Package 'CompDist'

Title: Multisection Composite Distributions
Description: Computes density function, cumulative distribution function, quantile function and random numbers for a multisection composite distribution specified by the user. Also fits the user specified distribution to a given data set. More details of the package can be found in the following paper submitted to the R journal Wiegand M and Nadarajah S (2017) CompDist: Multisection composite distributions.
Authors: Martin Wiegand and Saralees Nadarajah
Maintainer: Saralees Nadarajah <[email protected]>
License: GPL (>= 2)
Version: 1.0
Built: 2024-10-25 06:26:14 UTC
Source: CRAN

Help Index


dcomp

Description

Returns a density function of a user specified multisection composite distribution

Usage

dcomp(xx,dists,par,borders,par.pos,buffer)

Arguments

xx

Evaluation locations

dists

A vector of strings stating the desired partial distributions in order

par

A list of parameters, a vector of parameters for each partial distribution, with the first two being the interval limits and the second argument being the weights to be used

borders

Optional: If the distribution has to have continuous and differentiable catentation points, the user specifies a list for each of area following the first, containing a range for a parameter of the following partial distribution to lie within.

par.pos

Optional: If 'borders' is non empty, e.g a smooth function is desired, here the vector of parameter positions that need to be changed is specified. Default value is 1, meaning the first parameter for each partial distribution is amended

buffer

Optional: A two dimensional vector, containing the values for upper and lower buffer from the respective catenation points during optimization

Value

An object of the same length as xx, giving the density values

Author(s)

Martin Wiegand, Saralees Nadarajah

Examples

par<-list()
distvec<-c("lnorm","gamma")
par[[1]]<-c(0,1,Inf)
par[[2]]<-c(1)
par[[3]]<-c(0,1)
par[[4]]<-c(1,1)

x<-seq(0,3,0.01)
# non-continuous case
y1<-dcomp(x,distvec,par)
# continuous case
y2<-dcomp(x,distvec,par,borders=list(c(0.00001,10)),buffer=c(10e-5,0))
 
par(mfrow=c(1,2),oma=rep(0,4))
xrange<-range(x)
yrange<-range(y1,y2)
plot(x,y1,type="l",xlab="x",ylab="Density function",xlim=xrange,ylim=yrange)
abline(v=1)
plot(x,y2,type="l",xlab="x",ylab="Density function",xlim=xrange,ylim=yrange)
abline(v=1)

par.fit

Description

Returns the parameters fitted to a random sample along with a number of error measures, such as the log likelihood, AIC, BIC, AICc, CAIC and HQC.

Usage

par.fit(data,dists,par,borders,par.pos,optit,buffer,cont)

Arguments

data

Data set to be fitted to the distribution

dists

A vector of strings stating the desired partial distributions in order

par

A list of parameters, a vector of parameters for each partial distribution, with the first two being the interval limits and the second argument being he weights to be used

borders

Optional: If the distribution has to have continuous and differentiable catentation points, the user specifies a list for each of area following the first, containing a range for a parameter of the following partial distribution to lie within.

par.pos

Optional: If 'borders' is non empty, e.g a smooth function is desired, here the vector of parameter positions that need to be changed is specified. Default value is 1, meaning the first parameter for each partial distribution is amended

optit

Number of iteration loops over the parameter optimisation

buffer

Optional: A two dimensional vector, containing the values for upper and lower buffer from the respective catenation points during optimization

cont

Logical value for smooth catenation points. Default FALSE.

Value

Gives parameter estimates and values of the log likelihood, AIC, BIC, AICc, CAIC and HQC.

Author(s)

Martin Wiegand, Saralees Nadarajah

Examples

# Generate random data


par<-list()

distvec<-c("lnorm","gamma")

par[[1]]<-c(0,1,Inf)

par[[2]]<-c(1)

par[[3]]<-c(0,1)

par[[4]]<-c(1,1)


n<-1000

# non-continuous case

r1<-rcomp(n,distvec,par)

# continuous case

r2<-rcomp(n,distvec,par,borders=list(c(0.00001,10)),buffer=c(10e-5,0))


# Initial Guess



par<-list()

distvec<-c("lnorm","gamma")

par[[1]]<-c(0,1,Inf)

par[[2]]<-c(1)

par[[3]]<-c(0,0.5)

par[[4]]<-c(0.5,1)



# Fitting



# non-continuous case

estimate1<-par.fit(r1,distvec,par,optit=1)

# continuous case

estimate2<-par.fit(r2,distvec,par,borders=list(c(0.00001,10)),optit=1,buffer=c(10e-5,0),cont=TRUE)



x<-seq(0,30,0.01)

# non-continuous case

y1<-dcomp(x,distvec,estimate1$Parameter)

# continuous case

y2<-dcomp(x,distvec,estimate2$Parameter,borders=list(c(0.00001,10)),buffer=c(10e-5,0))



par(mfrow=c(1,2),oma=rep(0,4))

hist(r1,probability=TRUE,breaks=40,main="",xlab="Data",ylab="Fitted density")

lines(x,y1,col="red")

hist(r2,probability=TRUE,breaks=40,main="",xlab="Data",ylab="Fitted density")

lines(x,y2,col="red")



estimate1

estimate2

pcomp

Description

Returns a cumulative distribution function of a user specified multisection composite distribution

Usage

pcomp(xx,dists,par,borders,par.pos,buffer)

Arguments

xx

Evaluation locations

dists

A vector of strings stating the desired partial distributions in order

par

A list of parameters, a vector of parameters for each partial distribution, with the first two being the interval limits and the second argument being he weights to be used

borders

Optional: If the distribution has to have continuous and differentiable catentation points, the user specifies a list for each of area following the first, containing a range for a parameter of the following partial distribution to lie within.

par.pos

Optional: If 'borders' is non empty, e.g a smooth function is desired, here the vector of parameter positions that need to be changed is specified. Default value is 1, meaning the first parameter for each partial distribution is amended

buffer

Optional: A two dimensional vector, containing the values for upper and lower buffer from the respective catenation points during optimization

Value

An object of the same length as xx, giving the cumulative distribution function values

Author(s)

Martin Wiegand, Saralees Nadarajah

Examples

par<-list()

distvec<-c("lnorm","gamma")

par[[1]]<-c(0,1,Inf)

par[[2]]<-c(1)

par[[3]]<-c(0,1)

par[[4]]<-c(1,1)


x<-seq(0,3,0.01)

# non-continuous case

y1<-pcomp(x,distvec,par)

# continuous case

y2<-pcomp(x,distvec,par,borders=list(c(0.00001,10)),buffer=c(10e-5,0))


par(mfrow=c(1,2),oma=rep(0,4))

xrange<-range(x)

yrange<-range(y1,y2)

plot(x,y1,type="l",xlab="x",ylab="Distribution function",xlim=xrange,ylim=yrange)

abline(v=1,lty=2)

plot(x,y2,type="l",xlab="x",ylab="Distribution function",xlim=xrange,ylim=yrange)

abline(v=1,lty=2)

qcomp

Description

Returns a quantile function to the specifications of a user specified multisection composite distribution

Usage

qcomp(xx,dists,par,borders,par.pos,buffer)

Arguments

xx

Desired quantiles between 0 and 1

dists

A vector of strings stating the desired partial distributions in order

par

A list of parameters, a vector of parameters for each partial distribution, with the first two being the interval limits and the second argument being he weights to be used

borders

Optional: If the distribution has to have continuous and differentiable catentation points, the user specifies a list for each of area following the first, containing a range for a parameter of the following partial distribution to lie within.

par.pos

Optional: If 'borders' is non empty, e.g a smooth function is desired, here the vector of parameter positions that need to be changed is specified. Default value is 1, meaning the first parameter for each partial distribution is amended

buffer

Optional: A two dimensional vector, containing the values for upper and lower buffer from the respective catenation points during optimization

Value

An object of the same length as xx, giving the quantile values

Author(s)

Martin Wiegand, Saralees Nadarajah

Examples

par<-list()

distvec<-c("lnorm","gamma")

par[[1]]<-c(0,1,Inf)

par[[2]]<-c(1)

par[[3]]<-c(0,1)

par[[4]]<-c(1,1)


x<-seq(0.01,0.99,0.01)

# non-continuous case

y1<-qcomp(x,distvec,par)

# continuous case

y2<-qcomp(x,distvec,par,borders=list(c(0.00001,10)),buffer=c(10e-5,0))



par(mfrow=c(1,2),oma=rep(0,4))

xrange<-range(x)

yrange<-range(y1,y2)

plot(x,y1,type="l",xlab="x",ylab="Quantile function",xlim=xrange,ylim=yrange)

abline(h=1,lty=2)

plot(x,y2,type="l",xlab="x",ylab="Quantile function",xlim=xrange,ylim=yrange)

abline(h=1,lty=2)

rcomp

Description

Returns a random sample of size n of a user specified multisection composite distribution

Usage

rcomp(nn,dists,par,borders,par.pos,buffer)

Arguments

nn

Desired random sample size

dists

A vector of strings stating the desired partial distributions in order

par

A list of parameters, a vector of parameters for each partial distribution, with the first two being the interval limits and the second argument being he weights to be used

borders

Optional: If the distribution has to have continuous and differentiable catentation points, the user specifies a list for each of area following the first, containing a range for a parameter of the following partial distribution to lie within.

par.pos

Optional: If 'borders' is non empty, e.g a smooth function is desired, here the vector of parameter positions that need to be changed is specified. Default value is 1, meaning the first parameter for each partial distribution is amended

buffer

Optional: A two dimensional vector, containing the values for upper and lower buffer from the respective catenation points during optimization

Value

An object of length nn, giving the random numbers

Author(s)

Martin Wiegand, Saralees Nadarajah

Examples

par<-list()

distvec<-c("lnorm","gamma")

par[[1]]<-c(0,1,Inf)

par[[2]]<-c(1)

par[[3]]<-c(0,1)

par[[4]]<-c(1,1)


n<-1000

# non-continuous case

y1<-rcomp(n,distvec,par)

# continuous case

y2<-rcomp(n,distvec,par,borders=list(c(0.00001,10)),buffer=c(10e-5,0))


par(mfrow=c(1,2),oma=rep(0,4))

hist(y1,nclass=10,xlab="x",ylab="Frequency",main="")

hist(y2,nclass=10,xlab="x",ylab="Frequency",main="")