Title: | Paired Comparison Data Analysis |
---|---|
Description: | Different tools for describing and analysing paired comparison data are presented. Main methods are estimation of products scores according Bradley Terry Luce model. A segmentation of the individual could be conducted on the basis of a mixture distribution approach. The number of classes can be tested by the use of Monte Carlo simulations. This package deals also with multi-criteria paired comparison data. |
Authors: | Michel Semenou |
Maintainer: | Michel Semenou <[email protected]> |
License: | GPL-2 |
Version: | 1.0 |
Built: | 2024-11-22 06:32:13 UTC |
Source: | CRAN |
Different tools for describing and analysing paired comparison data are presented. Main methods are estimation of products scores according Bradley Terry Luce model. A segmentation of the individual could be conducted on the basis of a mixture distribution approach. The number of classes can be tested by the use of Monte Carlo simulations. This package deals also with multi-criteria paired comparison data.
Package: | CompR |
Type: | Package |
Version: | 1.0 |
Date: | 2015-07-01 |
License: | GPL-2 |
Depends: | methods, MASS, stats, graphics, utils |
Function to estimate products configurations (Bradley's scores) and weights of the
classes is EstimBradley()
.
Function to perform a test concerning the number of classes is ResSimulLvrRatio()
.
Function to obtain a graphical representation of Bradley's scores is Piplot()
.
Michel Semenou
Maintainer: <[email protected]>
EstimBradley
, ResSimulLvrRatio
, Piplot
data(Cocktail) show(Cocktail) ResCock1<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=0.001,eps1=0.001,TestPi=TRUE) show(ResCock1) Res_LvrRatio1<-ResSimulLvrRatio(Cocktail,ResCock1,0,3,level=0.05,eps=0.001,eps1=0.001) getSimu(Res_LvrRatio1) getTest(Res_LvrRatio1)
data(Cocktail) show(Cocktail) ResCock1<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=0.001,eps1=0.001,TestPi=TRUE) show(ResCock1) Res_LvrRatio1<-ResSimulLvrRatio(Cocktail,ResCock1,0,3,level=0.05,eps=0.001,eps1=0.001) getSimu(Res_LvrRatio1) getTest(Res_LvrRatio1)
"BradleyEstim"
A class for Bradley's scores estimation results
Objects can be created by the function EstimBradley()
.
Lvriter
:Object of class "matrix"
corresponding to the number of iterations of the EM algorithm, LogLikelihoods at the previous step and the current step, and the differences between these 2 LogLikelihoods
Lvr
:Object of class "numeric"
final value of the LogLikelihood
Lambda
:Object of class "matrix"
weights of the different classes
Pi
:Object of class "list"
Bradley's scores for each class and each criteria
Zh
:Object of class "matrix"
with the posterior probabilities for each individual to belong to the different classes and the class with the higher probability
Ic
:Object of class "matrix"
value of the different Information criterion (AIC, BIC, CAIC)
Restestglob
:Object of class "list"
result of testing the whole Bradley's scores equality for each class and each criteria
Restestprod
:Object of class "list"
result of multiple comparison tests for Bradley's scores in each class and for each criteria
Varcov
:Object of class "list"
of covaraince matrices of Bradley's scores in each class and for each criteria
signature(object = "BradleyEstim")
signature(object = "BradleyEstim")
signature(object = "BradleyEstim")
signature(object = "BradleyEstim")
signature(object = "BradleyEstim")
signature(object = "BradleyEstim")
signature(object = "BradleyEstim")
signature(object = "BradleyEstim")
signature(object = "BradleyEstim")
signature(object = "BradleyEstim")
data(ResCocktail1) show(ResCocktail1)
data(ResCocktail1) show(ResCocktail1)
Returns the Bradley's scores of the different items and the value of the LogLikelihood
C_piBTL(Matpair, Constraint=0, eps1=1e-04, Pi=NULL, TestPi=FALSE, Zht=NULL)
C_piBTL(Matpair, Constraint=0, eps1=1e-04, Pi=NULL, TestPi=FALSE, Zht=NULL)
Matpair |
Matrix of the cumulative sum of the results of paired comparisons or object of class |
Constraint |
Kind of constraint on Bradley's scores. If |
eps1 |
value to take into account for the convergence criteria of the algorithm of |
Pi |
Initial values for Bradley's scores. If |
TestPi |
Indicate if the user wants to perform a multiple comparison tests on the Bradley's scores. |
Zht |
Indicate the individuals probabilities to belong to the different classes. |
The algorithm is based on a maximum likelihood approach using Dykstra method.
List of following components:
Pi |
Bradley's scores |
lnL |
value of the log-likelihood |
lvrHO |
value of the log-likelihood under the hypothesis of equal values for the Bradley's scores |
lvrH1 |
value of the log-likelihood at the end of the Bradley's scores estimation algorithm |
lRatio |
value of the likelihood ration statistic |
Pvalue |
Pvalue of the test |
H1 |
logical value, FALSE if Bradley's scores should be considered as equal, TRUE otherwise |
VarcovPi |
Matrix of covariances of Bradley's scores |
restestij |
Matrix of the following elements |
data(Cocktail_Cum) res<-C_piBTL(Cocktail_Cum,Constraint=0,eps1=1e-04,Pi=NULL,TestPi=TRUE) res
data(Cocktail_Cum) res<-C_piBTL(Cocktail_Cum,Constraint=0,eps1=1e-04,Pi=NULL,TestPi=TRUE) res
return an object of DataPairComp
class
ClassDataPairComp(Mat, labelprod = NULL, labelcons = NULL, labelcrit = NULL)
ClassDataPairComp(Mat, labelprod = NULL, labelcons = NULL, labelcrit = NULL)
Mat |
Paired comparison matrix with a number of rows equal to nsubject*nitems and nitems columns. |
labelprod |
names of the different items (default |
labelcons |
names of the different subjects (default |
labelcrit |
name of the criterium (default |
Object of class DataPairComp
with the following elements:
Cons
: corresponding to the label of consummers (default : Number of consummers)
Crit
: name of the different criteria contained
Prod
: names of the different products (default : number of the product)
Paircomp
: list
of number of criteria elements each corresponding to the results of paired comparisons performed by the consummers.
Returns the result of consummers classification
ClassifPaired(Data,Tcla)
ClassifPaired(Data,Tcla)
Data |
Object of class |
Tcla |
Number of classes to use for classification |
The function performs a hierarchical cluster analysis on a set of dissimilarities based on pairwise comparison matrices, using the functions hclust
and cutree
of stats package.
vector with group menberships resulting from the classification with Tcla clusters.
hclust
, cutree
of stats package
Paired comparison of 7 beverages by 112 subjects according their preferences
data(Cocktail)
data(Cocktail)
A DataPairComp
class object with the following elements:
Cons
: corresponding to the label of consummers (default : Number of consummers)
Crit
: name of the different criteria contained
Prod
: names of the different products (default : number of the product)
Paircomp
: list
of number of criteria elements each corresponding to the results of paired comparisons performed by the consummers.
data(Cocktail) show(Cocktail)
data(Cocktail) show(Cocktail)
Paired comparison of 7 beverages by 112 subjects according their preferences
data(Cocktail)
data(Cocktail)
A matrix resulting of the cumulative paired comparison results of 7 products by 112 consumers. The (i,j) element correponds to the number of time product i was prefered to product j among all comparisons between these two products.
data(Cocktail_Cum) Cocktail_Cum
data(Cocktail_Cum) Cocktail_Cum
"DataPairComp"
A class for Paired comparison data
Objects can be created by calls of the form new("DataPairComp", ...)
, or by the function ImportData()
.
Cons
:Object of class "character"
label for the individuals
Crit
:Object of class "character"
label for the criterion
Prod
:Object of class "character"
label for the products
Paircomp
:Object of class "list"
corresponding to the individual results of paired comparisons for each criteria, when products i and j are presented to individual h, the (i,j) element resulting is coded by 1 if i is choosen against j and 0 otherwise
signature(object = "DataPairComp")
signature(object = "DataPairComp")
signature(object = "DataPairComp")
signature(object = "DataPairComp")
signature(object = "DataPairComp")
ImportData
data(Cocktail) show(Cocktail)
data(Cocktail) show(Cocktail)
Returns paired comparison data according a given configuration
DataSimulH0(Data, ResH0)
DataSimulH0(Data, ResH0)
Data |
Object of class |
ResH0 |
Object of class |
The paired comparison data are simulated according the products configuration, the weight of the different classes for the different criteria (stored in the object ResH0
of class BradleyEstim
) obtained on the basis of the results of EstimBradley
function for the paired comparison data contained in the objet Data
of class DataPairComp
Object of class DataPairComp
with the following components:
Cons
: corresponding to the label of consummers
Crit
: names of the different criteria
Prod
: names of the different products
Paircomp
: list
of number of criteria elements each corresponding to the results of simulated paired comparisons performed by the consummers according their belonging to the different classes.
Estimates Bradley's scores according the desired number of classes.
EstimBradley(Data, Constraint=0, Tcla=1, eps=1e-04, eps1=1e-04, TestPi=TRUE)
EstimBradley(Data, Constraint=0, Tcla=1, eps=1e-04, eps1=1e-04, TestPi=TRUE)
Data |
Object of class |
Constraint |
Kind of constraint on Bradley's scores. If |
Tcla |
Number of classes, default=1, no segmentation. |
eps |
value of the convergence criteria for the EM algorithm (default |
eps1 |
value of the criteria convergence for Dykstra algorithm (default |
TestPi |
if |
The estimation is based on maximum likelihood for mixture distributions with E.M. algorithm.
Object of class BradleyEstim
with the following components:
Lvriter |
|
Lvr |
Final value of the log likelihood |
Lambda |
|
Pi |
|
Zh |
|
IC |
value of Information Criterion (AIC,BIC,CAIC) |
Restestglob |
(given if
|
Restestprod |
(given if class identification, criterion identification, product identification i, product identification j, value for the statistic corresponding to H0: equality of the Bradley's scores of products i and j, P value of this test, Rejection or acceptation of H0 for a level of 5%. |
Varcov |
(given if
|
data(Cocktail) show(Cocktail) ResCock1<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=0.001,eps1=0.001,TestPi=TRUE) show(ResCock1)
data(Cocktail) show(Cocktail) ResCock1<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=0.001,eps1=0.001,TestPi=TRUE) show(ResCock1)
Gets the individuals labels.
getCons(object)
getCons(object)
object |
An object of class |
vector of the individuals labels.
data(Cocktail) Cocktail_Cons<-getCons(Cocktail)
data(Cocktail) Cocktail_Cons<-getCons(Cocktail)
getCons
Methods for function getCons
signature(object = "DataPairComp")
Gets the criteria's labels.
getCrit(object)
getCrit(object)
object |
An object of class |
vector of the criteria's labels.
data(Cocktail) Cocktail_Crit<-getCrit(Cocktail)
data(Cocktail) Cocktail_Crit<-getCrit(Cocktail)
getCrit
Methods for function getCrit
signature(object = "DataPairComp")
Gets the Information criteria's labels (AIC, BIC, CAIC).
getIc(object)
getIc(object)
object |
An object of class |
vector of Information criteria.
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Ic<-getIc(ResCock)
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Ic<-getIc(ResCock)
getIc
Methods for function getIc
signature(object = "BradleyEstim")
Gets the weight of the different classes from the function EstimBradley()
.
getLambda(object)
getLambda(object)
object |
An object of class |
A vector of the weights of the different classes.
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Lambda<-getLambda(ResCock)
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Lambda<-getLambda(ResCock)
getLambda
Methods for function getLambda
signature(object = "BradleyEstim")
Gets the final value of loglikelihood from the function EstimBradley()
.
getLvr(object)
getLvr(object)
object |
An object of class |
Numeric value of the loglikelihood.
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Lvr<-getLvr(ResCock)
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Lvr<-getLvr(ResCock)
getLvr
Methods for function getLvr
signature(object = "BradleyEstim")
Gets the iteration done until convergence from the function EstimBradley()
getLvriter(object)
getLvriter(object)
object |
An object of class |
A matrix with numbers of iteration rows and 4 columns giving the iteration, the previous value of loglikelihood, the current value of the loglikelihood, and the difference between these loglikelihoods.
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Lvriter<-getLvriter(ResCock)
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Lvriter<-getLvriter(ResCock)
getLvriter
Methods for function getLvriter
signature(object = "BradleyEstim")
Gets the individual paired comparisons.
getPaircomp(object)
getPaircomp(object)
object |
An object of class |
list
of number of criteria elements each corresponding to the results of paired comparisons performed by the consummers.
data(Cocktail) Cocktail_Paircomp<-getPaircomp(Cocktail)
data(Cocktail) Cocktail_Paircomp<-getPaircomp(Cocktail)
getPaircomp
Methods for function getPaircomp
signature(object = "DataPairComp")
Gets the Bradley's scores from the function EstimBradley()
.
getPi(object)
getPi(object)
object |
An object of class |
A list of the Bradley's scores for the different criteria .
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Pi<-getPi(ResCock)
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Pi<-getPi(ResCock)
getPi
Methods for function getPi
signature(object = "BradleyEstim")
Gets the products labels.
getProd(object)
getProd(object)
object |
An object of class |
vector of the products labels.
data(Cocktail) Cocktail_Prod<-getProd(Cocktail)
data(Cocktail) Cocktail_Prod<-getProd(Cocktail)
getProd
Methods for function getProd
signature(object = "DataPairComp")
Gets the result of the test of Bradley's scores equality from the function EstimBradley()
.
getRestestglob(object)
getRestestglob(object)
object |
An object of class |
list
of five elements:
lvrH0
matrix
of size (Tcla
* number of criteria), giving the value of the log likelihood under the hypothesis of equality of Bradley's scores
lvrH1
matrix
of size (Tcla
* number of criteria), giving the value of the log likelihood under the hypothesis of non equality of Bradley's scores
lRatio
matrix
of size (Tcla
* number of criteria), giving the value of the log likelihood Ratio statistic
Pvalue
matrix
of size (Tcla
* number of criteria), giving the P value of the log likelihood Ratio test
H1
matrix
of size (Tcla
* number of criteria) giving the result of rejection of equality of Bradley's scores
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Restestglob<-getRestestglob(ResCock)
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Restestglob<-getRestestglob(ResCock)
getRestestglob
Methods for function getRestestglob
signature(object = "BradleyEstim")
Gets the result of the Bradley's scores multiple comparison tests from the
function EstimBradley()
.
getRestestprod(object)
getRestestprod(object)
object |
An object of class |
list
of Tcla
elements of type matrix
of size (number of paired comparison * 7),
each column corresponding to:
class identification,
criterion identification,
product identification i,
product identification j,
value for the statistic corresponding to H0: equality of the Bradley's scores of products i and j,
P value of this test,
Rejection or acceptation of H0 for a level of 5%.
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Restestprod<-getRestestprod(ResCock)
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Restestprod<-getRestestprod(ResCock)
getRestestprod
Methods for function getRestestprod
signature(object = "BradleyEstim")
Gets the results of Likelihood Ratio Test obtained by Monte-Carlo simulations.
getSimu(object)
getSimu(object)
object |
An object of class |
A matrix with the number of classes under H0, the values of Loglikelihood under H0 and H1 and the differences between these Loglikelihoods.
getSimu
Methods for function getSimu
signature(object = "LvrRatio")
Gets the level and the quantile of Likelihood ratio test from the function ResSimulLvrRatio()
getTest(object)
getTest(object)
object |
An object of class |
Matrix with the level and the associated quantile after performing Likelihood Ratio test.
getTest
Methods for function getTest
signature(object = "LvrRatio")
Gets the Bradley'scores covariance matrices from the function EstimBradley()
.
getVarcov(object)
getVarcov(object)
object |
An object of class |
list
of Tcla
elements containing Bradley'scores covariance matrices for the different criteria.
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Varcov<-getVarcov(ResCock)
data(Cocktail) ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock_Varcov<-getVarcov(ResCock)
getVarcov
Methods for function getVarcov
signature(object = "BradleyEstim")
EstimBradley()
Gets the posterior probabilities for each individual to belong to the different classes and the class with the higher probability.
getZh(object)
getZh(object)
object |
An object of class |
Object of class matrix
with the posterior probabilities for each individual to belong to the different classes and the class with the higher probability.
data(Cocktail) ResCock2<-EstimBradley(Cocktail,Constraint=0,Tcla=2,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock2_Zh<-getZh(ResCock2)
data(Cocktail) ResCock2<-EstimBradley(Cocktail,Constraint=0,Tcla=2,eps=1e-04,eps1=1e-04,TestPi=TRUE) ResCock2_Zh<-getZh(ResCock2)
getZh
Methods for function getZh
signature(object = "BradleyEstim")
Import the different paired comparison data files in cvs format and create an object
of class DataPairComp
ImportData(name,labelprod=FALSE,labelconso=NULL, sep =";",dec=".")
ImportData(name,labelprod=FALSE,labelconso=NULL, sep =";",dec=".")
name |
part of name of the different data files (.csv files) |
labelprod |
indicate the existence of labels of the different products in data files |
labelconso |
vector of label of consummers given by the user (default= |
sep |
the field separator character. Values on each line of the file are separated by this character.(default= |
dec |
the character used in the file for decimal points.(default= |
Object of class DataPairComp
with the following elements:
Cons
: corresponding to the label of consummers (default : Number of consummer)
Crit
: names of the different criteria contained in the name of the different data files
Prod
: names of the different products (default : number of the product)
Paircomp
: list
of number of criteria elements each corresponding to the results of paired comparisons performed by the consummers.
"LvrRatio"
A class for Lilkelihood Ration Test results
Objects can be created by ResSimulLvrRatio().
Simu
:Object of class "matrix"
with the number of classes under H0, Loglikelihoods under H0 and H1, difference between these Loglikelihoods.
Test
:Object of class "matrix"
with the level and the associated quantile after performing Likelihood Ratio test.
signature(object = "LvrRatio")
signature(object = "LvrRatio")
showClass("LvrRatio")
showClass("LvrRatio")
Gives a graphical representation of the Bradley's scores.
Piplot(Pi, SigmaPi = NULL, level=0.05, main = NULL, ylab = "Bradley's scores", xlab = "Item", labelprod = NULL)
Piplot(Pi, SigmaPi = NULL, level=0.05, main = NULL, ylab = "Bradley's scores", xlab = "Item", labelprod = NULL)
Pi |
vector of Bradley's scores |
SigmaPi |
vector of Bradley's scores standard deviation given by the user. |
level |
level to use for the confidence intervals. (default |
main |
Title of the plot.(default |
ylab |
value for |
xlab |
value for |
labelprod |
label vector of the Item. (default |
The representation is based on plot(x) function, with Item on x axis, and Bradley's scores on y axis. If SigmaPi
is provided by user, a 1-level
(default 95%) confidence interval is drawn for each Item.
A graphical representation of bradley's scores.
data(Cocktail_Cum) res<-C_piBTL(Cocktail_Cum,Constraint=0,eps1=0.0001,Pi=NULL,TestPi=TRUE) Res_Pi<-res$Pi Res_Varcov<-res$VarcovPi Res_Sigma<-sqrt(diag(Res_Varcov)) Piplot(Res_Pi, SigmaPi = Res_Sigma, level=0.01, main = NULL, ylab = "Bradley's scores", xlab = "Item", labelprod = NULL)
data(Cocktail_Cum) res<-C_piBTL(Cocktail_Cum,Constraint=0,eps1=0.0001,Pi=NULL,TestPi=TRUE) Res_Pi<-res$Pi Res_Varcov<-res$VarcovPi Res_Sigma<-sqrt(diag(Res_Varcov)) Piplot(Res_Pi, SigmaPi = Res_Sigma, level=0.01, main = NULL, ylab = "Bradley's scores", xlab = "Item", labelprod = NULL)
EstimBradley
function for 1 class and data Cocktail
Result of EstimBradley
function for 1 class and data Cocktail
data(ResCocktail1)
data(ResCocktail1)
A BradleyEstim
class object with the following elements:
data(ResCocktail1) show(ResCocktail1)
data(ResCocktail1) show(ResCocktail1)
Returns the result of Log Likelihood Ratio Test of the number of classes for Paired comparison data (T classes versus (T+1) classes)
ResSimulLvrRatio(Data,ResH0,Constraint,nsimul,level,eps=1e-04,eps1=1e-04)
ResSimulLvrRatio(Data,ResH0,Constraint,nsimul,level,eps=1e-04,eps1=1e-04)
Data |
Object of class |
ResH0 |
Object of class |
Constraint |
Kind of constraint on Bradley's scores. If |
nsimul |
number of Monte Carlo simulations |
level |
level of the Log Likelihood Ratio test defined by the user (default |
eps |
value of the convergence criteria for the EM algorithm (default |
eps1 |
value of the criteria convergence for Dykstra algorithm (default |
The likelihood ratio test is based on a Monte Carlo procedure. A simulation of nsimul
data set is done. We perform estimation of the different parameters for the number of classes defined in the object ResH0
of class BradleyEstim
(corresponding to
the null hymothesis) and for one more class corresponding to the alternative hypothesis.
We obtain a set of Log Likelihoods under the null and alternative hypothesis on the basis of simulated data and so of the Log Likelihood Ratio Statistic.
We replace the observed value of this statistic for the true data set. And we conclude on the acceptation or not of the null hypothesis (no differences between T and T+1 classes).
Object of class LvrRatio
with the following components:
Simu |
Matrix with the number of classes under H0, Loglikelihoods under H0 and H1, difference between these Loglikelihoods. |
Test |
Matrix with the level of the test and the associated quantile |
data(Cocktail) ResCock1<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) Res_LvrRatio1<-ResSimulLvrRatio(Cocktail,ResCock1,0,3,level=0.05,eps=0.001,eps1=0.001) getSimu(Res_LvrRatio1) getTest(Res_LvrRatio1)
data(Cocktail) ResCock1<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE) Res_LvrRatio1<-ResSimulLvrRatio(Cocktail,ResCock1,0,3,level=0.05,eps=0.001,eps1=0.001) getSimu(Res_LvrRatio1) getTest(Res_LvrRatio1)
show
Methods for function show
signature(object = "BradleyEstim")
signature(object = "DataPairComp")