Title: | Spatial and Spatio-Temporal Bayesian Model for Circular Data |
---|---|
Description: | Implementation of Bayesian models for spatial and spatio-temporal interpolation of circular data using Gaussian Wrapped and Gaussian Projected distributions. We developed the methods described in Jona Lasinio G. et al. (2012) <doi: 10.1214/12-aoas576>, Wang F. et al. (2014) <doi: 10.1080/01621459.2014.934454> and Mastrantonio G. et al. (2016) <doi: 10.1007/s11749-015-0458-y>. |
Authors: | Giovanna Jona Lasinio [aut] , Gianluca Mastrantonio [aut] , Mario Santoro [aut, cre] |
Maintainer: | Mario Santoro <[email protected]> |
License: | GPL-3 |
Version: | 0.9.0 |
Built: | 2024-12-25 06:31:54 UTC |
Source: | CRAN |
APEcirc
computes the average prediction error (APE),
defined as the average circular distance across pairs
APEcirc(real, sim, bycol = F)
APEcirc(real, sim, bycol = F)
real |
a vector of the values of the process at the test locations |
sim |
a matrix with |
bycol |
logical. It is TRUE if the columns of sim represent the observations and the rows the posterior samples, the default value is FALSE. |
a list of two elements
ApePoints
a vector of APE, one element for each test point
Ape
the overall mean
G. Jona Lasinio, A. Gelfand, M. Jona-Lasinio, "Spatial analysis of wave direction data using wrapped Gaussian processes", The Annals of Applied Statistics 6 (2013), 1478-1498
ProjKrigSp
and WrapKrigSp
for posterior spatial
estimations,
ProjKrigSpTi
and WrapKrigSpTi
for posterior spatio-temporal
estimations
Other model performance indices: CRPScirc
library(CircSpaceTime) ## functions rmnorm <- function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } ###################################### ## Simulation ## ###################################### set.seed(1) n <- 20 ### simulate coordinates from a unifrom distribution coords <- cbind(runif(n,0,100), runif(n,0,100)) #spatial coordinates coordsT <- sort(runif(n,0,100)) #time coordinates (ordered) Dist <- as.matrix(dist(coords)) DistT <- as.matrix(dist(coordsT)) rho <- 0.05 #spatial decay rhoT <- 0.01 #temporal decay sep_par <- 0.5 #separability parameter sigma2 <- 0.3 # variance of the process alpha <- c(0.5) #Gneiting covariance SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist/(rhoT * DistT^2 + 1)^(sep_par/2)) Y <- rmnorm(1,rep(alpha, times = n), SIGMA) #generate the linear variable theta <- c() ## wrapping step for(i in 1:n) { theta[i] <- Y[i] %% (2*pi) } ### Add plots of the simulated data rose_diag(theta) ## use this values as references for the definition of initial values and priors rho_sp.min <- 3/max(Dist) rho_sp.max <- rho_sp.min+0.5 rho_t.min <- 3/max(DistT) rho_t.max <- rho_t.min+0.5 val <- sample(1:n,round(n*0.2)) #validation set set.seed(100) mod <- WrapSpTi( x = theta[-val], coords = coords[-val,], times = coordsT[-val], start = list("alpha" = c(.79, .74), "rho_sp" = c(.33,.52), "rho_t" = c(.19, .43), "sigma2" = c(.49, .37), "sep_par" = c(.47, .56), "k" = sample(0,length(theta[-val]), replace = TRUE)), priors = list("rho_sp" = c(0.01,3/4), ### uniform prior on this interval "rho_t" = c(0.01,3/4), ### uniform prior on this interval "sep_par" = c(1,1), ### beta prior "sigma2" = c(5,5),## inverse gamma prior with mode=5/6 "alpha" = c(0,20) ## wrapped gaussian with large variance ) , sd_prop = list( "sigma2" = 0.1, "rho_sp" = 0.1, "rho_t" = 0.1,"sep_par"= 0.1), iter = 7000, BurninThin = c(burnin = 3000, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1000, exp = 0.5), n_chains = 2 , parallel = FALSE, n_cores = 1 ) check <- ConvCheck(mod,startit = 1 ,thin = 1) check$Rhat ## convergence has been reached ## when plotting chains remember that alpha is a circular variable par(mfrow = c(3,2)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) ############## Prediction on the validation set Krig <- WrapKrigSpTi( WrapSpTi_out = mod, coords_obs = coords[-val,], coords_nobs = coords[val,], times_obs = coordsT[-val], times_nobs = coordsT[val], x_obs = theta[-val] ) ### checking the prediction Wrap_Ape <- APEcirc(theta[val], Krig$Prev_out)
library(CircSpaceTime) ## functions rmnorm <- function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } ###################################### ## Simulation ## ###################################### set.seed(1) n <- 20 ### simulate coordinates from a unifrom distribution coords <- cbind(runif(n,0,100), runif(n,0,100)) #spatial coordinates coordsT <- sort(runif(n,0,100)) #time coordinates (ordered) Dist <- as.matrix(dist(coords)) DistT <- as.matrix(dist(coordsT)) rho <- 0.05 #spatial decay rhoT <- 0.01 #temporal decay sep_par <- 0.5 #separability parameter sigma2 <- 0.3 # variance of the process alpha <- c(0.5) #Gneiting covariance SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist/(rhoT * DistT^2 + 1)^(sep_par/2)) Y <- rmnorm(1,rep(alpha, times = n), SIGMA) #generate the linear variable theta <- c() ## wrapping step for(i in 1:n) { theta[i] <- Y[i] %% (2*pi) } ### Add plots of the simulated data rose_diag(theta) ## use this values as references for the definition of initial values and priors rho_sp.min <- 3/max(Dist) rho_sp.max <- rho_sp.min+0.5 rho_t.min <- 3/max(DistT) rho_t.max <- rho_t.min+0.5 val <- sample(1:n,round(n*0.2)) #validation set set.seed(100) mod <- WrapSpTi( x = theta[-val], coords = coords[-val,], times = coordsT[-val], start = list("alpha" = c(.79, .74), "rho_sp" = c(.33,.52), "rho_t" = c(.19, .43), "sigma2" = c(.49, .37), "sep_par" = c(.47, .56), "k" = sample(0,length(theta[-val]), replace = TRUE)), priors = list("rho_sp" = c(0.01,3/4), ### uniform prior on this interval "rho_t" = c(0.01,3/4), ### uniform prior on this interval "sep_par" = c(1,1), ### beta prior "sigma2" = c(5,5),## inverse gamma prior with mode=5/6 "alpha" = c(0,20) ## wrapped gaussian with large variance ) , sd_prop = list( "sigma2" = 0.1, "rho_sp" = 0.1, "rho_t" = 0.1,"sep_par"= 0.1), iter = 7000, BurninThin = c(burnin = 3000, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1000, exp = 0.5), n_chains = 2 , parallel = FALSE, n_cores = 1 ) check <- ConvCheck(mod,startit = 1 ,thin = 1) check$Rhat ## convergence has been reached ## when plotting chains remember that alpha is a circular variable par(mfrow = c(3,2)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) ############## Prediction on the validation set Krig <- WrapKrigSpTi( WrapSpTi_out = mod, coords_obs = coords[-val,], coords_nobs = coords[val,], times_obs = coordsT[-val], times_nobs = coordsT[val], x_obs = theta[-val] ) ### checking the prediction Wrap_Ape <- APEcirc(theta[val], Krig$Prev_out)
Four days of waves data on the Adriatic sea in the month of April 2010.
april
april
Date, format: yyyy-mm-dd
Factor w/ 24 levels corresponding to the 24h, format: 00:00
decimal longitude and latitude
Significant wave heights in meters
Direction of waves in degrees (North=0)
Factor w/ 3 levels "calm","transition", "storm"
Wave directions and heights are obtained as outputs from a deterministic computer model implemented by Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA). The computer model starts from a wind forecast model predicting the surface wind over the entire Mediterranean. The hourly evolution of sea wave spectra is obtained by solving energy transport equations using the wind forecast as input. Wave spectra are locally modified using a source function describing the wind energy, the energy redistribution due to nonlinear wave interactions, and energy dissipation due to wave fracture. The model produces estimates every hour on a grid with 10 x 10 km cells (Inghilesi et al. 2016). The ISPRA dataset has forecasts for a total of 4941 grid points over the Italian Mediterranean. Over the Adriatic Sea area, there are 1494 points.
A list containing 4 data frames each of 35856 rows and 7 columns.
R. Inghilesi, A. Orasi & F. Catini (2016) The ISPRA Mediterranean Coastal Wave Forecasting system: evaluation and perspectives Journal of Operational Oceanography Vol. 9 , Iss. sup1 http://www.tandfonline.com/doi/full/10.1080/1755876X.2015.1115635
The CircSpaceTime package provides two categories of important functions: Sampling Functions and Posterior (Kriging) Estimation Functions.
WrapSp
and ProjSp
, for sampling
from a spatial Normal Wrapped and Projected, respectively.
WrapKrigSp
and ProjKrigSp
, for posterior
estimation on spatial Normal Wrapped and Projected, respectively.
WrapSpTi
and ProjSpTi
, for sampling
from a spatio-temporal Normal Wrapped and Projected, respectively.
WrapKrigSpTi
and ProjKrigSpTi
, for posterior
estimation on spatio-temporal Normal Wrapped and Projected, respectively.
ConvCheck
returns an mcmc.list (mcmc) to be used with the coda
package
and the Potential scale reduction factors (Rhat) of the model parameters
computed using the gelman.diag
function in the coda
package
ConvCheck(mod, startit = 15000, thin = 10)
ConvCheck(mod, startit = 15000, thin = 10)
mod |
is a list with |
startit |
is an integer, the iteration at which the chains start (required to build the mcmc.list) |
thin |
is an integer, the thinning applied to chains |
a list of two elements
mcmc
an mcmc.list
(mcmc) to be used with the coda
package
Rhat
the Potential scale reduction factors of the model parameters
computed using the gelman.diag
function in the coda
package
ProjKrigSp
and WrapKrigSp
for posterior
spatial estimations,
and
ProjKrigSpTi
and WrapKrigSpTi
for posterior
spatio-temporal estimations
library(CircSpaceTime) ## auxiliary function rmnorm<-function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation with exponential spatial covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n,0,100), runif(n,0,100)) Dist <- as.matrix(dist(coords)) rho <- 0.05 sigma2 <- 0.3 alpha <- c(0.5) SIGMA <- sigma2*exp(-rho*Dist) Y <- rmnorm(1,rep(alpha,times=n), SIGMA) theta <- c() for(i in 1:n) { theta[i] <- Y[i]%%(2*pi) } rose_diag(theta) #validation set val <- sample(1:n,round(n*0.1)) set.seed(12345) mod <- WrapSp( x = theta[-val], coords = coords[-val,], start = list("alpha" = c(.36,0.38), "rho" = c(0.041,0.052), "sigma2" = c(0.24,0.32), "k" = rep(0,(n - length(val)))), priors = list("rho" = c(0.04,0.08), #few observations require to be more informative "sigma2" = c(2,1), "alpha" = c(0,10) ), sd_prop = list( "sigma2" = 0.1, "rho" = 0.1), iter = 1000, BurninThin = c(burnin = 500, thin = 5), accept_ratio = 0.234, adapt_param = c(start = 40000, end = 45000, exp = 0.5), corr_fun = "exponential", kappa_matern = .5, parallel = FALSE, #With doParallel, bigger iter (normally around 1e6) and n_cores>=2 it is a lot faster n_chains = 2 , n_cores = 1 ) check <- ConvCheck(mod) check$Rhat ## close to 1 means convergence has been reached
library(CircSpaceTime) ## auxiliary function rmnorm<-function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation with exponential spatial covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n,0,100), runif(n,0,100)) Dist <- as.matrix(dist(coords)) rho <- 0.05 sigma2 <- 0.3 alpha <- c(0.5) SIGMA <- sigma2*exp(-rho*Dist) Y <- rmnorm(1,rep(alpha,times=n), SIGMA) theta <- c() for(i in 1:n) { theta[i] <- Y[i]%%(2*pi) } rose_diag(theta) #validation set val <- sample(1:n,round(n*0.1)) set.seed(12345) mod <- WrapSp( x = theta[-val], coords = coords[-val,], start = list("alpha" = c(.36,0.38), "rho" = c(0.041,0.052), "sigma2" = c(0.24,0.32), "k" = rep(0,(n - length(val)))), priors = list("rho" = c(0.04,0.08), #few observations require to be more informative "sigma2" = c(2,1), "alpha" = c(0,10) ), sd_prop = list( "sigma2" = 0.1, "rho" = 0.1), iter = 1000, BurninThin = c(burnin = 500, thin = 5), accept_ratio = 0.234, adapt_param = c(start = 40000, end = 45000, exp = 0.5), corr_fun = "exponential", kappa_matern = .5, parallel = FALSE, #With doParallel, bigger iter (normally around 1e6) and n_cores>=2 it is a lot faster n_chains = 2 , n_cores = 1 ) check <- ConvCheck(mod) check$Rhat ## close to 1 means convergence has been reached
CRPScirc
function computes the The Continuous Ranked Probability Score for Circular Variables
CRPScirc(obs, sim, bycol = FALSE)
CRPScirc(obs, sim, bycol = FALSE)
obs |
a vector of the values of the process at the test locations |
sim |
a matrix with nrow the test locations and ncol the number of posterior samples from the posterior distributions |
bycol |
logical. It is TRUE if the columns of sim represent the observations and the rows the posterior samples, the default value is FALSE |
a list of 2 elements
CRPSvec
a vector of CRPS, one element for each test point
CRPS
the overall mean
Grimit, Eric P., Tilmann Gneiting, Veronica J. Berrocal, Nicholas Alexander Johnson. "The Continuous Ranked Probability Score for Circular Variables and its Application to Mesoscale Forecast Ensemble Verification", Q.J.R. Meteorol. Soc. 132 (2005), 2925-2942.
ProjKrigSp
and WrapKrigSp
for posterior spatial interpolation, and
ProjKrigSpTi
and WrapKrigSpTi
for posterior spatio-temporal interpolation
Other model performance indices: APEcirc
#' library(CircSpaceTime) ## auxiliary function rmnorm<-function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation with exponential spatial covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n,0,100), runif(n,0,100)) Dist <- as.matrix(dist(coords)) rho <- 0.05 sigma2 <- 0.3 alpha <- c(0.5) SIGMA <- sigma2*exp(-rho*Dist) Y <- rmnorm(1,rep(alpha,times=n), SIGMA) theta <- c() for(i in 1:n) { theta[i] <- Y[i]%%(2*pi) } rose_diag(theta) #validation set val <- sample(1:n,round(n*0.1)) set.seed(12345) mod <- WrapSp( x = theta[-val], coords = coords[-val,], start = list("alpha" = c(.36,0.38), "rho" = c(0.041,0.052), "sigma2" = c(0.24,0.32), "k" = rep(0,(n - length(val)))), priors = list("rho" = c(0.04,0.08), #few observations require to be more informative "sigma2" = c(2,1), "alpha" = c(0,10) ), sd_prop = list( "sigma2" = 0.1, "rho" = 0.1), iter = 1000, BurninThin = c(burnin = 500, thin = 5), accept_ratio = 0.234, adapt_param = c(start = 40000, end = 45000, exp = 0.5), corr_fun = "exponential", kappa_matern = .5, parallel = FALSE, #With doParallel, bigger iter (normally around 1e6) and n_cores>=2 it is a lot faster n_chains = 2 , n_cores = 1 ) check <- ConvCheck(mod) check$Rhat ## close to 1 means convergence has been reached ## graphical check par(mfrow = c(3,1)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) ##### We move to the spatial interpolation Krig <- WrapKrigSp( WrapSp_out = mod, coords_obs = coords[-val,], coords_nobs = coords[val,], x_obs = theta[-val] ) #### check the quality of the prediction using APE and CRPS ApeCheck <- APEcirc(theta[val],Krig$Prev_out) CrpsCheck <- CRPScirc(theta[val],Krig$Prev_out)
#' library(CircSpaceTime) ## auxiliary function rmnorm<-function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation with exponential spatial covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n,0,100), runif(n,0,100)) Dist <- as.matrix(dist(coords)) rho <- 0.05 sigma2 <- 0.3 alpha <- c(0.5) SIGMA <- sigma2*exp(-rho*Dist) Y <- rmnorm(1,rep(alpha,times=n), SIGMA) theta <- c() for(i in 1:n) { theta[i] <- Y[i]%%(2*pi) } rose_diag(theta) #validation set val <- sample(1:n,round(n*0.1)) set.seed(12345) mod <- WrapSp( x = theta[-val], coords = coords[-val,], start = list("alpha" = c(.36,0.38), "rho" = c(0.041,0.052), "sigma2" = c(0.24,0.32), "k" = rep(0,(n - length(val)))), priors = list("rho" = c(0.04,0.08), #few observations require to be more informative "sigma2" = c(2,1), "alpha" = c(0,10) ), sd_prop = list( "sigma2" = 0.1, "rho" = 0.1), iter = 1000, BurninThin = c(burnin = 500, thin = 5), accept_ratio = 0.234, adapt_param = c(start = 40000, end = 45000, exp = 0.5), corr_fun = "exponential", kappa_matern = .5, parallel = FALSE, #With doParallel, bigger iter (normally around 1e6) and n_cores>=2 it is a lot faster n_chains = 2 , n_cores = 1 ) check <- ConvCheck(mod) check$Rhat ## close to 1 means convergence has been reached ## graphical check par(mfrow = c(3,1)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) ##### We move to the spatial interpolation Krig <- WrapKrigSp( WrapSp_out = mod, coords_obs = coords[-val,], coords_nobs = coords[val,], x_obs = theta[-val] ) #### check the quality of the prediction using APE and CRPS ApeCheck <- APEcirc(theta[val],Krig$Prev_out) CrpsCheck <- CRPScirc(theta[val],Krig$Prev_out)
Four time slices of waves data on the Adriatic sea in the month of May 2010.
may
may
each element of the list is one hour of data on the entire area
Date, format: yyyy-mm-dd
Factor w/ 24 levels corresponding to the 24h, format: 00:00
decimal longitude and latitude
Significant wave heights in meters
Direction of waves in degrees (North=0)
Factor w/ 3 levels "calm","transition", "storm"
Wave directions and heights are obtained as outputs from a deterministic computer model implemented by Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA). The computer model starts from a wind forecast model predicting the surface wind over the entire Mediterranean. The hourly evolution of sea wave spectra is obtained by solving energy transport equations using the wind forecast as input. Wave spectra are locally modified using a source function describing the wind energy, the energy redistribution due to nonlinear wave interactions, and energy dissipation due to wave fracture. The model produces estimates every hour on a grid with 10 x 10 km cells (Inghilesi et al. 2016). The ISPRA dataset has forecasts for a total of 4941 grid points over the Italian Mediterranean. Over the Adriatic Sea area, there are 1494 points.
A list containing 4 data frames each of 1494 rows and 7 columns.
R. Inghilesi, A. Orasi & F. Catini (2016) The ISPRA Mediterranean Coastal Wave Forecasting system: evaluation and perspectives Journal of Operational Oceanography Vol. 9 , Iss. sup1 http://www.tandfonline.com/doi/full/10.1080/1755876X.2015.1115635
ProjKrigSp
function computes the spatial prediction
for circular spatial data using samples from the posterior distribution
of the spatial projected normal
ProjKrigSp(ProjSp_out, coords_obs, coords_nobs, x_obs)
ProjKrigSp(ProjSp_out, coords_obs, coords_nobs, x_obs)
ProjSp_out |
the function takes the output of |
coords_obs |
coordinates of observed locations (in UTM) |
coords_nobs |
coordinates of unobserved locations (in UTM) |
x_obs |
observed values in |
a list of 3 elements
M_out
the mean of the associated linear process on the prediction locations coords_nobs (rows) over all the posterior samples (columns) returned by ProjSp
V_out
the variance of the associated linear process on the prediction locations coords_nobs (rows) over all the posterior samples (columns) returned by ProjSp
Prev_out
the posterior predicted values at the unobserved locations.
F. Wang, A. E. Gelfand, "Modeling space and space-time directional data using projected Gaussian processes", Journal of the American Statistical Association,109 (2014), 1565-1580
G. Mastrantonio, G. Jona Lasinio, A. E. Gelfand, "Spatio-temporal circular models with non-separable covariance structure", TEST 25 (2016), 331-350 https://doi.org/10.1007/s11749-015-0458-y
ProjSp
for spatial sampling from
Projected Normal ,
WrapSp
for spatial sampling from
Wrapped Normal and WrapKrigSp
for
spatial interpolation under the wrapped model
Other spatial interpolations: WrapKrigSp
library(CircSpaceTime) ## auxiliary function rmnorm <- function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation using exponential spatial covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n,0,100), runif(n,0,100)) Dist <- as.matrix(dist(coords)) rho <- 0.05 tau <- 0.2 sigma2 <- 1 alpha <- c(0.5,0.5) SIGMA <- sigma2*exp(-rho*Dist) Y <- rmnorm(1,rep(alpha,times=n), kronecker(SIGMA, matrix(c( sigma2,sqrt(sigma2)*tau,sqrt(sigma2)*tau,1 ) ,nrow=2 ))) theta <- c() for(i in 1:n) { theta[i] <- atan2(Y[(i-1)*2+2],Y[(i-1)*2+1]) } theta <- theta %% (2*pi) #to be sure to have values in (0,2pi) hist(theta) rose_diag(theta) val <- sample(1:n,round(n*0.1)) ################some useful quantities rho.min <- 3/max(Dist) rho.max <- rho.min+0.5 set.seed(100) mod <- ProjSp( x = theta[-val], coords = coords[-val,], start = list("alpha" = c(0.92, 0.18, 0.56, -0.35), "rho" = c(0.51,0.15), "tau" = c(0.46, 0.66), "sigma2" = c(0.27, 0.3), "r" = abs(rnorm( length(theta)) )), priors = list("rho" = c(rho.min,rho.max), "tau" = c(-1,1), "sigma2" = c(10,3), "alpha_mu" = c(0, 0), "alpha_sigma" = diag(10,2) ) , sd_prop = list("sigma2" = 0.1, "tau" = 0.1, "rho" = 0.1, "sdr" = sample(.05,length(theta), replace = TRUE)), iter = 10000, BurninThin = c(burnin = 7000, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 130000, end = 120000, exp = 0.5),#no adaptation corr_fun = "exponential", kappa_matern = .5, n_chains = 2 , parallel = TRUE , n_cores = 2 ) # If you don't want to install/use DoParallel # please set parallel = FALSE. Keep in mind that it can be substantially slower # How much it takes? check <- ConvCheck(mod) check$Rhat #close to 1 we have convergence #### graphical check par(mfrow=c(3,2)) coda::traceplot(check$mcmc) par(mfrow=c(1,1)) # move to prediction once convergence is achieved Krig <- ProjKrigSp( ProjSp_out = mod, coords_obs = coords[-val,], coords_nobs = coords[val,], x_obs = theta[-val] ) # The quality of prediction can be checked using APEcirc and CRPScirc ape <- APEcirc(theta[val],Krig$Prev_out) crps <- CRPScirc(theta[val],Krig$Prev_out)
library(CircSpaceTime) ## auxiliary function rmnorm <- function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation using exponential spatial covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n,0,100), runif(n,0,100)) Dist <- as.matrix(dist(coords)) rho <- 0.05 tau <- 0.2 sigma2 <- 1 alpha <- c(0.5,0.5) SIGMA <- sigma2*exp(-rho*Dist) Y <- rmnorm(1,rep(alpha,times=n), kronecker(SIGMA, matrix(c( sigma2,sqrt(sigma2)*tau,sqrt(sigma2)*tau,1 ) ,nrow=2 ))) theta <- c() for(i in 1:n) { theta[i] <- atan2(Y[(i-1)*2+2],Y[(i-1)*2+1]) } theta <- theta %% (2*pi) #to be sure to have values in (0,2pi) hist(theta) rose_diag(theta) val <- sample(1:n,round(n*0.1)) ################some useful quantities rho.min <- 3/max(Dist) rho.max <- rho.min+0.5 set.seed(100) mod <- ProjSp( x = theta[-val], coords = coords[-val,], start = list("alpha" = c(0.92, 0.18, 0.56, -0.35), "rho" = c(0.51,0.15), "tau" = c(0.46, 0.66), "sigma2" = c(0.27, 0.3), "r" = abs(rnorm( length(theta)) )), priors = list("rho" = c(rho.min,rho.max), "tau" = c(-1,1), "sigma2" = c(10,3), "alpha_mu" = c(0, 0), "alpha_sigma" = diag(10,2) ) , sd_prop = list("sigma2" = 0.1, "tau" = 0.1, "rho" = 0.1, "sdr" = sample(.05,length(theta), replace = TRUE)), iter = 10000, BurninThin = c(burnin = 7000, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 130000, end = 120000, exp = 0.5),#no adaptation corr_fun = "exponential", kappa_matern = .5, n_chains = 2 , parallel = TRUE , n_cores = 2 ) # If you don't want to install/use DoParallel # please set parallel = FALSE. Keep in mind that it can be substantially slower # How much it takes? check <- ConvCheck(mod) check$Rhat #close to 1 we have convergence #### graphical check par(mfrow=c(3,2)) coda::traceplot(check$mcmc) par(mfrow=c(1,1)) # move to prediction once convergence is achieved Krig <- ProjKrigSp( ProjSp_out = mod, coords_obs = coords[-val,], coords_nobs = coords[val,], x_obs = theta[-val] ) # The quality of prediction can be checked using APEcirc and CRPScirc ape <- APEcirc(theta[val],Krig$Prev_out) crps <- CRPScirc(theta[val],Krig$Prev_out)
ProjKrigSpTi
function computes the spatio-temporal
prediction for circular space-time data using samples
from the posterior distribution of the space-time projected normal model.
ProjKrigSpTi(ProjSpTi_out, coords_obs, coords_nobs, times_obs, times_nobs, x_obs)
ProjKrigSpTi(ProjSpTi_out, coords_obs, coords_nobs, times_obs, times_nobs, x_obs)
ProjSpTi_out |
the functions takes the output of |
coords_obs |
coordinates of observed locations (in UTM) |
coords_nobs |
coordinates of unobserved locations (in UTM) |
times_obs |
numeric vector of observed time coordinates |
times_nobs |
numeric vector of unobserved time coordinates |
x_obs |
observed values in |
a list of 3 elements
M_out
the mean of the associated linear process on the prediction locations coords_nobs (rows) over all the posterior samples (columns) returned by ProjSpTi
V_out
the variance of the associated linear process on the prediction locations coords_nobs (rows) over all the posterior samples (columns) returned by ProjSpTi
Prev_out
are the posterior predicted values at the unobserved locations.
G. Mastrantonio, G.Jona Lasinio, A. E. Gelfand, "Spatio-temporal circular models with non-separable covariance structure", TEST 25 (2016), 331–350.
F. Wang, A. E. Gelfand, "Modeling space and space-time directional data using projected Gaussian processes", Journal of the American Statistical Association,109 (2014), 1565-1580
T. Gneiting, "Nonseparable, Stationary Covariance Functions for Space-Time Data", JASA 97 (2002), 590-600
ProjSpTi
to sample the posterior distribution of the spatio-temporal
Projected Normal model,
WrapSpTi
to sample the posterior distribution of the spatio-temporal
Wrapped Normal model and WrapKrigSpTi
for
spatio-temporal interpolation under the same model
library(CircSpaceTime) #### simulated example ## auxiliary functions rmnorm <- function(n = 1, mean = rep(0, d), varcov) { d <- if (is.matrix(varcov)) { ncol(varcov) } else { 1 } z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation using a gneiting covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n, 0, 100), runif(n, 0, 100)) coordsT <- cbind(runif(n, 0, 100)) Dist <- as.matrix(dist(coords)) DistT <- as.matrix(dist(coordsT)) rho <- 0.05 rhoT <- 0.01 sep_par <- 0.1 sigma2 <- 1 alpha <- c(0.5) SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist / (rhoT * DistT^2 + 1)^(sep_par / 2)) tau <- 0.2 Y <- rmnorm( 1, rep(alpha, times = n), kronecker(SIGMA, matrix(c(sigma2, sqrt(sigma2) * tau, sqrt(sigma2) * tau, 1), nrow = 2)) ) theta <- c() for (i in 1:n) { theta[i] <- atan2(Y[(i - 1) * 2 + 2], Y[(i - 1) * 2 + 1]) } theta <- theta %% (2 * pi) ## to be sure we have values in (0,2pi) rose_diag(theta) ################ some useful quantities rho_sp.min <- 3 / max(Dist) rho_sp.max <- rho_sp.min + 0.5 rho_t.min <- 3 / max(DistT) rho_t.max <- rho_t.min + 0.5 ### validation set 20% of the data val <- sample(1:n, round(n * 0.2)) set.seed(200) mod <- ProjSpTi( x = theta[-val], coords = coords[-val, ], times = coordsT[-val], start = list( "alpha" = c(0.66, 0.38, 0.27, 0.13), "rho_sp" = c(0.29, 0.33), "rho_t" = c(0.25, 0.13), "sep_par" = c(0.56, 0.31), "tau" = c(0.71, 0.65), "sigma2" = c(0.47, 0.53), "r" = abs(rnorm(length(theta[-val]))) ), priors = list( "rho_sp" = c(rho_sp.min, rho_sp.max), # Uniform prior in this interval "rho_t" = c(rho_t.min, rho_t.max), # Uniform prior in this interval "sep_par" = c(1, 1), # Beta distribution "tau" = c(-1, 1), ## Uniform prior in this interval "sigma2" = c(10, 3), # inverse gamma "alpha_mu" = c(0, 0), ## a vector of 2 elements, ## the means of the bivariate Gaussian distribution "alpha_sigma" = diag(10, 2) # a 2x2 matrix, the covariance matrix of the # bivariate Gaussian distribution, ), sd_prop = list( "sep_par" = 0.1, "sigma2" = 0.1, "tau" = 0.1, "rho_sp" = 0.1, "rho_t" = 0.1, "sdr" = sample(.05, length(theta), replace = TRUE) ), iter = 4000, BurninThin = c(burnin = 2000, thin = 2), accept_ratio = 0.234, adapt_param = c(start = 155000, end = 156000, exp = 0.5), n_chains = 2, parallel = TRUE, ) check <- ConvCheck(mod) check$Rhat ### convergence has been reached when the values are close to 1 #### graphical checking #### recall that it is made of as many lists as the number of chains and it has elements named #### as the model's parameters par(mfrow = c(3, 3)) coda::traceplot(check$mcmc) par(mfrow = c(1, 1)) # once convergence is reached we run the interpolation on the validation set Krig <- ProjKrigSpTi( ProjSpTi_out = mod, coords_obs = coords[-val, ], coords_nobs = coords[val, ], times_obs = coordsT[-val], times_nobs = coordsT[val], x_obs = theta[-val] ) #### checking the prediction Proj_ape <- APEcirc(theta[val], Krig$Prev_out) Proj_crps <- CRPScirc(theta[val],Krig$Prev_out)
library(CircSpaceTime) #### simulated example ## auxiliary functions rmnorm <- function(n = 1, mean = rep(0, d), varcov) { d <- if (is.matrix(varcov)) { ncol(varcov) } else { 1 } z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation using a gneiting covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n, 0, 100), runif(n, 0, 100)) coordsT <- cbind(runif(n, 0, 100)) Dist <- as.matrix(dist(coords)) DistT <- as.matrix(dist(coordsT)) rho <- 0.05 rhoT <- 0.01 sep_par <- 0.1 sigma2 <- 1 alpha <- c(0.5) SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist / (rhoT * DistT^2 + 1)^(sep_par / 2)) tau <- 0.2 Y <- rmnorm( 1, rep(alpha, times = n), kronecker(SIGMA, matrix(c(sigma2, sqrt(sigma2) * tau, sqrt(sigma2) * tau, 1), nrow = 2)) ) theta <- c() for (i in 1:n) { theta[i] <- atan2(Y[(i - 1) * 2 + 2], Y[(i - 1) * 2 + 1]) } theta <- theta %% (2 * pi) ## to be sure we have values in (0,2pi) rose_diag(theta) ################ some useful quantities rho_sp.min <- 3 / max(Dist) rho_sp.max <- rho_sp.min + 0.5 rho_t.min <- 3 / max(DistT) rho_t.max <- rho_t.min + 0.5 ### validation set 20% of the data val <- sample(1:n, round(n * 0.2)) set.seed(200) mod <- ProjSpTi( x = theta[-val], coords = coords[-val, ], times = coordsT[-val], start = list( "alpha" = c(0.66, 0.38, 0.27, 0.13), "rho_sp" = c(0.29, 0.33), "rho_t" = c(0.25, 0.13), "sep_par" = c(0.56, 0.31), "tau" = c(0.71, 0.65), "sigma2" = c(0.47, 0.53), "r" = abs(rnorm(length(theta[-val]))) ), priors = list( "rho_sp" = c(rho_sp.min, rho_sp.max), # Uniform prior in this interval "rho_t" = c(rho_t.min, rho_t.max), # Uniform prior in this interval "sep_par" = c(1, 1), # Beta distribution "tau" = c(-1, 1), ## Uniform prior in this interval "sigma2" = c(10, 3), # inverse gamma "alpha_mu" = c(0, 0), ## a vector of 2 elements, ## the means of the bivariate Gaussian distribution "alpha_sigma" = diag(10, 2) # a 2x2 matrix, the covariance matrix of the # bivariate Gaussian distribution, ), sd_prop = list( "sep_par" = 0.1, "sigma2" = 0.1, "tau" = 0.1, "rho_sp" = 0.1, "rho_t" = 0.1, "sdr" = sample(.05, length(theta), replace = TRUE) ), iter = 4000, BurninThin = c(burnin = 2000, thin = 2), accept_ratio = 0.234, adapt_param = c(start = 155000, end = 156000, exp = 0.5), n_chains = 2, parallel = TRUE, ) check <- ConvCheck(mod) check$Rhat ### convergence has been reached when the values are close to 1 #### graphical checking #### recall that it is made of as many lists as the number of chains and it has elements named #### as the model's parameters par(mfrow = c(3, 3)) coda::traceplot(check$mcmc) par(mfrow = c(1, 1)) # once convergence is reached we run the interpolation on the validation set Krig <- ProjKrigSpTi( ProjSpTi_out = mod, coords_obs = coords[-val, ], coords_nobs = coords[val, ], times_obs = coordsT[-val], times_nobs = coordsT[val], x_obs = theta[-val] ) #### checking the prediction Proj_ape <- APEcirc(theta[val], Krig$Prev_out) Proj_crps <- CRPScirc(theta[val],Krig$Prev_out)
ProjSp
produces samples from the posterior distribtion
of the spatial projected normal model.
ProjSp(x = x, coords = coords, start = list(alpha = c(1, 1, 0.5, 0.5), tau = c(0.1, 0.5), rho = c(0.1, 0.5), sigma2 = c(0.1, 0.5), r = rep(1, times = length(x))), priors = list(tau = c(8, 14), rho = c(8, 14), sigma2 = c(), alpha_mu = c(1, 1), alpha_sigma = c()), sd_prop = list(sigma2 = 0.5, tau = 0.5, rho = 0.5, sdr = sample(0.05, length(x), replace = TRUE)), iter = 1000, BurninThin = c(burnin = 20, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1e+07, exp = 0.9, sdr_update_iter = 50), corr_fun = "exponential", kappa_matern = 0.5, n_chains = 2, parallel = FALSE, n_cores = 1)
ProjSp(x = x, coords = coords, start = list(alpha = c(1, 1, 0.5, 0.5), tau = c(0.1, 0.5), rho = c(0.1, 0.5), sigma2 = c(0.1, 0.5), r = rep(1, times = length(x))), priors = list(tau = c(8, 14), rho = c(8, 14), sigma2 = c(), alpha_mu = c(1, 1), alpha_sigma = c()), sd_prop = list(sigma2 = 0.5, tau = 0.5, rho = 0.5, sdr = sample(0.05, length(x), replace = TRUE)), iter = 1000, BurninThin = c(burnin = 20, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1e+07, exp = 0.9, sdr_update_iter = 50), corr_fun = "exponential", kappa_matern = 0.5, n_chains = 2, parallel = FALSE, n_cores = 1)
x |
a vector of n circular data in |
coords |
an nx2 matrix with the sites coordinates |
start |
a list of 4 elements giving initial values for the model parameters. Each elements is a vector with
|
priors |
a list of 4 elements to define priors for the model parameters:
|
sd_prop |
list of 4 elements. To run the MCMC for the rho, tau and sigma2 parameters and r vector we use an adaptive metropolis and in sd_prop we build a list of initial guesses for these three parameters and the r vector |
iter |
number of iterations |
BurninThin |
a vector of 2 elements with the burnin and the chain thinning |
accept_ratio |
it is the desired acceptance ratio in the adaptive metropolis |
adapt_param |
a vector of 4 elements giving the iteration number at which the adaptation must start and end. The third element (exp) must be a number in (0,1) is a parameter ruling the speed of changes in the adaptation algorithm, it is recommended to set it close to 1, if it is too small non positive definite matrices may be generated and the program crashes. The last element (sdr_update_iter) must be a positive integer defining every how many iterations there is the update of the sd (vector) of (vector) r. |
corr_fun |
characters, the name of the correlation function; currently implemented functions are c("exponential", "matern","gaussian") |
kappa_matern |
numeric, the smoothness parameter of the Matern
correlation function, default is |
n_chains |
integer, the number of chains to be launched (default is 1, but we recommend to use at least 2 for model diagnostic) |
parallel |
logical, if the multiple chains must be lunched in parallel (you should install doParallel package). Default is FALSE |
n_cores |
integer, required if parallel=TRUE, the number of cores to be used in the implementation. Default value is 1. |
it returns a list of n_chains
lists each with elements
rho
,tau
, sigma2
vectors with the thinned chains
alpha
a matrix with nrow=2
and ncol=
the length of thinned chains,
r
a matrix with nrow=length(x)
and ncol=
the length of thinned chains
corr_fun
characters with the type of spatial correlation chosen
distribution
characters, always "ProjSp"
G. Mastrantonio , G. Jona Lasinio, A. E. Gelfand, "Spatio-temporal circular models with non-separable covariance structure", TEST 25 (2016), 331–350.
F. Wang, A. E. Gelfand, "Modeling space and space-time directional data using projected Gaussian processes", Journal of the American Statistical Association,109 (2014), 1565-1580
ProjKrigSp
for spatial interpolation under the projected normal model,
WrapSp
for spatial sampling from
Wrapped Normal and WrapKrigSp
for
Kriging estimation
library(CircSpaceTime) ## auxiliary function rmnorm <- function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation using exponential spatial covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n,0,100), runif(n,0,100)) Dist <- as.matrix(dist(coords)) rho <- 0.05 tau <- 0.2 sigma2 <- 1 alpha <- c(0.5,0.5) SIGMA <- sigma2*exp(-rho*Dist) Y <- rmnorm(1,rep(alpha,times=n), kronecker(SIGMA, matrix(c( sigma2,sqrt(sigma2)*tau,sqrt(sigma2)*tau,1 ) ,nrow=2 ))) theta <- c() for(i in 1:n) { theta[i] <- atan2(Y[(i-1)*2+2],Y[(i-1)*2+1]) } theta <- theta %% (2*pi) #to be sure to have values in (0,2pi) hist(theta) rose_diag(theta) val <- sample(1:n,round(n*0.1)) ################some useful quantities rho.min <- 3/max(Dist) rho.max <- rho.min+0.5 set.seed(100) mod <- ProjSp( x = theta[-val], coords = coords[-val,], start = list("alpha" = c(0.92, 0.18, 0.56, -0.35), "rho" = c(0.51,0.15), "tau" = c(0.46, 0.66), "sigma2" = c(0.27, 0.3), "r" = abs(rnorm( length(theta)) )), priors = list("rho" = c(rho.min,rho.max), "tau" = c(-1,1), "sigma2" = c(10,3), "alpha_mu" = c(0, 0), "alpha_sigma" = diag(10,2) ) , sd_prop = list("sigma2" = 0.1, "tau" = 0.1, "rho" = 0.1, "sdr" = sample(.05,length(theta), replace = TRUE)), iter = 10000, BurninThin = c(burnin = 7000, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 130000, end = 120000, exp = 0.5),#no adaptation corr_fun = "exponential", kappa_matern = .5, n_chains = 2 , parallel = TRUE , n_cores = 2 ) # If you don't want to install/use DoParallel # please set parallel = FALSE. Keep in mind that it can be substantially slower # How much it takes? check <- ConvCheck(mod) check$Rhat #close to 1 we have convergence #### graphical check par(mfrow=c(3,2)) coda::traceplot(check$mcmc) par(mfrow=c(1,1)) # once convergence is achieved move to prediction using ProjKrigSp
library(CircSpaceTime) ## auxiliary function rmnorm <- function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation using exponential spatial covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n,0,100), runif(n,0,100)) Dist <- as.matrix(dist(coords)) rho <- 0.05 tau <- 0.2 sigma2 <- 1 alpha <- c(0.5,0.5) SIGMA <- sigma2*exp(-rho*Dist) Y <- rmnorm(1,rep(alpha,times=n), kronecker(SIGMA, matrix(c( sigma2,sqrt(sigma2)*tau,sqrt(sigma2)*tau,1 ) ,nrow=2 ))) theta <- c() for(i in 1:n) { theta[i] <- atan2(Y[(i-1)*2+2],Y[(i-1)*2+1]) } theta <- theta %% (2*pi) #to be sure to have values in (0,2pi) hist(theta) rose_diag(theta) val <- sample(1:n,round(n*0.1)) ################some useful quantities rho.min <- 3/max(Dist) rho.max <- rho.min+0.5 set.seed(100) mod <- ProjSp( x = theta[-val], coords = coords[-val,], start = list("alpha" = c(0.92, 0.18, 0.56, -0.35), "rho" = c(0.51,0.15), "tau" = c(0.46, 0.66), "sigma2" = c(0.27, 0.3), "r" = abs(rnorm( length(theta)) )), priors = list("rho" = c(rho.min,rho.max), "tau" = c(-1,1), "sigma2" = c(10,3), "alpha_mu" = c(0, 0), "alpha_sigma" = diag(10,2) ) , sd_prop = list("sigma2" = 0.1, "tau" = 0.1, "rho" = 0.1, "sdr" = sample(.05,length(theta), replace = TRUE)), iter = 10000, BurninThin = c(burnin = 7000, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 130000, end = 120000, exp = 0.5),#no adaptation corr_fun = "exponential", kappa_matern = .5, n_chains = 2 , parallel = TRUE , n_cores = 2 ) # If you don't want to install/use DoParallel # please set parallel = FALSE. Keep in mind that it can be substantially slower # How much it takes? check <- ConvCheck(mod) check$Rhat #close to 1 we have convergence #### graphical check par(mfrow=c(3,2)) coda::traceplot(check$mcmc) par(mfrow=c(1,1)) # once convergence is achieved move to prediction using ProjKrigSp
ProjSpTi
produces samples from the posterior distribution of the spatial
projected normal model.
ProjSpTi(x = x, coords = coords, times = c(), start = list(alpha = c(1, 1, 0.5, 0.5), tau = c(0.1, 0.5), rho_sp = c(0.1, 0.5), rho_t = c(0.1, 0.5), sep_par = c(0.1, 0.5), sigma2 = c(0.1, 0.5), r = sample(1, length(x), replace = T)), priors = list(tau = c(8, 14), rho_sp = c(8, 14), rho_t = c(8, 14), sep_par = c(8, 14), sigma2 = c(), alpha_mu = c(1, 1), alpha_sigma = c()), sd_prop = list(sigma2 = 0.5, tau = 0.5, rho_sp = 0.5, rho_t = 0.5, sep_par = 0.5, sdr = sample(0.05, length(x), replace = T)), iter = 1000, BurninThin = c(burnin = 20, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1e+07, exp = 0.9, sdr_update_iter = 50), n_chains = 2, parallel = FALSE, n_cores = 1)
ProjSpTi(x = x, coords = coords, times = c(), start = list(alpha = c(1, 1, 0.5, 0.5), tau = c(0.1, 0.5), rho_sp = c(0.1, 0.5), rho_t = c(0.1, 0.5), sep_par = c(0.1, 0.5), sigma2 = c(0.1, 0.5), r = sample(1, length(x), replace = T)), priors = list(tau = c(8, 14), rho_sp = c(8, 14), rho_t = c(8, 14), sep_par = c(8, 14), sigma2 = c(), alpha_mu = c(1, 1), alpha_sigma = c()), sd_prop = list(sigma2 = 0.5, tau = 0.5, rho_sp = 0.5, rho_t = 0.5, sep_par = 0.5, sdr = sample(0.05, length(x), replace = T)), iter = 1000, BurninThin = c(burnin = 20, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1e+07, exp = 0.9, sdr_update_iter = 50), n_chains = 2, parallel = FALSE, n_cores = 1)
x |
a vector of n circular data in |
coords |
an nx2 matrix with the sites coordinates |
times |
an n vector with the times of .... |
start |
a list of 4 elements giving initial values for the model parameters. Each elements is a vector with
|
priors |
a list of 7 elements to define priors for the model parameters:
|
sd_prop |
=list of 4 elements. To run the MCMC for the rho_sp, tau and sigma2 parameters and r vector we use an adaptive metropolis and in sd_prop we build a list of initial guesses for these three parameters and the r vector |
iter |
iter number of iterations |
BurninThin |
a vector of 2 elements with the burnin and the chain thinning |
accept_ratio |
it is the desired acceptance ratio in the adaptive metropolis |
adapt_param |
a vector of 4 elements giving the iteration number at which the adaptation must start and end. The third element (exp) must be a number in (0,1) is a parameter ruling the speed of changes in the adaptation algorithm, it is recommended to set it close to 1, if it is too small non positive definite matrices may be generated and the program crashes. The last element (sdr_update_iter) must be a positive integer defining every how many iterations there is the update of the sd (vector) of (vector) r. |
n_chains |
integer, the number of chains to be launched (default is 1, but we recommend to use at least 2 for model diagnostic) |
parallel |
logical, if the multiple chains must be lunched in parallel (you should install doParallel package). Default is FALSE |
n_cores |
integer, required if parallel=TRUE, the number of cores to be used in the implementation. Default value is 1. |
it returns a list of n_chains
lists each with elements
tau
, rho_sp
, rho_t
, sigma2
vectors with the thinned chains
alpha
a matrix with nrow=2
and ncol=
the length of thinned chains
r
a matrix with nrow=length(x)
and ncol=
the length of thinned chains
G. Mastrantonio, G.Jona Lasinio, A. E. Gelfand, "Spatio-temporal circular models with non-separable covariance structure", TEST 25 (2016), 331–350.
F. Wang, A. E. Gelfand, "Modeling space and space-time directional data using projected Gaussian processes", Journal of the American Statistical Association,109 (2014), 1565-1580
T. Gneiting, "Nonseparable, Stationary Covariance Functions for Space-Time Data", JASA 97 (2002), 590-600
ProjKrigSpTi
for spatio-temporal prediction under the spatio-temporal projected normal model,
WrapSpTi
to sample from the posterior distribution of the spatio-temporal
Wrapped Normal model and WrapKrigSpTi
for spatio-temporal prediction under the
same model
Other spatio-temporal models: WrapSpTi
library(CircSpaceTime) #### simulated example ## auxiliary functions rmnorm <- function(n = 1, mean = rep(0, d), varcov) { d <- if (is.matrix(varcov)) { ncol(varcov) } else { 1 } z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation using a gneiting covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n, 0, 100), runif(n, 0, 100)) coordsT <- cbind(runif(n, 0, 100)) Dist <- as.matrix(dist(coords)) DistT <- as.matrix(dist(coordsT)) rho <- 0.05 rhoT <- 0.01 sep_par <- 0.1 sigma2 <- 1 alpha <- c(0.5) SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist / (rhoT * DistT^2 + 1)^(sep_par / 2)) tau <- 0.2 Y <- rmnorm( 1, rep(alpha, times = n), kronecker(SIGMA, matrix(c(sigma2, sqrt(sigma2) * tau, sqrt(sigma2) * tau, 1), nrow = 2)) ) theta <- c() for (i in 1:n) { theta[i] <- atan2(Y[(i - 1) * 2 + 2], Y[(i - 1) * 2 + 1]) } theta <- theta %% (2 * pi) ## to be sure we have values in (0,2pi) rose_diag(theta) ################ some useful quantities rho_sp.min <- 3 / max(Dist) rho_sp.max <- rho_sp.min + 0.5 rho_t.min <- 3 / max(DistT) rho_t.max <- rho_t.min + 0.5 ### validation set 20% of the data val <- sample(1:n, round(n * 0.2)) set.seed(200) mod <- ProjSpTi( x = theta[-val], coords = coords[-val, ], times = coordsT[-val], start = list( "alpha" = c(0.66, 0.38, 0.27, 0.13), "rho_sp" = c(0.29, 0.33), "rho_t" = c(0.25, 0.13), "sep_par" = c(0.56, 0.31), "tau" = c(0.71, 0.65), "sigma2" = c(0.47, 0.53), "r" = abs(rnorm(length(theta[-val]))) ), priors = list( "rho_sp" = c(rho_sp.min, rho_sp.max), # Uniform prior in this interval "rho_t" = c(rho_t.min, rho_t.max), # Uniform prior in this interval "sep_par" = c(1, 1), # Beta distribution "tau" = c(-1, 1), ## Uniform prior in this interval "sigma2" = c(10, 3), # inverse gamma "alpha_mu" = c(0, 0), ## a vector of 2 elements, ## the means of the bivariate Gaussian distribution "alpha_sigma" = diag(10, 2) # a 2x2 matrix, the covariance matrix of the # bivariate Gaussian distribution, ), sd_prop = list( "sep_par" = 0.1, "sigma2" = 0.1, "tau" = 0.1, "rho_sp" = 0.1, "rho_t" = 0.1, "sdr" = sample(.05, length(theta), replace = TRUE) ), iter = 4000, BurninThin = c(burnin = 2000, thin = 2), accept_ratio = 0.234, adapt_param = c(start = 155000, end = 156000, exp = 0.5), n_chains = 2, parallel = TRUE, ) check <- ConvCheck(mod) check$Rhat ### convergence has been reached when the values are close to 1 #### graphical checking #### recall that it is made of as many lists as the number of chains and it has elements named #### as the model's parameters par(mfrow = c(3, 3)) coda::traceplot(check$mcmc) par(mfrow = c(1, 1)) # move to prediction once convergence is achieved using ProjKrigSpTi
library(CircSpaceTime) #### simulated example ## auxiliary functions rmnorm <- function(n = 1, mean = rep(0, d), varcov) { d <- if (is.matrix(varcov)) { ncol(varcov) } else { 1 } z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation using a gneiting covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n, 0, 100), runif(n, 0, 100)) coordsT <- cbind(runif(n, 0, 100)) Dist <- as.matrix(dist(coords)) DistT <- as.matrix(dist(coordsT)) rho <- 0.05 rhoT <- 0.01 sep_par <- 0.1 sigma2 <- 1 alpha <- c(0.5) SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist / (rhoT * DistT^2 + 1)^(sep_par / 2)) tau <- 0.2 Y <- rmnorm( 1, rep(alpha, times = n), kronecker(SIGMA, matrix(c(sigma2, sqrt(sigma2) * tau, sqrt(sigma2) * tau, 1), nrow = 2)) ) theta <- c() for (i in 1:n) { theta[i] <- atan2(Y[(i - 1) * 2 + 2], Y[(i - 1) * 2 + 1]) } theta <- theta %% (2 * pi) ## to be sure we have values in (0,2pi) rose_diag(theta) ################ some useful quantities rho_sp.min <- 3 / max(Dist) rho_sp.max <- rho_sp.min + 0.5 rho_t.min <- 3 / max(DistT) rho_t.max <- rho_t.min + 0.5 ### validation set 20% of the data val <- sample(1:n, round(n * 0.2)) set.seed(200) mod <- ProjSpTi( x = theta[-val], coords = coords[-val, ], times = coordsT[-val], start = list( "alpha" = c(0.66, 0.38, 0.27, 0.13), "rho_sp" = c(0.29, 0.33), "rho_t" = c(0.25, 0.13), "sep_par" = c(0.56, 0.31), "tau" = c(0.71, 0.65), "sigma2" = c(0.47, 0.53), "r" = abs(rnorm(length(theta[-val]))) ), priors = list( "rho_sp" = c(rho_sp.min, rho_sp.max), # Uniform prior in this interval "rho_t" = c(rho_t.min, rho_t.max), # Uniform prior in this interval "sep_par" = c(1, 1), # Beta distribution "tau" = c(-1, 1), ## Uniform prior in this interval "sigma2" = c(10, 3), # inverse gamma "alpha_mu" = c(0, 0), ## a vector of 2 elements, ## the means of the bivariate Gaussian distribution "alpha_sigma" = diag(10, 2) # a 2x2 matrix, the covariance matrix of the # bivariate Gaussian distribution, ), sd_prop = list( "sep_par" = 0.1, "sigma2" = 0.1, "tau" = 0.1, "rho_sp" = 0.1, "rho_t" = 0.1, "sdr" = sample(.05, length(theta), replace = TRUE) ), iter = 4000, BurninThin = c(burnin = 2000, thin = 2), accept_ratio = 0.234, adapt_param = c(start = 155000, end = 156000, exp = 0.5), n_chains = 2, parallel = TRUE, ) check <- ConvCheck(mod) check$Rhat ### convergence has been reached when the values are close to 1 #### graphical checking #### recall that it is made of as many lists as the number of chains and it has elements named #### as the model's parameters par(mfrow = c(3, 3)) coda::traceplot(check$mcmc) par(mfrow = c(1, 1)) # move to prediction once convergence is achieved using ProjKrigSpTi
Rose diagram in ggplot2 inspired from rose.diag in package circular.
rose_diag(x, bins = 15, color = "red", alpha = 1, start = 0, add = FALSE, template = "rad", direction = NULL)
rose_diag(x, bins = 15, color = "red", alpha = 1, start = 0, add = FALSE, template = "rad", direction = NULL)
x |
a vector of circular coordinates in radiants |
bins |
number of bins |
color |
color of the line and of the fill |
alpha |
transparency |
start |
the starting angle of the 0 (the North) |
add |
add the rose_diag to an existing ggplot2 plot |
template |
radiants or wind rose. the values are |
direction |
1, clockwise; -1, anticlockwise. For template = "rad" direction is -1 while for template = "wind_rose" direction is 1. |
The plot in ggplot2 format.
library(CircSpaceTime) x <- circular::rwrappedstable(200, index = 1.5, skewness = .5) x1 <- circular::rwrappedstable(200, index = 2, skewness = .5) x2 <- circular::rwrappedstable(200, index = 0.5, skewness = 1) rose_diag(x, bins = 15, color = "green") rose_diag(x1, bins = 15, color = "blue", alpha = .5, add = TRUE) rose_diag(x2, bins = 15, color = "red", alpha = .5, add = TRUE)
library(CircSpaceTime) x <- circular::rwrappedstable(200, index = 1.5, skewness = .5) x1 <- circular::rwrappedstable(200, index = 2, skewness = .5) x2 <- circular::rwrappedstable(200, index = 0.5, skewness = 1) rose_diag(x, bins = 15, color = "green") rose_diag(x1, bins = 15, color = "blue", alpha = .5, add = TRUE) rose_diag(x2, bins = 15, color = "red", alpha = .5, add = TRUE)
WrapKrigSp
function computes the spatial prediction
for circular spatial data using samples from the posterior distribution
of the spatial wrapped normal
WrapKrigSp(WrapSp_out, coords_obs, coords_nobs, x_obs)
WrapKrigSp(WrapSp_out, coords_obs, coords_nobs, x_obs)
WrapSp_out |
the functions takes the output of |
coords_obs |
coordinates of observed locations (in UTM) |
coords_nobs |
coordinates of unobserved locations (in UTM) |
x_obs |
observed values |
a list of 3 elements
M_out
the mean of the associated linear process on the prediction locations coords_nobs (rows) over all the posterior samples (columns) returned by WrapSp
V_out
the variance of the associated linear process on the prediction locations coords_nobs (rows) over all the posterior samples (columns) returned by WrapSp
Prev_out
the posterior predicted values at the unobserved locations.
To facilitate the estimations, the observations x are centered around pi, and the posterior samples of x and posterior mean are changed back to the original scale
G. Jona-Lasinio, A .E. Gelfand, M. Jona-Lasinio, "Spatial analysis of wave direction data using wrapped Gaussian processes", The Annals of Applied Statistics, 6 (2012), 1478-1498
WrapSp
for spatial sampling from
Wrapped Normal ,
ProjSp
for spatial sampling from
Projected Normal and ProjKrigSp
for
Kriging estimation
Other spatial interpolations: ProjKrigSp
library(CircSpaceTime) ## auxiliary function rmnorm<-function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation with exponential spatial covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n,0,100), runif(n,0,100)) Dist <- as.matrix(dist(coords)) rho <- 0.05 sigma2 <- 0.3 alpha <- c(0.5) SIGMA <- sigma2*exp(-rho*Dist) Y <- rmnorm(1,rep(alpha,times=n), SIGMA) theta <- c() for(i in 1:n) { theta[i] <- Y[i]%%(2*pi) } rose_diag(theta) #validation set val <- sample(1:n,round(n*0.1)) set.seed(12345) mod <- WrapSp( x = theta[-val], coords = coords[-val,], start = list("alpha" = c(.36,0.38), "rho" = c(0.041,0.052), "sigma2" = c(0.24,0.32), "k" = rep(0,(n - length(val)))), priors = list("rho" = c(0.04,0.08), #few observations require to be more informative "sigma2" = c(2,1), "alpha" = c(0,10) ), sd_prop = list( "sigma2" = 0.1, "rho" = 0.1), iter = 1000, BurninThin = c(burnin = 500, thin = 5), accept_ratio = 0.234, adapt_param = c(start = 40000, end = 45000, exp = 0.5), corr_fun = "exponential", kappa_matern = .5, parallel = FALSE, #With doParallel, bigger iter (normally around 1e6) and n_cores>=2 it is a lot faster n_chains = 2 , n_cores = 1 ) check <- ConvCheck(mod) check$Rhat ## close to 1 means convergence has been reached ## graphical check par(mfrow = c(3,1)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) ##### We move to the spatial interpolation Krig <- WrapKrigSp( WrapSp_out = mod, coords_obs = coords[-val,], coords_nobs = coords[val,], x_obs = theta[-val] ) #### check the quality of the prediction using APE and CRPS ApeCheck <- APEcirc(theta[val],Krig$Prev_out) CrpsCheck <- CRPScirc(theta[val],Krig$Prev_out)
library(CircSpaceTime) ## auxiliary function rmnorm<-function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation with exponential spatial covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n,0,100), runif(n,0,100)) Dist <- as.matrix(dist(coords)) rho <- 0.05 sigma2 <- 0.3 alpha <- c(0.5) SIGMA <- sigma2*exp(-rho*Dist) Y <- rmnorm(1,rep(alpha,times=n), SIGMA) theta <- c() for(i in 1:n) { theta[i] <- Y[i]%%(2*pi) } rose_diag(theta) #validation set val <- sample(1:n,round(n*0.1)) set.seed(12345) mod <- WrapSp( x = theta[-val], coords = coords[-val,], start = list("alpha" = c(.36,0.38), "rho" = c(0.041,0.052), "sigma2" = c(0.24,0.32), "k" = rep(0,(n - length(val)))), priors = list("rho" = c(0.04,0.08), #few observations require to be more informative "sigma2" = c(2,1), "alpha" = c(0,10) ), sd_prop = list( "sigma2" = 0.1, "rho" = 0.1), iter = 1000, BurninThin = c(burnin = 500, thin = 5), accept_ratio = 0.234, adapt_param = c(start = 40000, end = 45000, exp = 0.5), corr_fun = "exponential", kappa_matern = .5, parallel = FALSE, #With doParallel, bigger iter (normally around 1e6) and n_cores>=2 it is a lot faster n_chains = 2 , n_cores = 1 ) check <- ConvCheck(mod) check$Rhat ## close to 1 means convergence has been reached ## graphical check par(mfrow = c(3,1)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) ##### We move to the spatial interpolation Krig <- WrapKrigSp( WrapSp_out = mod, coords_obs = coords[-val,], coords_nobs = coords[val,], x_obs = theta[-val] ) #### check the quality of the prediction using APE and CRPS ApeCheck <- APEcirc(theta[val],Krig$Prev_out) CrpsCheck <- CRPScirc(theta[val],Krig$Prev_out)
WrapKrigSpTi
function computes the spatio-temporal prediction
for circular space-time data using samples from the posterior distribution
of the space-time wrapped normal model
WrapKrigSpTi(WrapSpTi_out, coords_obs, coords_nobs, times_obs, times_nobs, x_obs)
WrapKrigSpTi(WrapSpTi_out, coords_obs, coords_nobs, times_obs, times_nobs, x_obs)
WrapSpTi_out |
the functions takes the output of |
coords_obs |
coordinates of observed locations (in UTM) |
coords_nobs |
coordinates of unobserved locations (in UTM) |
times_obs |
numeric vector of observed time coordinates |
times_nobs |
numeric vector of unobserved time coordinates |
x_obs |
observed values |
a list of 3 elements
M_out
the mean of the associated linear process on the prediction locations coords_nobs (rows) over all the posterior samples (columns) returned by WrapSpTi
V_out
the variance of the associated linear process on the prediction locations coords_nobs (rows) over all the posterior samples (columns) returned by WrapSpTi
Prev_out
the posterior predicted values at the unobserved locations
To facilitate the estimations, the observations x
are centered around .
Posterior samples of x at the predictive locations and posterior mean are changed back
to the original scale
G. Mastrantonio, G. Jona Lasinio, A. E. Gelfand, "Spatio-temporal circular models with non-separable covariance structure", TEST 25 (2016), 331–350
T. Gneiting, "Nonseparable, Stationary Covariance Functions for Space-Time Data", JASA 97 (2002), 590-600
WrapSpTi
spatio-temporal sampling from
Wrapped Normal,
ProjSpTi
for spatio-temporal sampling from
Projected Normal and ProjKrigSpTi
for
Kriging estimation
library(CircSpaceTime) ## functions rmnorm <- function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } ###################################### ## Simulation ## ###################################### set.seed(1) n <- 20 ### simulate coordinates from a unifrom distribution coords <- cbind(runif(n,0,100), runif(n,0,100)) #spatial coordinates coordsT <- sort(runif(n,0,100)) #time coordinates (ordered) Dist <- as.matrix(dist(coords)) DistT <- as.matrix(dist(coordsT)) rho <- 0.05 #spatial decay rhoT <- 0.01 #temporal decay sep_par <- 0.5 #separability parameter sigma2 <- 0.3 # variance of the process alpha <- c(0.5) #Gneiting covariance SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist/(rhoT * DistT^2 + 1)^(sep_par/2)) Y <- rmnorm(1,rep(alpha, times = n), SIGMA) #generate the linear variable theta <- c() ## wrapping step for(i in 1:n) { theta[i] <- Y[i] %% (2*pi) } ### Add plots of the simulated data rose_diag(theta) ## use this values as references for the definition of initial values and priors rho_sp.min <- 3/max(Dist) rho_sp.max <- rho_sp.min+0.5 rho_t.min <- 3/max(DistT) rho_t.max <- rho_t.min+0.5 val <- sample(1:n,round(n*0.2)) #validation set set.seed(100) mod <- WrapSpTi( x = theta[-val], coords = coords[-val,], times = coordsT[-val], start = list("alpha" = c(.79, .74), "rho_sp" = c(.33,.52), "rho_t" = c(.19, .43), "sigma2" = c(.49, .37), "sep_par" = c(.47, .56), "k" = sample(0,length(theta[-val]), replace = TRUE)), priors = list("rho_sp" = c(0.01,3/4), ### uniform prior on this interval "rho_t" = c(0.01,3/4), ### uniform prior on this interval "sep_par" = c(1,1), ### beta prior "sigma2" = c(5,5),## inverse gamma prior with mode=5/6 "alpha" = c(0,20) ## wrapped gaussian with large variance ) , sd_prop = list( "sigma2" = 0.1, "rho_sp" = 0.1, "rho_t" = 0.1,"sep_par"= 0.1), iter = 7000, BurninThin = c(burnin = 3000, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1000, exp = 0.5), n_chains = 2 , parallel = FALSE, n_cores = 1 ) check <- ConvCheck(mod,startit = 1 ,thin = 1) check$Rhat ## convergence has been reached ## when plotting chains remember that alpha is a circular variable par(mfrow = c(3,2)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) ############## Prediction on the validation set Krig <- WrapKrigSpTi( WrapSpTi_out = mod, coords_obs = coords[-val,], coords_nobs = coords[val,], times_obs = coordsT[-val], times_nobs = coordsT[val], x_obs = theta[-val] ) ### checking the prediction Wrap_Ape <- APEcirc(theta[val], Krig$Prev_out) Wrap_Crps <- CRPScirc(theta[val], Krig$Prev_out)
library(CircSpaceTime) ## functions rmnorm <- function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } ###################################### ## Simulation ## ###################################### set.seed(1) n <- 20 ### simulate coordinates from a unifrom distribution coords <- cbind(runif(n,0,100), runif(n,0,100)) #spatial coordinates coordsT <- sort(runif(n,0,100)) #time coordinates (ordered) Dist <- as.matrix(dist(coords)) DistT <- as.matrix(dist(coordsT)) rho <- 0.05 #spatial decay rhoT <- 0.01 #temporal decay sep_par <- 0.5 #separability parameter sigma2 <- 0.3 # variance of the process alpha <- c(0.5) #Gneiting covariance SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist/(rhoT * DistT^2 + 1)^(sep_par/2)) Y <- rmnorm(1,rep(alpha, times = n), SIGMA) #generate the linear variable theta <- c() ## wrapping step for(i in 1:n) { theta[i] <- Y[i] %% (2*pi) } ### Add plots of the simulated data rose_diag(theta) ## use this values as references for the definition of initial values and priors rho_sp.min <- 3/max(Dist) rho_sp.max <- rho_sp.min+0.5 rho_t.min <- 3/max(DistT) rho_t.max <- rho_t.min+0.5 val <- sample(1:n,round(n*0.2)) #validation set set.seed(100) mod <- WrapSpTi( x = theta[-val], coords = coords[-val,], times = coordsT[-val], start = list("alpha" = c(.79, .74), "rho_sp" = c(.33,.52), "rho_t" = c(.19, .43), "sigma2" = c(.49, .37), "sep_par" = c(.47, .56), "k" = sample(0,length(theta[-val]), replace = TRUE)), priors = list("rho_sp" = c(0.01,3/4), ### uniform prior on this interval "rho_t" = c(0.01,3/4), ### uniform prior on this interval "sep_par" = c(1,1), ### beta prior "sigma2" = c(5,5),## inverse gamma prior with mode=5/6 "alpha" = c(0,20) ## wrapped gaussian with large variance ) , sd_prop = list( "sigma2" = 0.1, "rho_sp" = 0.1, "rho_t" = 0.1,"sep_par"= 0.1), iter = 7000, BurninThin = c(burnin = 3000, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1000, exp = 0.5), n_chains = 2 , parallel = FALSE, n_cores = 1 ) check <- ConvCheck(mod,startit = 1 ,thin = 1) check$Rhat ## convergence has been reached ## when plotting chains remember that alpha is a circular variable par(mfrow = c(3,2)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) ############## Prediction on the validation set Krig <- WrapKrigSpTi( WrapSpTi_out = mod, coords_obs = coords[-val,], coords_nobs = coords[val,], times_obs = coordsT[-val], times_nobs = coordsT[val], x_obs = theta[-val] ) ### checking the prediction Wrap_Ape <- APEcirc(theta[val], Krig$Prev_out) Wrap_Crps <- CRPScirc(theta[val], Krig$Prev_out)
The function WrapSp
produces samples from the posterior
distribution of the wrapped normal spatial model.
WrapSp(x = x, coords = coords, start = list(alpha = c(2, 1), rho = c(0.1, 0.5), sigma2 = c(0.1, 0.5), k = sample(0, length(x), replace = T)), priors = list(alpha = c(pi, 1, -10, 10), rho = c(8, 14), sigma2 = c()), sd_prop = list(sigma2 = 0.5, rho = 0.5), iter = 1000, BurninThin = c(burnin = 20, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1e+07, exp = 0.9), corr_fun = "exponential", kappa_matern = 0.5, n_chains = 1, parallel = FALSE, n_cores = 1)
WrapSp(x = x, coords = coords, start = list(alpha = c(2, 1), rho = c(0.1, 0.5), sigma2 = c(0.1, 0.5), k = sample(0, length(x), replace = T)), priors = list(alpha = c(pi, 1, -10, 10), rho = c(8, 14), sigma2 = c()), sd_prop = list(sigma2 = 0.5, rho = 0.5), iter = 1000, BurninThin = c(burnin = 20, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1e+07, exp = 0.9), corr_fun = "exponential", kappa_matern = 0.5, n_chains = 1, parallel = FALSE, n_cores = 1)
x |
a vector of n circular data in |
coords |
an nx2 matrix with the sites coordinates |
start |
a list of 4 elements giving initial values for the model parameters. Each elements is a numeric vector with
|
priors |
a list of 3 elements to define priors for the model parameters:
|
sd_prop |
list of 3 elements. To run the MCMC for the rho and sigma2 parameters we use an adaptive metropolis and in sd.prop we build a list of initial guesses for these two parameters and the beta parameter |
iter |
number of iterations |
BurninThin |
a vector of 2 elements with the burnin and the chain thinning |
accept_ratio |
it is the desired acceptance ratio in the adaptive metropolis |
adapt_param |
a vector of 3 elements giving the iteration number at which the adaptation must start and end. The third element (exp) must be a number in (0,1) and it is a parameter ruling the speed of changes in the adaptation algorithm, it is recommended to set it close to 1, if it is too small non positive definite matrices may be generated and the program crashes. |
corr_fun |
characters, the name of the correlation function; currently implemented functions are c("exponential", "matern","gaussian") |
kappa_matern |
numeric, the smoothness parameter of the Matern
correlation function, default is |
n_chains |
integer, the number of chains to be launched (default is 1, but we recommend to use at least 2 for model diagnostic) |
parallel |
logical, if the multiple chains must be lunched in parallel (you should install doParallel package). Default is FALSE |
n_cores |
integer, required if parallel=TRUE, the number of cores to be used in the implementation. Default value is 1. |
It returns a list of n_chains
lists each with elements
alpha
, rho
,sigma2
vectors with the thinned chains,
k
a matrix with nrow = length(x)
and ncol =
the length of thinned chains
corr_fun
characters with the type of spatial correlation chosen.
distribution
characters, always "WrapSp"
To facilitate the estimations, the observations x are centered around pi, and the prior and starting value of alpha are changed accordingly. After the estimations, posterior samples of alpha are changed back to the original scale
G. Jona Lasinio, A. Gelfand, M. Jona-Lasinio, "Spatial analysis of wave direction data using wrapped Gaussian processes", The Annals of Applied Statistics 6 (2013), 1478-1498
WrapKrigSp
for spatial interpolation,
ProjSp
for posterior sampling from the
Projected Normal model and ProjKrigSp
for
spatial interpolation under the same model
library(CircSpaceTime) ## auxiliary function rmnorm<-function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation with exponential spatial covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n,0,100), runif(n,0,100)) Dist <- as.matrix(dist(coords)) rho <- 0.05 sigma2 <- 0.3 alpha <- c(0.5) SIGMA <- sigma2*exp(-rho*Dist) Y <- rmnorm(1,rep(alpha,times=n), SIGMA) theta <- c() for(i in 1:n) { theta[i] <- Y[i]%%(2*pi) } rose_diag(theta) #validation set val <- sample(1:n,round(n*0.1)) set.seed(12345) mod <- WrapSp( x = theta[-val], coords = coords[-val,], start = list("alpha" = c(.36,0.38), "rho" = c(0.041,0.052), "sigma2" = c(0.24,0.32), "k" = rep(0,(n - length(val)))), priors = list("rho" = c(0.04,0.08), #few observations require to be more informative "sigma2" = c(2,1), "alpha" = c(0,10) ), sd_prop = list( "sigma2" = 0.1, "rho" = 0.1), iter = 1000, BurninThin = c(burnin = 500, thin = 5), accept_ratio = 0.234, adapt_param = c(start = 40000, end = 45000, exp = 0.5), corr_fun = "exponential", kappa_matern = .5, parallel = FALSE, #With doParallel, bigger iter (normally around 1e6) and n_cores>=2 it is a lot faster n_chains = 2 , n_cores = 1 ) check <- ConvCheck(mod) check$Rhat ## close to 1 means convergence has been reached ## graphical check par(mfrow = c(3,1)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) ##### We move to the spatial interpolation see WrapKrigSp
library(CircSpaceTime) ## auxiliary function rmnorm<-function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } #### # Simulation with exponential spatial covariance function #### set.seed(1) n <- 20 coords <- cbind(runif(n,0,100), runif(n,0,100)) Dist <- as.matrix(dist(coords)) rho <- 0.05 sigma2 <- 0.3 alpha <- c(0.5) SIGMA <- sigma2*exp(-rho*Dist) Y <- rmnorm(1,rep(alpha,times=n), SIGMA) theta <- c() for(i in 1:n) { theta[i] <- Y[i]%%(2*pi) } rose_diag(theta) #validation set val <- sample(1:n,round(n*0.1)) set.seed(12345) mod <- WrapSp( x = theta[-val], coords = coords[-val,], start = list("alpha" = c(.36,0.38), "rho" = c(0.041,0.052), "sigma2" = c(0.24,0.32), "k" = rep(0,(n - length(val)))), priors = list("rho" = c(0.04,0.08), #few observations require to be more informative "sigma2" = c(2,1), "alpha" = c(0,10) ), sd_prop = list( "sigma2" = 0.1, "rho" = 0.1), iter = 1000, BurninThin = c(burnin = 500, thin = 5), accept_ratio = 0.234, adapt_param = c(start = 40000, end = 45000, exp = 0.5), corr_fun = "exponential", kappa_matern = .5, parallel = FALSE, #With doParallel, bigger iter (normally around 1e6) and n_cores>=2 it is a lot faster n_chains = 2 , n_cores = 1 ) check <- ConvCheck(mod) check$Rhat ## close to 1 means convergence has been reached ## graphical check par(mfrow = c(3,1)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) ##### We move to the spatial interpolation see WrapKrigSp
The WrapSpTi
function returns samples from the posterior distribution of the spatio-temporal Wrapped Gaussian Model
WrapSpTi(x = x, coords = coords, times, start = list(alpha = c(2, 1), rho_sp = c(0.1, 0.5), rho_t = c(0.1, 1), sep_par = c(0.01, 0.1), k = sample(0, length(x), replace = T)), priors = list(alpha = c(pi, 1, -10, 10), rho_sp = c(8, 14), rho_t = c(1, 2), sep_par = c(0.001, 1), sigma2 = c()), sd_prop = list(rho_sp = 0.5, rho_t = 0.5, sep_par = 0.5, sigma2 = 0.5), iter = 1000, BurninThin = c(burnin = 20, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1e+07, exp = 0.9), n_chains = 1, parallel = FALSE, n_cores = 1)
WrapSpTi(x = x, coords = coords, times, start = list(alpha = c(2, 1), rho_sp = c(0.1, 0.5), rho_t = c(0.1, 1), sep_par = c(0.01, 0.1), k = sample(0, length(x), replace = T)), priors = list(alpha = c(pi, 1, -10, 10), rho_sp = c(8, 14), rho_t = c(1, 2), sep_par = c(0.001, 1), sigma2 = c()), sd_prop = list(rho_sp = 0.5, rho_t = 0.5, sep_par = 0.5, sigma2 = 0.5), iter = 1000, BurninThin = c(burnin = 20, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1e+07, exp = 0.9), n_chains = 1, parallel = FALSE, n_cores = 1)
x |
a vector of n circular data in |
coords |
an nx2 matrix with the sites coordinates |
times |
an n vector with the times of the observations x |
start |
a list of 4 elements giving initial values for the model parameters. Each elements is a vector with
|
priors |
a list of 5 elements to define priors for the model parameters:
|
sd_prop |
list of 3 elements. To run the MCMC for the rho_sp and sigma2 parameters we use an adaptive metropolis and in sd_prop we build a list of initial guesses for these two parameters and the beta parameter |
iter |
iter number of iterations |
BurninThin |
a vector of 2 elements with the burnin and the chain thinning |
accept_ratio |
it is the desired acceptance ratio in the adaptive metropolis |
adapt_param |
a vector of 3 elements giving the iteration number at which the adaptation must start and end. The third element (exp) must be a number in (0,1) and it is a parameter ruling the speed of changes in the adaptation algorithm, it is recommended to set it close to 1, if it is too small non positive definite matrices may be generated and the program crashes. |
n_chains |
integer, the number of chains to be launched (default is 1, but we recommend to use at least 2 for model diagnostic) |
parallel |
logical, if the multiple chains must be lunched in parallel (you should install doParallel package). Default is FALSE |
n_cores |
integer, required if parallel=TRUE, the number of cores to be used in the implementation. Default value is 1. |
it returns a list of n_chains
lists each with elements
alpha
, rho_sp
, rho_t
, sep_par
, sigma2
vectors with the thinned chains
k
a matrix with nrow = length(x)
and ncol =
the length of thinned chains
distribution
characters, always "WrapSpTi"
To facilitate the estimations, the observations x are centered around pi, and the prior and starting value of alpha are changed accordingly. After the estimations, posterior samples of alpha are changed back to the original scale
G. Mastrantonio, G. Jona Lasinio, A. E. Gelfand, "Spatio-temporal circular models with non-separable covariance structure", TEST 25 (2016), 331–350.
T. Gneiting, "Nonseparable, Stationary Covariance Functions for Space-Time Data", JASA 97 (2002), 590-600
WrapKrigSpTi
for spatio-temporal prediction,
ProjSpTi
to sample from the posterior distribution of the spatio-temporal
Projected Normal model and ProjKrigSpTi
for spatio-temporal prediction under the same model
Other spatio-temporal models: ProjSpTi
library(CircSpaceTime) ## functions rmnorm <- function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } ###################################### ## Simulation ## ###################################### set.seed(1) n <- 20 ### simulate coordinates from a unifrom distribution coords <- cbind(runif(n,0,100), runif(n,0,100)) #spatial coordinates coordsT <- sort(runif(n,0,100)) #time coordinates (ordered) Dist <- as.matrix(dist(coords)) DistT <- as.matrix(dist(coordsT)) rho <- 0.05 #spatial decay rhoT <- 0.01 #temporal decay sep_par <- 0.5 #separability parameter sigma2 <- 0.3 # variance of the process alpha <- c(0.5) #Gneiting covariance SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist/(rhoT * DistT^2 + 1)^(sep_par/2)) Y <- rmnorm(1,rep(alpha, times = n), SIGMA) #generate the linear variable theta <- c() ## wrapping step for(i in 1:n) { theta[i] <- Y[i] %% (2*pi) } ### Add plots of the simulated data rose_diag(theta) ## use this values as references for the definition of initial values and priors rho_sp.min <- 3/max(Dist) rho_sp.max <- rho_sp.min+0.5 rho_t.min <- 3/max(DistT) rho_t.max <- rho_t.min+0.5 val <- sample(1:n,round(n*0.2)) #validation set set.seed(100) mod <- WrapSpTi( x = theta[-val], coords = coords[-val,], times = coordsT[-val], start = list("alpha" = c(.79, .74), "rho_sp" = c(.33,.52), "rho_t" = c(.19, .43), "sigma2" = c(.49, .37), "sep_par" = c(.47, .56), "k" = sample(0,length(theta[-val]), replace = TRUE)), priors = list("rho_sp" = c(0.01,3/4), ### uniform prior on this interval "rho_t" = c(0.01,3/4), ### uniform prior on this interval "sep_par" = c(1,1), ### beta prior "sigma2" = c(5,5),## inverse gamma prior with mode=5/6 "alpha" = c(0,20) ## wrapped gaussian with large variance ) , sd_prop = list( "sigma2" = 0.1, "rho_sp" = 0.1, "rho_t" = 0.1,"sep_par"= 0.1), iter = 7000, BurninThin = c(burnin = 3000, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1000, exp = 0.5), n_chains = 2 , parallel = FALSE, n_cores = 1 ) check <- ConvCheck(mod,startit = 1 ,thin = 1) check$Rhat ## convergence has been reached ## when plotting chains remember that alpha is a circular variable par(mfrow = c(3,2)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) #### move to the prediction step with WrapKrigSpTi
library(CircSpaceTime) ## functions rmnorm <- function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } ###################################### ## Simulation ## ###################################### set.seed(1) n <- 20 ### simulate coordinates from a unifrom distribution coords <- cbind(runif(n,0,100), runif(n,0,100)) #spatial coordinates coordsT <- sort(runif(n,0,100)) #time coordinates (ordered) Dist <- as.matrix(dist(coords)) DistT <- as.matrix(dist(coordsT)) rho <- 0.05 #spatial decay rhoT <- 0.01 #temporal decay sep_par <- 0.5 #separability parameter sigma2 <- 0.3 # variance of the process alpha <- c(0.5) #Gneiting covariance SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist/(rhoT * DistT^2 + 1)^(sep_par/2)) Y <- rmnorm(1,rep(alpha, times = n), SIGMA) #generate the linear variable theta <- c() ## wrapping step for(i in 1:n) { theta[i] <- Y[i] %% (2*pi) } ### Add plots of the simulated data rose_diag(theta) ## use this values as references for the definition of initial values and priors rho_sp.min <- 3/max(Dist) rho_sp.max <- rho_sp.min+0.5 rho_t.min <- 3/max(DistT) rho_t.max <- rho_t.min+0.5 val <- sample(1:n,round(n*0.2)) #validation set set.seed(100) mod <- WrapSpTi( x = theta[-val], coords = coords[-val,], times = coordsT[-val], start = list("alpha" = c(.79, .74), "rho_sp" = c(.33,.52), "rho_t" = c(.19, .43), "sigma2" = c(.49, .37), "sep_par" = c(.47, .56), "k" = sample(0,length(theta[-val]), replace = TRUE)), priors = list("rho_sp" = c(0.01,3/4), ### uniform prior on this interval "rho_t" = c(0.01,3/4), ### uniform prior on this interval "sep_par" = c(1,1), ### beta prior "sigma2" = c(5,5),## inverse gamma prior with mode=5/6 "alpha" = c(0,20) ## wrapped gaussian with large variance ) , sd_prop = list( "sigma2" = 0.1, "rho_sp" = 0.1, "rho_t" = 0.1,"sep_par"= 0.1), iter = 7000, BurninThin = c(burnin = 3000, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1000, exp = 0.5), n_chains = 2 , parallel = FALSE, n_cores = 1 ) check <- ConvCheck(mod,startit = 1 ,thin = 1) check$Rhat ## convergence has been reached ## when plotting chains remember that alpha is a circular variable par(mfrow = c(3,2)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) #### move to the prediction step with WrapKrigSpTi