{i=1}^M U_{j,2m} and when 2m+12m+1 with m=1,2,m=1,2,\cdots

Uj,2m=fj0V+,2m1Vi,2m1U_{j,2m}=\dfrac{f_j^0}{V_{+,2m-1}-V_{i,2m-1}}

where V+,2m1=i=1MVi,2m1V_{+,2m-1}=\sum_{i=1}^M V_{i,2m-1}

The iterative steps continue for m=1,2,m=1, 2,\cdots until the accuracy stabilizes thus taking the V term. Where

R=Vi=1MViR=\dfrac{V}{\sum_{i=1}^{M} V_i}

ProdAcc=xiij=1Mx+jProdAcc=\dfrac{x_{ii}}{\sum_{j=1}^M x_{+j}}

GroundTruth=ProdAccR1RGroundTruth = \dfrac{ProdAcc-R}{1-R}

σGroundTruth2=GroundTruth(1GroundTruth)NTotal\sigma^2_{GroundTruth}=\dfrac{GroundTruth \cdot (1-GroundTruth)} {N_{Total}}

Where:

  1. RR: casual lucky guess.

  2. ProdAccProdAcc: producer accuracy.

Usage
ConfMatrix$GroundTruth(a = NULL)
Arguments
a

⁠ Significance level. By default 0.05. ⁠

Returns

A list with Ground Truth indexes, their variance, confidence intervals and the matrix with the expected frequencies.

Examples
A<-matrix(c(148,1,8,2,0,0,50,15,3,0,1,6,39,7,1,1,0,6,25,1,1,0,0,1,6),nrow=5,
ncol=5)
p<-ConfMatrix$new(A,Source="Türk 1979")
p$GroundTruth()


Method GroundTruth_i()

Public method that calculates the Ground Truth index for class i, its variance and confidence interval.The reference Türk (1979) is followed for the computations.

To calculate R_i we begin the following iterative process: Be Uj(0)=fj0U_j^{(0)}=f_j^0 with fj0=xi+i=1Mxi+f_j^0=\dfrac{\overline{x}_{i+}}{\sum_{i=1}^M \overline{x}_{i+}} and fi0=x+ii=1Mx+if_i^0=\dfrac{\overline{x}_{+i}}{\sum_{i=1}^M \overline{x}_{+i}}

Where 2m2m with m=1,2,m=1,2,\cdots

Vi,2m1=fi0U+,2m2Ui,2m2V_{i,2m-1}=\dfrac{f_i^0}{U_{+,2m-2}-U_{i,2m-2}}

where U+,2m=i=1MUj,2mU_{+,2m}=\sum_{i=1}^M U_{j,2m} and when 2m+12m+1 with m=1,2,m=1,2,\cdots

Uj,2m=fj0V+,2m1Vi,2m1U_{j,2m}=\dfrac{f_j^0}{V_{+,2m-1}-V_{i,2m-1}}

where V+,2m1=i=1MVi,2m1V_{+,2m-1}=\sum_{i=1}^M V_{i,2m-1}

The iterative steps continue for m=1,2,m=1, 2,\cdots until the accuracy stabilizes thus taking the V term. Where

Ri=Vii=1kViR_i=\dfrac{V_i}{\sum_{i=1}^{k} V_i}

ProdAcci=xiij=1Mx+jProdAcc_i=\dfrac{x_{ii}}{\sum_{j=1}^M x_{+j}}

GroundTruthi=ProdAcciRi1RiGroundTruth_i = \dfrac{ProdAcc_i-R_i}{1-R_i}

σGroundTruthi2=GroundTruthi(1GroundTruthi)NTotal\sigma^2_{GroundTruth_i}=\dfrac{GroundTruth_i \cdot (1-GroundTruth_i)} {N_{Total}}

Where:

  1. RiR_i: casual lucky guess for class ii. Is a real value.

  2. ProdAcciProdAcc_i: producer accuracy for class ii.

Usage
ConfMatrix$GroundTruth_i(i, a = NULL)
Arguments
i

⁠ Class to evaluate, where⁠ iZ{0}i \in \mathbb{Z}-\{0\}.

a

⁠ Significance level. By default 0.05. ⁠

Returns

A list with Ground Truth index for class ii, its variance, confidence interval and the matrix with the expected frequencies for all classes.

Examples
A<-matrix(c(148,1,8,2,0,0,50,15,3,0,1,6,39,7,1,1,0,6,25,1,1,0,0,1,6),nrow=5,
ncol=5)
p<-ConfMatrix$new(A,Source="Türk 1979")
p$GroundTruth_i(3)


Method HellingerDist()

Public method that provides that Hellinger distance between two confusion matrices. The reference García-Balboa et al. (2018) is followed for the computations.

HellingerDist=4nAmBnA+mBi=1M(piqi)2HellingerDist = \dfrac{4n_{A}m_{B}}{n_{A}+m_{B}} \sum^{M}_{i=1} (\sqrt{p_i}-\sqrt{q_i})^2

Where:

  1. nAn_{A}: sum of elements of the matrix A.

  2. mBm_{B}: sum of elements of the matrix B.

  3. pip_i: probability that element i[1,,MxM]i \in [1, \cdots, MxM] is well classified in matrix A.

  4. qiq_i: probability that element i[1,,MxM]i \in [1, \cdots, MxM] is well classified in matrix B.

Usage
ConfMatrix$HellingerDist(f, p = NULL, q = NULL)
Arguments
f

⁠ Element of the ConfMatrix. ⁠

p

⁠ probability vector of matrix A. By default, relative frequencies observed for each cell is taken. ⁠

q

⁠ probability vector of matrix B. By default, relative frequencies observed for each cell is taken. ⁠

Returns

A real value for the Hellinger distance.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
r<-ConfMatrix$new(A,Source="Congalton and Green 2008")
B<-matrix(c(45,6,0,4,4,91,8,7,12,5,55,3,24,8,9,55),nrow=4,ncol=4)
f<-ConfMatrix$new(B,Source="Congalton and Green 2008")
r$HellingerDist(f)


Method QES()

Public method that calculates the values of quantity difference, exchange and shift. Quantity difference is the amount of difference between the product and the reference and is due to the less than maximum match in the proportions of the categories. Exchange represents transitions from class ii to jj and a transition from class jj to class ii in an identical number of cases. Shift refers to the difference remaining after subtracting quantity difference and exchange from the overall difference. The reference Pontius Jr and Santacruz (2014) is followed for the computations.

Where

Q=j=1Mqj2Q=\dfrac{\sum^M_{j=1} q_{j}}{2}

E=j=1Mej2E=\dfrac{\sum^M_{j=1} e_{j}}{2}

S=j=1Msj2S=\dfrac{\sum^M_{j=1} s_{j}}{2}

with

dj=(i=1M(xij+xji))2xjji=1Mj=1Mxijd_{j}=\dfrac{ \left( \sum^M_{i=1} (x_{ij} + x_{ji}) \right) -2 x_{jj} }{\sum^M_{i=1} \sum^M_{j=1} x_{ij}}

qj=i=1M(xij+xji)i=1Jj=1Jxijq_{j}=\dfrac{\left| \sum^M_{i=1} (x_{ij} + x_{ji}) \right| }{\sum^J_{i=1} \sum^J_{j=1} x_{ij}}

ej=2((i=1Mmin(xij,xji))xjj)i=1Mj=1Mxije_{j}=\dfrac{2 \left( \left( \sum^M_{i=1} min(x_{ij}, x_{ji}) \right) - x_{jj} \right)}{\sum^M_{i=1} \sum^M_{j=1} x_{ij}}

sj=djqjejs_{j}=d_{j}-q_{j}-e_{j}

Usage
ConfMatrix$QES()
Returns

A list of integer values with quantity, exchange, and shift. In addition to the differences for classes of the components of quantity, exchange and turn.

Examples
A<-matrix(c(3,2,1,1,3,3,2,0,1),nrow=3,ncol=3)
p<-ConfMatrix$new(A,Source="Pontius Jr. and Santacruz 2023")
p$QES()


Method MTypify()

Public method that typifies the confusion matrix. The total sum of the original matrix is used for typing. In a typed matrix the sum of all values is unity. The resulting values can be presented as real values (parameter RaR=1), or as a percentage (parameter RaR !=1).

MTypify=xiji,j=1MxijMTypify=\dfrac{x_{ij}}{\sum^M_{i,j=1} x_{ij}}

Usage
ConfMatrix$MTypify(RaR = NULL)
Arguments
RaR

"1" indicates result as real, other values mean percentage as integer. By default RaR=1.

Returns

A list with two arrays, the first is the original array, the second the typed one.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A, Source="Congalton and Green 2008")
p$MTypify(RaR=5)

Method MBootStrap()

Public method that provides B resamples, using a multinomial distribution, of the confusion matrix of a ConfMatrix object. As a result, a set of bootstrapped cases is offered. The reference Fienberg (1970) is followed for the computations.

Usage
ConfMatrix$MBootStrap(B, pr = NULL)
Arguments
B

Number of resamples.

pr

Vector with resampling probabilities. By default, the success probability of each cell will be taken.

Returns

A list of B + 1 arrays formed by the original confusion matrix and all the simulated cases.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A, Source="Congalton and Green 2008")
p$MBootStrap(2)


Method MNormalize()

Public method that carries out an iterative process in order to equals one the sum of values by rows and columns. The references Fienberg (1970) and Muñoz (2016) are followed for the computations.

The following iterative process is used:

Let xijx_{ij} be the elements of the instance. It defines:

xij=xijxi+x'_{ij}=\dfrac{x_{ij}}{x_{i+}}

xij=xijx+jx''_{ij}=\dfrac{x'_{ij}}{x'_{+j}}

Taking xij=xijx_{ij}=x''_{ij} for the next iteration.

Usage
ConfMatrix$MNormalize(iter = NULL)
Arguments
iter

⁠ Number of iteration. By default iter=1000. ⁠

Returns

A list formed by the original confusion matrix and the normalized matrix.

Examples
A<-matrix(c(238051,7,132,0,0,24,9,2,189,1,4086,188,0,4,16,45,1,0,939,5082,
51817,0,34,500,1867,325,17,0,0,5,11148,1618,78,0,0,0,0,48,4,834,2853,340,
32,0,197,5,151,119,135,726,6774,75,1,553,0,105,601,110,174,155,8257,8,0,
29,36,280,0,0,6,5,2993,0,115,2,0,4,124,595,0,0,4374),nrow=9,ncol=9)
p<-ConfMatrix$new(A,Source="Muñoz 2016")
p$MNormalize()


Method MPseudoZeroes()

Public method that small values are calculated for empty cells of the matrix. All non-empty cells of the matrix change their values. This function will not be applied if all the elements of the matrix are different from 0. The reference Muñoz (2016) is followed for the computations.

Let xijx_{ij} be the elements of the instance.

The following values are defined:

eij=xi+x+ji,j=1Mxije_{ij}=\dfrac{x_{i+}x_{+j}}{\sum^M_{i,j=1} x_{ij}}

v=(i,j=1Mxij)2i,j=1Mxij2i,j=1M(eijxij)2v=\dfrac{\left( \sum^M_{i,j=1} x_{ij} \right)^2 - \sum^M_{i,j=1} x_{ij}^2}{\sum^M_{i,j=1} (e_{ij}-x_{ij})^2}

pij=eijvi,j=1Mxijp_{ij}=\dfrac{e_{ij} \cdot v }{\sum^M_{i,j=1} x_{ij}}

Finally, the elements of the pseudozero matrix ZZ will be given by:

zij=(i,j=1Mxij(i,j=1Mxij)+v)(pij+xij)z_{ij}=\left(\dfrac{\sum^M_{i,j=1} x_{ij}}{(\sum^M_{i,j=1} x_{ij})+v} \right) (p_{ij}+x_{ij})

Usage
ConfMatrix$MPseudoZeroes()
Returns

A list formed by the original confusion matrix and the Pseudozeroes matrix.

Examples
A<-matrix(c(238051,7,132,0,0,24,9,2,189,1,4086,188,0,4,16,45,1,0,939,5082,
51817,0,34,500,1867,325,17,0,0,5,11148,1618,78,0,0,0,0,48,4,834,2853,340,
32,0,197,5,151,119,135,726,6774,75,1,553,0,105,601,110,174,155,8257,8,0,
29,36,280,0,0,6,5,2993,0,115,2,0,4,124,595,0,0,4374),nrow=9,ncol=9)
p<-ConfMatrix$new(A,Source="Muñoz 2016")
p$MPseudoZeroes()


Method OverallAcc.test()

Public method that tests whether two independent confusion matrices (instances of the ConfMatrix class), are significantly different using their overall accuracy indexes. The reference Congalton and Green (2008) and Ma and Redmond (1995) are followed for the computations.

Z=OAOB(σOA2+σOB2)Z = \dfrac{|O_A-O_B|}{\sqrt{(\sigma^2_{O_A}+\sigma^2_{O_B})}}

Where:

  1. OAO_A: overall index of matrix A.

  2. OBO_B: overall index of matrix B.

  3. σOA2\sigma^2_{O_A}: variance of OAO_A.

  4. σOB2\sigma^2_{O_B}: variance of OBO_B.

Usage
ConfMatrix$OverallAcc.test(f)
Arguments
f

⁠ Instance of ConfMatrix class. ⁠

Returns

A list of class "htest" containing the results of the hypothesis test.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
B<-matrix(c(45,6,0,4,4,91,8,7,12,5,55,3,24,8,9,55),nrow=4,ncol=4)
f<-ConfMatrix$new(B,Source="Congalton and Green 2008")
p$OverallAcc.test(f)


Method Kappa.test()

Public method that tests whether two independent confusion matrices (instances of the ConfMatrix class), are significantly different when using the kappa indexes. The reference Congalton and Green (2008) is followed for the computations.

Z=kAkB(σkA2+σkB2)Z = \dfrac{|k_A-k_B|}{\sqrt{(\sigma^2_{k_A}+\sigma^2_{k_B})}}

Where:

  1. kAk_A: kappa index of matrix A.

  2. kBk_B: kappa index of matrix B.

  3. σkA2\sigma^2_{k_A}: variance of kAk_A.

  4. σkB2\sigma^2_{k_B}: variance of kBk_B.

Usage
ConfMatrix$Kappa.test(f)
Arguments
f

⁠ Element of the ConfMatrix class. ⁠

Returns

A list of class "htest" containing the results of the hypothesis test.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
B<-matrix(c(45,6,0,4,4,91,8,7,12,5,55,3,24,8,9,55),nrow=4,ncol=4)
f<-ConfMatrix$new(B,Source="Congalton and Green 2008")
p$Kappa.test(f)


Method Tau.test()

Public method that tests whether two independent confusion matrices (instances of the ConfMatrix class), are significantly different using their Tau indexes. The reference Congalton and Green (2008) and Ma and Redmond (1995) are followed for the computations.

Z=τAτB(στA2+στB2)Z = \dfrac{|\tau_A-\tau_B|}{\sqrt{(\sigma^2_{\tau_A}+\sigma^2_{\tau_B})}}

Where:

  1. τA\tau_A: Tau index of matrix A.

  2. τB\tau_B: Tau index of matrix B.

  3. στA2\sigma^2_{\tau_A}: variance of τA\tau_A.

  4. στB2\sigma^2_{\tau_B}: variance of τB\tau_B.

Usage
ConfMatrix$Tau.test(f)
Arguments
f

⁠ Element of the ConfMatrix class. ⁠

Returns

A list of class "htest" containing the results of the hypothesis test.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
B<-matrix(c(45,6,0,4,4,91,8,7,12,5,55,3,24,8,9,55),nrow=4,ncol=4)
f<-ConfMatrix$new(B,Source="Congalton and Green 2008")
p$Tau.test(f)


Method TSCM.test()

Public method that performs a homogeneity test based on the Hellinger distance between two confusion matrices (instances of the ConfMatrix class). The test considers the individual cell values in the matrices. Bootstrap is applied to the matrices to obtain a consistent estimator. The reference García-Balboa et al. (2018) are followed for the computations. The calculation consists of obtaining a statistic, which we will call Tn,mT_{n,m}, between both matrices from ConfMatrix$HellingerDist. Bootstrap is then applied to the confusion matrices to obtain simulations of both matrices. ConfMatrix$HellingerDist is applied again to these simulations and we will obtain the statistics Tn,mT^*_{n,m}. The p value is defined as:

p^=Card(Tn,mTn,m)B\hat{p}=\dfrac{Card(T^*_{n,m} \geq T^*_{n,m})}{B}

Usage
ConfMatrix$TSCM.test(f, B = NULL)
Arguments
f

⁠ Element of the ConfMatrix class. ⁠

B

⁠ Number of bootstraps that you want to generate. By default B=1000. ⁠

Returns

A list of class "htest" containing the results of the hypothesis test.

Examples
A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
C<-matrix(c(45,6,0,4,4,91,8,7,12,5,55,3,24,8,9,55),nrow=4,ncol=4)
f<-ConfMatrix$new(C,Source="Congalton and Green 2008")
p$TSCM.test(f)


Method QIndep.test()

Public method that performs the quasi-independence test for the elements of a confusion matrix. The reference Türk (1979) and Goodman (1968) are followed for the computations.

G2=2logxijEijG^2 = 2 \cdot \sum \log \dfrac{x_{ij}}{E_{ij}}

Following the procedure for calculating the elements of the function ConfMatrix$GroundTruth, we will have to EijE_{ij} is obtained from:

fij=UjVif_{ij}=U_j \cdot V_i

fij0=fijfiif_{ij}^0=f_{ij}-f_{ii}

M0=xijxiiM^0=x_{ij}-x_{ii}

where the elements of M0M^0 are mij0m_{ij}^0

Eij=fij0i,j=1Mmij0E_{ij}=f_{ij}^0 \sum^M_{i,j=1} m_{ij}^{0}

Where:

  1. xijx_{ij}: matrix element. Observed frequency.

  2. EijE_{ij}: expected frequency.

Usage
ConfMatrix$QIndep.test()
Returns

A list of class "htest" containing the results of the hypothesis test.

Examples
A<-matrix(c(148,1,8,2,0,0,50,15,3,0,1,6,39,7,1,1,0,6,25,1,1,0,0,1,6),nrow=5,
ncol=5)
p<-ConfMatrix$new(A,Source= "Türk 1979")
p$QIndep.test()

Note

Error Messages: List of possible errors:

  • Error type 1: Non-square matrix.

  • Error type 2: Single element matrix.

  • Error type 3: Negative values.

  • Error type 4: Sum of elements 0.

  • Error type 5: Sum of rows 0.

  • Error type 6: Sum of columns 0.

  • Error type 7: It is not a matrix.

References

Alba-Fernández MV, Ariza-López FJ, Rodríguez-Avi J, García-Balboa JL (2020). “Statistical methods for thematic-accuracy quality control based on an accurate reference sample.” Remote Sensing, 12(5), 816.

Ariza FJ, Pinilla C, Garcia JL (2011). “Comparación de matrices de confusión celda a celda mediante bootstraping.”

Ariza-Lopez F, Rodríguez-Avi J, García-Balboa J, Mesas-Carrascosa F (2013). FUNDAMENTOS DE EVALUACIÓN DE LA CALIDAD DE LA INFORMACIÓN GEOGRÁFICA. Universidad de Ja\'en. Servicio de publicaciones. ISBN 978-84-8439-813-4.

Cohen J (1960). “A coefficient of agreement for nominal scales.” Educational and psychological measurement, 20(1), 37–46.

Congalton RG, Green K (2008). Assessing the accuracy of remotely sensed data: principles and practices. CRC press.

Czaplewski RL (1994). Variance approximations for assessments of classification accuracy, volume 316. US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.

Fienberg SE (1970). “An iterative procedure for estimation in contingency tables.” The Annals of Mathematical Statistics, 41(3), 907–917.

Finn JT (1993). “Use of the average mutual information index in evaluating classification error and consistency.” International Journal of Geographical Information Science, 7(4), 349–366.

Fleiss JL, Cohen J, Everitt BS (1969). “Large sample standard errors of kappa and weighted kappa.” Psychological bulletin, 72(5), 323.

Foody GM (1992). “On the compensation for chance agreement in image classification accuracy assessment.” Photogrammetric engineering and remote sensing, 58(10), 1459–1460.

García-Balboa JL, Alba-Fernández MV, Ariza-López FJ, Rodríguez-Avi J (2018). “Analysis of thematic similarity using confusion matrices.” ISPRS international journal of geo-information, 7(6), 233.

Ghosh J, Strehl A, Merugu S (2002). “A consensus framework for integrating distributed clusterings under limited knowledge sharing.” In Proc. NSF Workshop on Next Generation Data Mining, 99–108.

Goodman LA (1968). “The analysis of cross-classified data: Independence, quasi-independence, and interactions in contingency tables with or without missing entries: Ra Fisher memorial lecture.” Journal of the American Statistical Association, 63(324), 1091–1131.

Hellden U (1980). “A test of landsat-2 imagery and digital data for thematic mapping illustrated by an environmental study in northern Kenya, Lund University.” Natural Geography Institute Report No. 47.

Koukoulas S, Blackburn GA (2001). “Introducing new indices for accuracy evaluation of classified images representing semi-natural woodland environments.” Photogrammetric Engineering and Remote Sensing, 67(4), 499–510.

Labatut V, Cherifi H (2011). “Evaluation of performance measures for classifiers comparison.” arXiv preprint arXiv:1112.4133.

Liu C, Frazier P, Kumar L (2007). “Comparative assessment of the measures of thematic classification accuracy.” Remote sensing of environment, 107(4), 606–616.

Ma Z, Redmond RL (1995). “Tau coefficients for accuracy assessment of classification of remote sensing data.” Photogrammetric Engineering and Remote Sensing, 61, 435-439.

Muñoz JMS (2016). “Análisis de Calidad Cartográfica mediante el estudio de la Matriz de Confusión.” Pensamiento matemático, 6(2), 9–26.

Næsset E (1996). “Use of the weighted Kappa coefficient in classification error assessment of thematic maps.” International Journal of Geographical Information Systems, 10(5), 591–603.

Pontius Jr RG, Santacruz A (2014). “Quantity, exchange, and shift components of difference in a square contingency table.” International Journal of Remote Sensing, 35(21), 7543–7554.

Pontius Jr. RG, Santacruz A (2023). diffeR: Metrics of Difference for Comparing Pairs of Maps or Pairs of Variables. R package version 0.0-8, https://CRAN.R-project.org/package=diffeR.

Rosenfield GH, Fitzpatrick-Lins K (1986). “A coefficient of agreement as a measure of thematic classification accuracy.” Photogrammetric engineering and remote sensing, 52(2), 223–227.

Short NM (1982). The Landsat tutorial workbook: Basics of satellite remote sensing, volume 1078. National Aeronautics and Space Administration, Scientific and Technical Information Branch.

Strehl A (2002). Relationship-based clustering and cluster ensembles for high-dimensional data mining. The University of Texas at Austin.

Strehl A, Ghosh J (2002). “Cluster ensembles—a knowledge reuse framework for combining multiple partitions.” Journal of machine learning research, 3(Dec), 583–617.

Tung F, LeDrew E (1988). “The determination of optimal threshold levels for change detection using various accuracy indexes.” Photogrammetric Engineering and Remote Sensing, 54(10), 1449–1454.

Türk G (1979). “Gt index: A measure of the success of prediction.” Remote Sensing of Environment, 8(1), 65–75.

Türk G (2002). “Map evaluation and chance correction.” Photogrammetric Engineering and Remote Sensing, 68, 123–125;133.

Examples

## ------------------------------------------------
## Method `ConfMatrix$new`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
cm<-ConfMatrix$new (A,ID="5",Date="27-10-2023",Source="Congalton and Green,
2008")


## ------------------------------------------------
## Method `ConfMatrix$plot.index`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90), nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$plot.index()


## ------------------------------------------------
## Method `ConfMatrix$plot.UserProdAcc`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90), nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$plot.UserProdAcc()


## ------------------------------------------------
## Method `ConfMatrix$print`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90), nrow=4,ncol=4)
p<-ConfMatrix$new(A,ClassNames=c("Deciduous","conifer","agriculture",
"shrub"),Source="Congalton and Green 2008")
p$print()


## ------------------------------------------------
## Method `ConfMatrix$AllParameters`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90), nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$AllParameters()


## ------------------------------------------------
## Method `ConfMatrix$UserAcc`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90), nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$UserAcc()


## ------------------------------------------------
## Method `ConfMatrix$UserAcc_i`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90), nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$UserAcc_i(2)


## ------------------------------------------------
## Method `ConfMatrix$AvUserAcc`
## ------------------------------------------------

A<-matrix(c(352,43,89,203),nrow=2,ncol=2)
p<-ConfMatrix$new(A,Source="Tung and LeDrew 1988")
p$AvUserAcc()


## ------------------------------------------------
## Method `ConfMatrix$CombUserAcc`
## ------------------------------------------------

A<-matrix(c(352,43,89,203),nrow=2,ncol=2)
p<-ConfMatrix$new(A,Source="Tung and LeDrew 1988")
p$CombUserAcc()


## ------------------------------------------------
## Method `ConfMatrix$ProdAcc`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$ProdAcc()


## ------------------------------------------------
## Method `ConfMatrix$ProdAcc_i`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$ProdAcc_i(1)


## ------------------------------------------------
## Method `ConfMatrix$AvProdAcc`
## ------------------------------------------------

A<-matrix(c(352,43,89,203),nrow=2,ncol=2)
p<-ConfMatrix$new(A,Source="Tung and LeDrew 1988")
p$AvProdAcc()


## ------------------------------------------------
## Method `ConfMatrix$CombProdAcc`
## ------------------------------------------------

A<-matrix(c(352,43,89,203),nrow=2,ncol=2)
p<-ConfMatrix$new(A,Source="Tung and LeDrew 1988")
p$CombProdAcc()


## ------------------------------------------------
## Method `ConfMatrix$UserProdAcc`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$UserProdAcc()


## ------------------------------------------------
## Method `ConfMatrix$CombUserProdAcc`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$CombUserProdAcc()


## ------------------------------------------------
## Method `ConfMatrix$AvUserProdAcc`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$AvUserProdAcc()


## ------------------------------------------------
## Method `ConfMatrix$AvUserProdAcc_i`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$AvUserProdAcc_i(2)


## ------------------------------------------------
## Method `ConfMatrix$UserProdAcc_W`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
WM<- t(matrix(c(1,0,0.67,1,0,1,0,0,1,0,1,1,0.91,0,0.61,1),nrow=4,ncol=4))
p$UserProdAcc_W(WM)


## ------------------------------------------------
## Method `ConfMatrix$OverallAcc`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A)
p$OverallAcc()


## ------------------------------------------------
## Method `ConfMatrix$Kappa`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$Kappa()


## ------------------------------------------------
## Method `ConfMatrix$ModKappa`
## ------------------------------------------------

A <- matrix(c(317,61,2,35,23,120,4,29,0,0,60,0,0,0,0,8),nrow=4,ncol=4)
p <- ConfMatrix$new(A,Source="Foody 1992")
p$ModKappa()


## ------------------------------------------------
## Method `ConfMatrix$UserKappa_i`
## ------------------------------------------------

A<-matrix(c(73,13,5,1,0,21,32,13,3,0,16,39,35, 29,13,3,5,7,28,48,1,0,2,3,17),
nrow=5,ncol=5)
p<-ConfMatrix$new(A,Source="Næsset 1996")
p$UserKappa_i(2)


## ------------------------------------------------
## Method `ConfMatrix$ModKappaUser_i`
## ------------------------------------------------

A<-matrix(c(0,12,0,0,12,0,0,0,0,0,0,12,0,0,12,0),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Liu et al. 2007")
p$ModKappaUser_i(2)


## ------------------------------------------------
## Method `ConfMatrix$ProdKappa_i`
## ------------------------------------------------

A <- matrix(c(73,13,5,1,0,21,32,13,3,0,16,39,35,29,13,3,5,7,28,48,1,0,2,3,17),
nrow=5,ncol=5)
p<-ConfMatrix$new(A,Source="Næsset 1996")
p$ProdKappa_i(2)


## ------------------------------------------------
## Method `ConfMatrix$ModKappaProd_i`
## ------------------------------------------------

A<-matrix(c(317,61,2,35,23,120,4,29,0,0,60,0,0,0,0,8),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Foody 1992")
p$ModKappaProd_i(2)


## ------------------------------------------------
## Method `ConfMatrix$DetailKappa`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$DetailKappa()


## ------------------------------------------------
## Method `ConfMatrix$DetailCondKappa`
## ------------------------------------------------

A<-matrix(c(0.2361,0.0694,0.1389,0.0556,0.1667,0.0417,0.1111,0,0.1806),
ncol=3,nrow=3)
p<-ConfMatrix$new(A,Source="Czaplewski 1994")
p$DetailCondKappa ()


## ------------------------------------------------
## Method `ConfMatrix$DetailWKappa`
## ------------------------------------------------

A <- matrix(c(1,1,0,0,0,5,55,27,23,0,3,30,68,74,4,0,8,8,39,26,0,0,2,4,26),
nrow=5)
WM <- matrix(c(1,0.75,0.5,0.25,0,0.75,1,0.75,0.5,0.25,0.5,0.75,1,0.75,0.5,
0.25,0.5,0.75,1,0.75,0,0.25,0.5,0.75,1),nrow=5)
p<-ConfMatrix$new(A, Source="Næsset 1996")
p$DetailWKappa(WM)


## ------------------------------------------------
## Method `ConfMatrix$Tau`
## ------------------------------------------------

A<-matrix(c(238051,7,132,0,0,24,9,2,189,1,4086,188,0,4,16,45,1,0,939,5082,
51817,0,34,500,1867,325,17,0,0,5,11148,1618,78,0,0,0,0,48,4,834,2853,340,
32,0,197,5,151,119,135,726,6774,75,1,553,0,105,601,110,174,155,8257,8,0,
29,36,280,0,0,6,5,2993,0,115,2,0,4,124,595,0,0,4374),nrow=9,ncol=9)
p<-ConfMatrix$new(A,Source="Muñoz 2016")
p$Tau()


## ------------------------------------------------
## Method `ConfMatrix$DetailWTau`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
WV <-matrix(c(0.4, 0.1, 0.4, 0.1),ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$DetailWTau(WV)


## ------------------------------------------------
## Method `ConfMatrix$Ent`
## ------------------------------------------------

A<-matrix(c(35,4,12,2,14,11,9,5,11,3,38,12,1,0,4,2),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Finn 1993")
p$Ent(v=2)


## ------------------------------------------------
## Method `ConfMatrix$AvNormEnt`
## ------------------------------------------------

A<-matrix(c(0,12,0,0,12,0,0,0,0,0,0,12,0,0,12,0),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Liu et al. 2007")
p$AvNormEnt(v=2)


## ------------------------------------------------
## Method `ConfMatrix$GeomAvNormEnt`
## ------------------------------------------------

A<-matrix(c(0,12,0,0,12,0,0,0,0,0,0,12,0,0,12,0),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Liu et al. 2007")
p$GeomAvNormEnt(v=2)


## ------------------------------------------------
## Method `ConfMatrix$AvMaxNormEnt`
## ------------------------------------------------

A<-matrix(c(8,0,0,0,0,16,0,0,0,0,8,0,0,0,0,16),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Liu et al. 2007")
p$AvMaxNormEnt(v=2)


## ------------------------------------------------
## Method `ConfMatrix$EntUser_i`
## ------------------------------------------------

A<-matrix(c(35,4,12,2,14,11,9,5,11,3,38,12,1,0,4,2),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Finn 1993")
p$EntUser_i(1,v=2)


## ------------------------------------------------
## Method `ConfMatrix$NormEntUser`
## ------------------------------------------------

A<-matrix(c(35,4,12,2,14,11,9,5,11,3,38,12,1,0,4,2),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Finn 1993")
p$NormEntUser(v=2)


## ------------------------------------------------
## Method `ConfMatrix$EntProd_i`
## ------------------------------------------------

A<-matrix(c(35,4,12,2,14,11,9,5,11,3,38,12,1,0,4,2),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Finn 1993")
p$EntProd_i(3,v=2)


## ------------------------------------------------
## Method `ConfMatrix$NormEntProd`
## ------------------------------------------------

A<-matrix(c(35,4,12,2,14,11,9,5,11,3,38,12,1,0,4,2),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Finn 1993")
p$NormEntProd(v=2)


## ------------------------------------------------
## Method `ConfMatrix$Sucess`
## ------------------------------------------------

A<-matrix(c(0.3,0.02,0.01,0.12,0.19,0.03,0.02,0.01,0.3),nrow=3,ncol=3)
p<-ConfMatrix$new(A,Source="Labatut and Cherifi 2011")
p$Sucess()


## ------------------------------------------------
## Method `ConfMatrix$Sucess_i`
## ------------------------------------------------

A<-matrix(c(0.3,0.02,0.01,0.12,0.19,0.03,0.02,0.01,0.3),nrow=3,ncol=3)
p<-ConfMatrix$new(A,Source="Labatut and Cherifi 2011")
p$Sucess_i(2)


## ------------------------------------------------
## Method `ConfMatrix$AvHellAcc`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$AvHellAcc()


## ------------------------------------------------
## Method `ConfMatrix$AvHellAcc_i`
## ------------------------------------------------

A <- matrix(c(148,1,8,2,0,0,50,15,3,0,1,6,39,7,1,1,0,6,25,1,1,0,0,1,6),nrow=5,
ncol=5)
p<-ConfMatrix$new(A,Source="Rosenfield and Fitzpatrick 1986")
p$AvHellAcc_i(2)


## ------------------------------------------------
## Method `ConfMatrix$AvShortAcc`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
p$AvShortAcc()


## ------------------------------------------------
## Method `ConfMatrix$ShortAcc_i`
## ------------------------------------------------

A <- matrix(c(148,1,8,2,0,0,50,15,3,0,1,6,39,7,1,1,0,6,25,1,1,0,0,1,6),nrow=5,
ncol=5)
p<-ConfMatrix$new(A,Source="Rosenfield and Fitzpatrick-Lins 1986")
p$ShortAcc_i(2)


## ------------------------------------------------
## Method `ConfMatrix$GroundTruth`
## ------------------------------------------------

A<-matrix(c(148,1,8,2,0,0,50,15,3,0,1,6,39,7,1,1,0,6,25,1,1,0,0,1,6),nrow=5,
ncol=5)
p<-ConfMatrix$new(A,Source="Türk 1979")
p$GroundTruth()


## ------------------------------------------------
## Method `ConfMatrix$GroundTruth_i`
## ------------------------------------------------

A<-matrix(c(148,1,8,2,0,0,50,15,3,0,1,6,39,7,1,1,0,6,25,1,1,0,0,1,6),nrow=5,
ncol=5)
p<-ConfMatrix$new(A,Source="Türk 1979")
p$GroundTruth_i(3)


## ------------------------------------------------
## Method `ConfMatrix$HellingerDist`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
r<-ConfMatrix$new(A,Source="Congalton and Green 2008")
B<-matrix(c(45,6,0,4,4,91,8,7,12,5,55,3,24,8,9,55),nrow=4,ncol=4)
f<-ConfMatrix$new(B,Source="Congalton and Green 2008")
r$HellingerDist(f)


## ------------------------------------------------
## Method `ConfMatrix$QES`
## ------------------------------------------------

A<-matrix(c(3,2,1,1,3,3,2,0,1),nrow=3,ncol=3)
p<-ConfMatrix$new(A,Source="Pontius Jr. and Santacruz 2023")
p$QES()


## ------------------------------------------------
## Method `ConfMatrix$MTypify`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A, Source="Congalton and Green 2008")
p$MTypify(RaR=5)

## ------------------------------------------------
## Method `ConfMatrix$MBootStrap`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A, Source="Congalton and Green 2008")
p$MBootStrap(2)


## ------------------------------------------------
## Method `ConfMatrix$MNormalize`
## ------------------------------------------------

A<-matrix(c(238051,7,132,0,0,24,9,2,189,1,4086,188,0,4,16,45,1,0,939,5082,
51817,0,34,500,1867,325,17,0,0,5,11148,1618,78,0,0,0,0,48,4,834,2853,340,
32,0,197,5,151,119,135,726,6774,75,1,553,0,105,601,110,174,155,8257,8,0,
29,36,280,0,0,6,5,2993,0,115,2,0,4,124,595,0,0,4374),nrow=9,ncol=9)
p<-ConfMatrix$new(A,Source="Muñoz 2016")
p$MNormalize()


## ------------------------------------------------
## Method `ConfMatrix$MPseudoZeroes`
## ------------------------------------------------

A<-matrix(c(238051,7,132,0,0,24,9,2,189,1,4086,188,0,4,16,45,1,0,939,5082,
51817,0,34,500,1867,325,17,0,0,5,11148,1618,78,0,0,0,0,48,4,834,2853,340,
32,0,197,5,151,119,135,726,6774,75,1,553,0,105,601,110,174,155,8257,8,0,
29,36,280,0,0,6,5,2993,0,115,2,0,4,124,595,0,0,4374),nrow=9,ncol=9)
p<-ConfMatrix$new(A,Source="Muñoz 2016")
p$MPseudoZeroes()


## ------------------------------------------------
## Method `ConfMatrix$OverallAcc.test`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
B<-matrix(c(45,6,0,4,4,91,8,7,12,5,55,3,24,8,9,55),nrow=4,ncol=4)
f<-ConfMatrix$new(B,Source="Congalton and Green 2008")
p$OverallAcc.test(f)


## ------------------------------------------------
## Method `ConfMatrix$Kappa.test`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
B<-matrix(c(45,6,0,4,4,91,8,7,12,5,55,3,24,8,9,55),nrow=4,ncol=4)
f<-ConfMatrix$new(B,Source="Congalton and Green 2008")
p$Kappa.test(f)


## ------------------------------------------------
## Method `ConfMatrix$Tau.test`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
B<-matrix(c(45,6,0,4,4,91,8,7,12,5,55,3,24,8,9,55),nrow=4,ncol=4)
f<-ConfMatrix$new(B,Source="Congalton and Green 2008")
p$Tau.test(f)


## ------------------------------------------------
## Method `ConfMatrix$TSCM.test`
## ------------------------------------------------

A<-matrix(c(65,6,0,4,4,81,11,7,22,5,85,3,24,8,19,90),nrow=4,ncol=4)
p<-ConfMatrix$new(A,Source="Congalton and Green 2008")
C<-matrix(c(45,6,0,4,4,91,8,7,12,5,55,3,24,8,9,55),nrow=4,ncol=4)
f<-ConfMatrix$new(C,Source="Congalton and Green 2008")
p$TSCM.test(f)


## ------------------------------------------------
## Method `ConfMatrix$QIndep.test`
## ------------------------------------------------

A<-matrix(c(148,1,8,2,0,0,50,15,3,0,1,6,39,7,1,1,0,6,25,1,1,0,0,1,6),nrow=5,
ncol=5)
p<-ConfMatrix$new(A,Source= "Türk 1979")
p$QIndep.test()

Quality Control Columns Set

Description

The difference between a QCCS and a confusion matrix is that while forming a confusion matrix requires that the reference and the product be more or less equivalent, for the QCCS it is required that the reference be actually of higher quality than the product. This forces us to leave the marginals corresponding to the reference fixed. That is why we work by columns. In this way, the QCCS class works with a confusion matrix expressed as a set of column vectors and it will be analyzed by columns. A QCCS is constructed by comparing a sample of a set of common positions in the product and the ground truth. Appropriate sampling methods must be applied to generate the QCCS. It is considered that the classes of the ground truth correspond to the columns and that the classes of the product to be valued correspond to the rows. On the other hand, the concept of QCCS is directly linked to quality control, so the specifications of this control must be indicated (Ariza-López et al. 2019). Specifications are stated as percentages. E.g. for class "A" under consideration, a minimum quality value is established (e.g. better than 90%), and maximum values of confusion with other categories (e.g. confusion between A and B less than 5%). The specifications are proportions of a multinomial. First, an object of this class of object must be created (instantiated) and then the methods that offer the index calculations will be invoked.

Public fields

Vectors

⁠ List of integer values data for the vectors. ⁠

Prob

⁠ List of probability values corresponding to each of the vectors. ⁠

ID

⁠ Identifier. It is a character string with a maximum length of 50 characters. By default,⁠ QCCSiQCCS_i ⁠will be taken as identification. Where⁠ i[1,999]i \in [1,999] ⁠will be the number of QCCS instances already defined in the session. ⁠

Date

⁠ Date provided by the user in format DDMMYYYY, "DD-MM-YYYY", "DD/MM/YYYY". By default the date provided by the system will be taken. ⁠

ClassNames

⁠ Name of the classes. It is given by a character strings vector whose elements are the name of the classes. Each element of the vector is a string of maximum 20 characters. By default for the column elements they will be⁠ PCiPC_i' ⁠ (Producer class).⁠

Source

⁠ Indicates where the "vectors" and "prob" parameters come from (article, project, etc.). It is suggested to enter a reference or a DOI. A character string with a maximum length of 80 characters can be entered. By default, is NULL. ⁠

Methods

Public methods


Method new()

Public method to create an instance of the QCCS class. At the time of creation, column set data and specification values must be provided. The same number of data and as specification values must be entered, and the pairs of data-specifications vectors must have the same size, otherwise an error will be provided. The optional possibility of adding metadata to the matrix is offered. The values of the data vectors represent the classes of ground truth.

Usage
QCCS$new(
  Vectors,
  Prob,
  ID = NULL,
  Date = NULL,
  ClassNames = NULL,
  Source = NULL
)
Arguments
Vectors

⁠ List of integer values data for the vectors. ⁠

Prob

⁠ List of probability values corresponding to each of the vectors. ⁠

ID

⁠ Identifier. It is a character string with a maximum length of 50 characters. By default,⁠ QCCSiQCCS_i ⁠will be taken as identification. Where⁠ i[1,999]i \in [1,999] ⁠will be the number of QCCS instances already defined in the session. ⁠

Date

⁠ Date provided by the user in format DDMMYYYY, "DD-MM-YYYY", "DD/MM/YYYY". By default the date provided by the system will be taken. ⁠

ClassNames

⁠ Name of the classes. It is given by a character strings vector whose elements are the name of the classes. Each element of the vector is a string of maximum 20 characters. By default for the column elements they will be⁠ PCiPC_i' ⁠ (Producer class).⁠

Source

⁠ Indicates where the "vectors" and "prob" parameters come from (article, proj- ect, etc.). It is suggested to enter a reference or a DOI. A character string with a maximum length of 80 characters can be entered. By default, is NULL. ⁠

Examples
Vectors<-list(c(47,4,0),c(44,5,3))
Prob<-list(c(0.95,0.04,0.01),c(0.88,0.1,0.02))
A<-QCCS$new(Vectors,Prob,
Source="Ariza-Lopez et al. 2019")


Method print()

Public method that shows all the data entered by the user.

Usage
QCCS$print()
Returns

QCCS object identifier, Date, name of classes, source of data and data vectors and probability.

Examples
Vectors<-list(c(18,0,3,0),c(27,19))
Prob<-list(c(0.85,0.1,0.03,0.02),c(0.8,0.2))
A<-QCCS$new(Vectors,Prob,
Source="Alba-Fernández et al. 2020")
A$print()


Method Exact.test()

Public method that using a QCCS object instance calculates whether the data meets specifications. An exact test is applied to each of the multinomials that are defined for each column. The Bonferroni method is used. The references (Ariza-López et al. 2019) and (Alba-Fernández et al. 2020) are followed for the computations.

Usage
QCCS$Exact.test(a = NULL)
Arguments
a

⁠ significance level. By default a=0.05. ⁠

Returns

A list of the "htest" class containing the results of the hypothesis test. The p-value returned is the lowest of those obtained for the data analyzed. In addition, the Bonferroni criterion value, the p-values obtained for each column, the original data vectors and the probability vectors are also returned as parameters of the htest class.

Examples
\donttest{
Vectors<-list(c(47,4,0),c(40,5,3))
Prob<-list(c(0.95,0.04,0.01),c(0.88,0.1,0.02))
A<-QCCS$new(Vectors,Prob,
Source="Ariza-Lopez et al. 2019")
A$Exact.test()
}


Method Ji.test()

Public method that using a QCCS object instance calculates whether the data meets specifications in each of the classes. The Chi square test is used. The Bonferroni method is used. The references (Ariza-López et al. 2019) and (Alba-Fernández et al. 2020) are followed for the computations.

Usage
QCCS$Ji.test(a = NULL)
Arguments
a

⁠ significance level. By default a=0.05. ⁠

Returns

A list of the "htest" class containing the results of the hypothesis test. The p-value returned is the lowest of those obtained for the data analyzed. In addition, the Bonferroni criterion value, the obtained p-values, the degrees of freedom and the statistics obtained for each column, the original data vectors and the probability vectors are also returned as parameters of the htest class.

Examples
Vectors<-list(c(18,0,3,0),c(27,19))
Prob<-list(c(0.85,0.1,0.03,0.02),c(0.8,0.2))
A <- QCCS$new(Vectors,Prob,
Source="Alba-Fernández et al. 2020")
A$Ji.test()


Method JiGlobal.test()

Public method that using a QCCS object instance calculates whether the data meets specifications. The Chi square test is used. The references (Ariza-López et al. 2019) and (Alba-Fernández et al. 2020) are followed for the computations.

Usage
QCCS$JiGlobal.test(a = NULL)
Arguments
a

⁠ significance level. By default a=0.05. ⁠

Returns

A list of class "htest" containing the results of the hypothesis test. In addition, the original data vectors and the probability vectors are also returned.

Examples
Vectors<-list(c(18,0,3,0),c(27,19))
Prob<-list(c(0.85,0.1,0.03,0.02),c(0.8,0.2))
A <- QCCS$new(Vectors,Prob,
Source="Alba-Fernández et al. 2020")
A$JiGlobal.test()

Note

Error Messages: List of possible errors:

  • Error type 1: Different number of data vectors and probability.

  • Error type 2: Different number of elements in the pair of data vectors and probabilities.

  • Error type 3: The sum of the elements of the data vectors is 0.

  • Error type 4: The sum of each probability vectors must be 1.

  • Error type 5: Some element of the data vector is negative.

  • Error type 6: Some element of the probability vector is negative.

References

Alba-Fernández MV, Ariza-López FJ, Rodríguez-Avi J, García-Balboa JL (2020). “Statistical methods for thematic-accuracy quality control based on an accurate reference sample.” Remote Sensing, 12(5), 816.

Ariza-López FJ, Rodríguez-Avi J, Alba-Fernández MV, García-Balboa JL (2019). “Thematic accuracy quality control by means of a set of multinomials.” Applied Sciences, 9(20), 4240.

Examples

## ------------------------------------------------
## Method `QCCS$new`
## ------------------------------------------------

Vectors<-list(c(47,4,0),c(44,5,3))
Prob<-list(c(0.95,0.04,0.01),c(0.88,0.1,0.02))
A<-QCCS$new(Vectors,Prob,
Source="Ariza-Lopez et al. 2019")


## ------------------------------------------------
## Method `QCCS$print`
## ------------------------------------------------

Vectors<-list(c(18,0,3,0),c(27,19))
Prob<-list(c(0.85,0.1,0.03,0.02),c(0.8,0.2))
A<-QCCS$new(Vectors,Prob,
Source="Alba-Fernández et al. 2020")
A$print()


## ------------------------------------------------
## Method `QCCS$Exact.test`
## ------------------------------------------------


Vectors<-list(c(47,4,0),c(40,5,3))
Prob<-list(c(0.95,0.04,0.01),c(0.88,0.1,0.02))
A<-QCCS$new(Vectors,Prob,
Source="Ariza-Lopez et al. 2019")
A$Exact.test()



## ------------------------------------------------
## Method `QCCS$Ji.test`
## ------------------------------------------------

Vectors<-list(c(18,0,3,0),c(27,19))
Prob<-list(c(0.85,0.1,0.03,0.02),c(0.8,0.2))
A <- QCCS$new(Vectors,Prob,
Source="Alba-Fernández et al. 2020")
A$Ji.test()


## ------------------------------------------------
## Method `QCCS$JiGlobal.test`
## ------------------------------------------------

Vectors<-list(c(18,0,3,0),c(27,19))
Prob<-list(c(0.85,0.1,0.03,0.02),c(0.8,0.2))
A <- QCCS$new(Vectors,Prob,
Source="Alba-Fernández et al. 2020")
A$JiGlobal.test()