Title: | Matching on Generalized Propensity Scores with Continuous Exposures |
---|---|
Description: | Provides a framework for estimating causal effects of a continuous exposure using observational data, and implementing matching and weighting on the generalized propensity score. Wu, X., Mealli, F., Kioumourtzoglou, M.A., Dominici, F. and Braun, D., 2022. Matching on generalized propensity scores with continuous exposures. Journal of the American Statistical Association, pp.1-29. |
Authors: | Naeem Khoshnevis [aut, cre] (<https://orcid.org/0000-0003-4315-1426>, Kempner), Xiao Wu [aut] (<https://orcid.org/0000-0002-4884-657X>, CUMC), Danielle Braun [aut] (<https://orcid.org/0000-0002-5177-8598>, HSPH) |
Maintainer: | Naeem Khoshnevis <[email protected]> |
License: | GPL-3 |
Version: | 0.5.0 |
Built: | 2024-12-17 06:45:37 UTC |
Source: | CRAN |
An R package for implementing matching and weighting on generalized propensity scores with continuous exposures.
We developed an innovative approach for estimating causal effects using observational data in settings with continuous exposures, and introduce a new framework for GPS caliper matching.
Naeem Khoshnevis
Xiao Wu
Danielle Braun
Wu, X., Mealli, F., Kioumourtzoglou, M.A., Dominici, F. and Braun, D., 2022. Matching on generalized propensity scores with continuous exposures. Journal of the American Statistical Association, pp.1-29.
Kennedy, E.H., Ma, Z., McHugh, M.D. and Small, D.S., 2017. Non-parametric methods for doubly robust estimation of continuous treatment effects. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 79(4), pp.1229-1245.
Checks covariate balance based on absolute correlations for given data sets.
absolute_corr_fun(w, c)
absolute_corr_fun(w, c)
w |
A vector of observed continuous exposure variable. |
c |
A data.frame of observed covariates variable. |
The function returns a list including:
absolute_corr
: the absolute correlations for each pre-exposure
covariates;
mean_absolute_corr
: the average absolute correlations for all
pre-exposure covariates.
set.seed(291) n <- 100 mydata <- generate_syn_data(sample_size=100) year <- sample(x=c("2001","2002","2003","2004","2005"),size = n, replace = TRUE) region <- sample(x=c("North", "South", "East", "West"),size = n, replace = TRUE) mydata$year <- as.factor(year) mydata$region <- as.factor(region) mydata$cf5 <- as.factor(mydata$cf5) cor_val <- absolute_corr_fun(mydata[,2], mydata[, 3:length(mydata)]) print(cor_val$mean_absolute_corr)
set.seed(291) n <- 100 mydata <- generate_syn_data(sample_size=100) year <- sample(x=c("2001","2002","2003","2004","2005"),size = n, replace = TRUE) region <- sample(x=c("North", "South", "East", "West"),size = n, replace = TRUE) mydata$year <- as.factor(year) mydata$region <- as.factor(region) mydata$cf5 <- as.factor(mydata$cf5) cor_val <- absolute_corr_fun(mydata[,2], mydata[, 3:length(mydata)]) print(cor_val$mean_absolute_corr)
Checks covariate balance based on absolute weighted correlations for given data sets.
absolute_weighted_corr_fun(w, vw, c)
absolute_weighted_corr_fun(w, vw, c)
w |
A vector of observed continuous exposure variable. |
vw |
A vector of weights. |
c |
A data.table of observed covariates variable. |
The function returns a list saved the measure related to covariate balance
absolute_corr
: the absolute correlations for each pre-exposure
covairates;
mean_absolute_corr
: the average absolute correlations for all
pre-exposure covairates.
set.seed(639) n <- 100 mydata <- generate_syn_data(sample_size=100) year <- sample(x=c("2001","2002","2003","2004","2005"),size = n, replace = TRUE) region <- sample(x=c("North", "South", "East", "West"),size = n, replace = TRUE) mydata$year <- as.factor(year) mydata$region <- as.factor(region) mydata$cf5 <- as.factor(mydata$cf5) cor_val <- absolute_weighted_corr_fun(mydata[,2], runif(n), mydata[, 3:length(mydata)]) print(cor_val$mean_absolute_corr)
set.seed(639) n <- 100 mydata <- generate_syn_data(sample_size=100) year <- sample(x=c("2001","2002","2003","2004","2005"),size = n, replace = TRUE) region <- sample(x=c("North", "South", "East", "West"),size = n, replace = TRUE) mydata$year <- as.factor(year) mydata$region <- as.factor(region) mydata$cf5 <- as.factor(mydata$cf5) cor_val <- absolute_weighted_corr_fun(mydata[,2], runif(n), mydata[, 3:length(mydata)]) print(cor_val$mean_absolute_corr)
Checks the covariate balance of original population or pseudo population.
check_covar_balance( w, c, ci_appr, counter_weight = NULL, covar_bl_method = "absolute", covar_bl_trs = 0.1, covar_bl_trs_type = "mean" )
check_covar_balance( w, c, ci_appr, counter_weight = NULL, covar_bl_method = "absolute", covar_bl_trs = 0.1, covar_bl_trs_type = "mean" )
w |
A vector of observed continuous exposure variable. |
c |
A data.frame of observed covariates variable. |
ci_appr |
The causal inference approach. |
counter_weight |
A weight vector in different situations. If the matching approach is selected, it is an integer data.table of counters. In the case of the weighting approach, it is weight data.table. |
covar_bl_method |
Covariate balance method. Available options: - 'absolute' |
covar_bl_trs |
Covariate balance threshold. |
covar_bl_trs_type |
Covariate balance type (mean, median, maximal). |
output object:
corr_results
absolute_corr
mean_absolute_corr
pass (TRUE,FALSE)
set.seed(422) n <- 100 mydata <- generate_syn_data(sample_size=n) year <- sample(x=c("2001","2002","2003","2004","2005"),size = n, replace = TRUE) region <- sample(x=c("North", "South", "East", "West"),size = n, replace = TRUE) mydata$year <- as.factor(year) mydata$region <- as.factor(region) mydata$cf5 <- as.factor(mydata$cf5) m_xgboost <- function(nthread = 1, ntrees = 35, shrinkage = 0.3, max_depth = 5, ...) {SuperLearner::SL.xgboost( nthread = nthread, ntrees = ntrees, shrinkage=shrinkage, max_depth=max_depth, ...)} data_with_gps <- estimate_gps(.data = mydata, .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6 + year + region, sl_lib = c("m_xgboost"), gps_density = "kernel") cw_object_matching <- compute_counter_weight(gps_obj = data_with_gps, ci_appr = "matching", bin_seq = NULL, nthread = 1, delta_n = 0.1, dist_measure = "l1", scale = 0.5) pseudo_pop <- generate_pseudo_pop(.data = mydata, cw_obj = cw_object_matching, covariate_col_names = c("cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "year", "region"), covar_bl_trs = 0.1, covar_bl_trs_type = "maximal", covar_bl_method = "absolute") adjusted_corr_obj <- check_covar_balance(w = pseudo_pop$.data[, c("w")], c = pseudo_pop$.data[ , pseudo_pop$params$covariate_col_names], counter = pseudo_pop$.data[, c("counter_weight")], ci_appr = "matching", covar_bl_method = "absolute", covar_bl_trs = 0.1, covar_bl_trs_type = "mean")
set.seed(422) n <- 100 mydata <- generate_syn_data(sample_size=n) year <- sample(x=c("2001","2002","2003","2004","2005"),size = n, replace = TRUE) region <- sample(x=c("North", "South", "East", "West"),size = n, replace = TRUE) mydata$year <- as.factor(year) mydata$region <- as.factor(region) mydata$cf5 <- as.factor(mydata$cf5) m_xgboost <- function(nthread = 1, ntrees = 35, shrinkage = 0.3, max_depth = 5, ...) {SuperLearner::SL.xgboost( nthread = nthread, ntrees = ntrees, shrinkage=shrinkage, max_depth=max_depth, ...)} data_with_gps <- estimate_gps(.data = mydata, .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6 + year + region, sl_lib = c("m_xgboost"), gps_density = "kernel") cw_object_matching <- compute_counter_weight(gps_obj = data_with_gps, ci_appr = "matching", bin_seq = NULL, nthread = 1, delta_n = 0.1, dist_measure = "l1", scale = 0.5) pseudo_pop <- generate_pseudo_pop(.data = mydata, cw_obj = cw_object_matching, covariate_col_names = c("cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "year", "region"), covar_bl_trs = 0.1, covar_bl_trs_type = "maximal", covar_bl_method = "absolute") adjusted_corr_obj <- check_covar_balance(w = pseudo_pop$.data[, c("w")], c = pseudo_pop$.data[ , pseudo_pop$params$covariate_col_names], counter = pseudo_pop$.data[, c("counter_weight")], ci_appr = "matching", covar_bl_method = "absolute", covar_bl_trs = 0.1, covar_bl_trs_type = "mean")
Compiles pseudo population based on the original population and estimated GPS value.
compile_pseudo_pop( data_obj, ci_appr, gps_density, exposure_col_name, nthread, ... )
compile_pseudo_pop( data_obj, ci_appr, gps_density, exposure_col_name, nthread, ... )
data_obj |
A S3 object including the following:
|
ci_appr |
Causal inference approach. |
gps_density |
Model type which is used for estimating GPS value,
including |
exposure_col_name |
Exposure data column name. |
nthread |
An integer value that represents the number of threads to be used by internal packages. |
... |
Additional parameters. |
For matching approach, use an extra parameter, bin_seq
, which is sequence
of w (treatment) to generate pseudo population. If NULL
is passed the
default value will be used, which is
seq(min(w)+delta_n/2,max(w), by=delta_n)
.
compile_pseudo_pop
returns the pseudo population data that is compiled based
on the selected causal inference approach.
set.seed(112) m_d <- generate_syn_data(sample_size = 100) m_xgboost <- function(nthread = 1, ntrees = 35, shrinkage = 0.3, max_depth = 5, ...) {SuperLearner::SL.xgboost( nthread = nthread, ntrees = ntrees, shrinkage=shrinkage, max_depth=max_depth, ...)} data_with_gps <- estimate_gps(.data = m_d, .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6, gps_density = "normal", sl_lib = c("m_xgboost") ) pd <- compile_pseudo_pop(data_obj = data_with_gps, ci_appr = "matching", gps_density = "normal", bin_seq = NULL, exposure_col_name = c("w"), nthread = 1, dist_measure = "l1", covar_bl_method = 'absolute', covar_bl_trs = 0.1, covar_bl_trs_type= "mean", delta_n = 0.5, scale = 1)
set.seed(112) m_d <- generate_syn_data(sample_size = 100) m_xgboost <- function(nthread = 1, ntrees = 35, shrinkage = 0.3, max_depth = 5, ...) {SuperLearner::SL.xgboost( nthread = nthread, ntrees = ntrees, shrinkage=shrinkage, max_depth=max_depth, ...)} data_with_gps <- estimate_gps(.data = m_d, .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6, gps_density = "normal", sl_lib = c("m_xgboost") ) pd <- compile_pseudo_pop(data_obj = data_with_gps, ci_appr = "matching", gps_density = "normal", bin_seq = NULL, exposure_col_name = c("w"), nthread = 1, dist_measure = "l1", covar_bl_method = 'absolute', covar_bl_trs = 0.1, covar_bl_trs_type= "mean", delta_n = 0.5, scale = 1)
Computes counter (for matching approach) or weight (for weighting) approach.
compute_counter_weight(gps_obj, ci_appr, nthread = 1, ...)
compute_counter_weight(gps_obj, ci_appr, nthread = 1, ...)
gps_obj |
A gps object that is generated with |
ci_appr |
The causal inference approach. Possible values are:
|
nthread |
An integer value that represents the number of threads to be used by internal packages. |
... |
Additional arguments passed to different models. |
if ci_appr = 'matching':
bin_seq: A sequence of w (treatment) to generate pseudo population.
If NULL
is passed the default value will be used, which is
seq(min(w)+delta_n/2,max(w), by=delta_n)
.
dist_measure: Matching function. Available options:
l1: Manhattan distance matching
delta_n: caliper parameter.
scale: a specified scale parameter to control the relative weight that is attributed to the distance measures of the exposure versus the GPS.
Returns a counter_weight (cgps_cw) object that includes .data
and params
attributes.
.data
: includes id
and counter_weight
columns. In case of matching
the counter_weight
column is integer values, which represent how many times
the provided observational data was mached during the matching process. In
case of weighting
the column is double values.
params
: Include related parameters that is used for the process.
m_d <- generate_syn_data(sample_size = 100) gps_obj <- estimate_gps(.data = m_d, .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6, gps_density = "normal", sl_lib = c("SL.xgboost")) cw_object <- compute_counter_weight(gps_obj = gps_obj, ci_appr = "matching", bin_seq = NULL, nthread = 1, delta_n = 0.1, dist_measure = "l1", scale = 0.5)
m_d <- generate_syn_data(sample_size = 100) gps_obj <- estimate_gps(.data = m_d, .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6, gps_density = "normal", sl_lib = c("SL.xgboost")) cw_object <- compute_counter_weight(gps_obj = gps_obj, ci_appr = "matching", bin_seq = NULL, nthread = 1, delta_n = 0.1, dist_measure = "l1", scale = 0.5)
Estimates the exposure-response function (ERF) for a matched and weighted dataset using parametric, semiparametric, and nonparametric models.
estimate_erf(.data, .formula, weights_col_name, model_type, w_vals, ...)
estimate_erf(.data, .formula, weights_col_name, model_type, w_vals, ...)
.data |
A data frame containing an observed continuous exposure variable, weights,
and an observed outcome variable. Includes an |
.formula |
A formula specifying the relationship between the exposure variable and the outcome variable. For example, Y ~ w. |
weights_col_name |
A string representing the weight or counter column
name in |
model_type |
A string representing the model type based on preliminary
assumptions, including |
w_vals |
A numeric vector of values at which you want to calculate the ERF. |
... |
Additional arguments passed to the model. |
Returns an S3 object containing the following data and parameters:
.data_original <- result_data_original
.data_prediction <- result_data_prediction
params
Estimates GPS value for each observation using normal or kernel approaches.
estimate_gps( .data, .formula, gps_density = "normal", sl_lib = c("SL.xgboost"), ... )
estimate_gps( .data, .formula, gps_density = "normal", sl_lib = c("SL.xgboost"), ... )
.data |
A data frame of observed continuous exposure variable and
observed covariates variable. Also includes |
.formula |
A formula specifying the relationship between the exposure variable and the covariates. For example, w ~ I(cf1^2) + cf2. |
gps_density |
Model type which is used for estimating GPS value,
including |
sl_lib |
A vector of prediction algorithms to be used by the SuperLearner packageg. |
... |
Additional arguments passed to the model. |
The function returns a S3 object. Including the following:
.data
: id
, exposure_var
, gps
, e_gps_pred
, e_gps_std_pred
,
w_resid
params
: Including the following fields:
gps_mx (min and max of gps)
w_mx (min and max of w).
.formula
gps_density
sl_lib
fcall (function call)
m_d <- generate_syn_data(sample_size = 100) data_with_gps <- estimate_gps(.data = m_d, .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6, gps_density = "normal", sl_lib = c("SL.xgboost") )
m_d <- generate_syn_data(sample_size = 100) data_with_gps <- estimate_gps(.data = m_d, .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6, gps_density = "normal", sl_lib = c("SL.xgboost") )
Generates pseudo population data set based on user-defined causal inference approach. The function uses an adaptive approach to satisfies covariate balance requirements. The function terminates either by satisfying covariate balance or completing the requested number of iteration, whichever comes first.
generate_pseudo_pop( .data, cw_obj, covariate_col_names, covar_bl_trs = 0.1, covar_bl_trs_type = "maximal", covar_bl_method = "absolute" )
generate_pseudo_pop( .data, cw_obj, covariate_col_names, covar_bl_trs = 0.1, covar_bl_trs_type = "maximal", covar_bl_method = "absolute" )
.data |
A data.frame of observation data with |
cw_obj |
An S3 object of counter_weight. |
covariate_col_names |
A list of covariate columns. |
covar_bl_trs |
Covariate balance threshold |
covar_bl_trs_type |
Type of the covariance balance threshold. |
covar_bl_method |
Covariate balance method. |
Returns a pseudo population (gpsm_pspop) object that is generated or augmented based on the selected causal inference approach (ci_appr). The object includes the following objects:
params
ci_appr
params
pseudo_pop
adjusted_corr_results
original_corr_results
best_gps_used_params
effect size of generated pseudo population
set.seed(967) m_d <- generate_syn_data(sample_size = 200) m_d$id <- seq_along(1:nrow(m_d)) m_xgboost <- function(nthread = 4, ntrees = 35, shrinkage = 0.3, max_depth = 5, ...) {SuperLearner::SL.xgboost( nthread = nthread, ntrees = ntrees, shrinkage=shrinkage, max_depth=max_depth, ...)} data_with_gps_1 <- estimate_gps( .data = m_d, .formula = w ~ I(cf1^2) + cf2 + I(cf3^2) + cf4 + cf5 + cf6, sl_lib = c("m_xgboost"), gps_density = "normal") cw_object_matching <- compute_counter_weight(gps_obj = data_with_gps_1, ci_appr = "matching", bin_seq = NULL, nthread = 1, delta_n = 0.1, dist_measure = "l1", scale = 0.5) pseudo_pop <- generate_pseudo_pop(.data = m_d, cw_obj = cw_object_matching, covariate_col_names = c("cf1", "cf2", "cf3", "cf4", "cf5", "cf6"), covar_bl_trs = 0.1, covar_bl_trs_type = "maximal", covar_bl_method = "absolute")
set.seed(967) m_d <- generate_syn_data(sample_size = 200) m_d$id <- seq_along(1:nrow(m_d)) m_xgboost <- function(nthread = 4, ntrees = 35, shrinkage = 0.3, max_depth = 5, ...) {SuperLearner::SL.xgboost( nthread = nthread, ntrees = ntrees, shrinkage=shrinkage, max_depth=max_depth, ...)} data_with_gps_1 <- estimate_gps( .data = m_d, .formula = w ~ I(cf1^2) + cf2 + I(cf3^2) + cf4 + cf5 + cf6, sl_lib = c("m_xgboost"), gps_density = "normal") cw_object_matching <- compute_counter_weight(gps_obj = data_with_gps_1, ci_appr = "matching", bin_seq = NULL, nthread = 1, delta_n = 0.1, dist_measure = "l1", scale = 0.5) pseudo_pop <- generate_pseudo_pop(.data = m_d, cw_obj = cw_object_matching, covariate_col_names = c("cf1", "cf2", "cf3", "cf4", "cf5", "cf6"), covar_bl_trs = 0.1, covar_bl_trs_type = "maximal", covar_bl_method = "absolute")
Generates synthetic data set based on different GPS models and covariates.
generate_syn_data( sample_size = 1000, outcome_sd = 10, gps_spec = 1, cova_spec = 1, vectorized_y = FALSE )
generate_syn_data( sample_size = 1000, outcome_sd = 10, gps_spec = 1, cova_spec = 1, vectorized_y = FALSE )
sample_size |
A positive integer number that represents a number of data samples. |
outcome_sd |
A positive double number that represents standard deviation used to generate the outcome in the synthetic data set. |
gps_spec |
A numerical integer values ranging from 1 to 7. The
complexity and form of the relationship between covariates and treatment
variables are determined by the
|
cova_spec |
A numerical value (1 or 2) to modify the covariates. It
determines how the covariates in the synthetic data set are transformed.
If |
vectorized_y |
A Boolean value indicates how Y internally is generated.
(Default = |
synthetic_data
: The function returns a data.frame saved the
constructed synthetic data.
set.seed(298) s_data <- generate_syn_data(sample_size = 100, outcome_sd = 10, gps_spec = 1, cova_spec = 1)
set.seed(298) s_data <- generate_syn_data(sample_size = 100, outcome_sd = 10, gps_spec = 1, cova_spec = 1)
Returns current logger settings.
get_logger()
get_logger()
Returns a list that includes logger_file_path and logger_level.
set_logger("mylogger.log", "INFO") log_meta <- get_logger()
set_logger("mylogger.log", "INFO") log_meta <- get_logger()
A wrapper function to extend generic plot functions for cgps_cw class.
## S3 method for class 'cgps_cw' plot(x, ...)
## S3 method for class 'cgps_cw' plot(x, ...)
x |
A cgps_cw object. |
... |
Additional arguments passed to customize the plot. |
Additional parameters:
every_n: Puts label to ID at every n interval (default = 10)
subset_id: A vector of range of ids to be included in the plot (default = NULL)
Returns a ggplot2 object, invisibly. This function is called for side effects.
A wrapper function to extend generic plot functions for cgps_cw class.
## S3 method for class 'cgps_erf' plot(x, ...)
## S3 method for class 'cgps_erf' plot(x, ...)
x |
A cgps_erf object. |
... |
Additional arguments passed to customize the plot. |
TBD
Returns a ggplot2 object, invisibly. This function is called for side effects.
A wrapper function to extend generic plot functions for cgps_gps class.
## S3 method for class 'cgps_gps' plot(x, ...)
## S3 method for class 'cgps_gps' plot(x, ...)
x |
A cgps_gps object. |
... |
Additional arguments passed to customize the plot. |
Returns a ggplot2 object, invisibly. This function is called for side effects.
A wrapper function to extend generic plot functions for cgps_pspop class.
## S3 method for class 'cgps_pspop' plot(x, ...)
## S3 method for class 'cgps_pspop' plot(x, ...)
x |
A cgps_pspop object. |
... |
Additional arguments passed to customize the plot. |
include_details: If set to TRUE, the plot will include run details (Default = FALSE).
Returns a ggplot2 object, invisibly. This function is called for side effects.
Extend print function for cgps_cw object
## S3 method for class 'cgps_cw' print(x, ...)
## S3 method for class 'cgps_cw' print(x, ...)
x |
A cgps_cw object. |
... |
Additional arguments passed to customize the results. |
No return value. This function is called for side effects.
Extend print function for cgps_erf object
## S3 method for class 'cgps_erf' print(x, ...)
## S3 method for class 'cgps_erf' print(x, ...)
x |
A cgps_erf object. |
... |
Additional arguments passed to customize the results. |
No return value. This function is called for side effects.
Extend print function for cgps_gps object
## S3 method for class 'cgps_gps' print(x, ...)
## S3 method for class 'cgps_gps' print(x, ...)
x |
A cgps_gps object. |
... |
Additional arguments passed to customize the results. |
No return value. This function is called for side effects.
Extend print function for cgps_pspop object
## S3 method for class 'cgps_pspop' print(x, ...)
## S3 method for class 'cgps_pspop' print(x, ...)
x |
A cgps_pspop object. |
... |
Additional arguments passed to customize the results. |
No return value. This function is called for side effects.
Updates logger settings, including log level and location of the file.
set_logger(logger_file_path = "CausalGPS.log", logger_level = "INFO")
set_logger(logger_file_path = "CausalGPS.log", logger_level = "INFO")
logger_file_path |
A path (including file name) to log the messages. (Default: CausalGPS.log) |
logger_level |
The log level. Available levels include:
|
No return value. This function is called for side effects.
set_logger("Debug")
set_logger("Debug")
print summary of cgps_cw object
## S3 method for class 'cgps_cw' summary(object, ...)
## S3 method for class 'cgps_cw' summary(object, ...)
object |
A cgps_cw object. |
... |
Additional arguments passed to customize the results. |
Returns summary of data
print summary of cgps_erf object
## S3 method for class 'cgps_erf' summary(object, ...)
## S3 method for class 'cgps_erf' summary(object, ...)
object |
A cgps_erf object. |
... |
Additional arguments passed to customize the results. |
Returns summary of data
print summary of cgps_gps object
## S3 method for class 'cgps_gps' summary(object, ...)
## S3 method for class 'cgps_gps' summary(object, ...)
object |
A cgps_gps object. |
... |
Additional arguments passed to customize the results. |
Returns summary of data
print summary of cgps_pspop object
## S3 method for class 'cgps_pspop' summary(object, ...)
## S3 method for class 'cgps_pspop' summary(object, ...)
object |
A cgps_pspop object. |
... |
Additional arguments passed to customize the results. |
Returns summary of data
A dataset containing exposure, confounders, and outcome for causal inference studies. The dataset is hosted on Harvard dataverse doi:10.7910/DVN/L7YF2G. This dataset was produced from five different resources. Please see https://github.com/NSAPH-Projects/synthetic_data/ for the data processing pipelines. In the following
Exposure Data
The exposure parameter is PM2.5. Di et al. (2019) provided daily, and annual PM2.5 estimates at 1 km×1 km grid cells in the entire United States. The data can be downloaded from Di et al. (2021). Features in this category starts with qd_ prefix.
Census Data
The main reference for getting the census data is the United States Census
Bureau. There are numerous studies and surveys for different geographical
resolutions. We use 2010 county level American County Survey at the county
level (acs5
). Features in this category starts with cs_ prefix.
CDC Data
The Centers for Disease Control and Prevention (CDC), provides the Behavioral Risk Factor Surveillance System (Centers for Disease Control and Prevention (2021)), which is the nation’s premier system of health-related telephone surveys that collect state data about U.S. residents regarding their health-related risk behaviors.
GridMET Data
Climatology Lab at the University of California, Merced, provides the GridMET data (Abatzoglou (2013)). The data set is daily surface meteorological data covering the contiguous United States.
CMS Data
The Centers for Medicare and Medicaid Services(CMS) provides synthetic data at the county level for 2008-2010 (Centers for Medicare & Medicaid Services (2021)).
The definition of each variables are provided below. All data are collected for 2010 and aggregated into the county level and in the contiguous United States.
data(synthetic_us_2010)
data(synthetic_us_2010)
A data frame with 3109 rows and 46 variables:
Mean PM2.5 (microgram/m3)
The proportion of below poverty level population among 65+ years old.
The proportion of Hispanic or Latino population among 65+ years old.
The proportion of Black or African American population among 65+ years old.
The proportion of White population among 65 years and over.
The proportion of American Indian or Alaska native population among 65 years and over.
The proportion of Asian population among 65 years and over.
The proportion of other races population among 65 years and over.
The proportion of the population with below high school level education among 65 years and over.
Median Household income in the past 12 months (in 2010 inflation-adjusted dollars) where householder is 65 years and over.
Median house value (USD)
Total Population
Area of each county (square miles)
The number of the population in one square mile.
Body Mass Index.
The proportion of current smokers.
The proportion of some days smokers.
The proportion of former smokers.
The proportion of never smokers.
The proportion of not known smokers.
Annual mean of daily minimum temperature (K)
The mean of daily minimum temperature during summer (K)
The mean of daily minimum temperature during winter (K)
Annual mean of daily maximum temperature (K)
The mean of daily maximum temperature during summer (K)
The mean of daily maximum temperature during winter (K)
Annual mean of daily minimum relative humidity (%)
The mean of daily minimum relative humidity during summer (%)
The mean of daily minimum relative humidity during winter (%)
Annual mean of daily maximum relative humidity (%)
The mean of daily maximum relative humidity during summer (%)
The mean of daily maximum relative humidity during winter (%)
Annual mean of daily mean specific humidity (kg/kg)
The mean of daily mean specific humidity during summer(kg/kg)
The mean of daily mean specific humidity during winter(kg/kg)
The proportion of deceased patients.
The proportion of White patients.
The proportion of Black patients.
The proportion of Hispanic patients.
The proportion of Other patients.
The proportion of Female patients.
The region that the county is located in.
NORTHEAST=("NY","MA","PA","RI","NH","ME","VT","CT","NJ") SOUTH=("DC","VA","NC","WV","KY","SC","GA","FL","AL","TN","MS","AR","MD","DE","OK","TX","LA") MIDWEST=c("OH","IN","MI","IA","MO","WI","MN","SD","ND","IL","KS","NE") WEST=c("MT","CO","WY","ID","UT","NV","CA","OR","WA","AZ","NM")
Federal Information Processing Standards, a unique ID for each county.
County, State name.
State abbreviation.
State numerical code.
Abatzoglou, John T. 2013. “Development of Gridded Surface Meteorological Data for Ecological Applications and Modelling.” International Journal of Climatology 33 (1): 121–31. doi:10.1002/joc.3413.
Centers for Disease Control and Prevention. 2021. “Behavioral Risk Factor Surveillance System.” https://www.cdc.gov/brfss/annual_data/annual_2010.htm/.
Centers for Medicare & Medicaid Services. 2021. “CMS 2008-2010 Data Entrepreneurs’ Synthetic Public Use File (DE-SynPUF).” https://www.cms.gov/data-research/statistics-trends-and-reports/medicare-claims-synthetic-public-use-files/cms-2008-2010-data-entrepreneurs-synthetic-public-use-file-de-synpuf.
Di, Qian, Heresh Amini, Liuhua Shi, Itai Kloog, Rachel Silvern, James Kelly, M Benjamin Sabath, et al. 2019. “An Ensemble-Based Model of Pm2. 5 Concentration Across the Contiguous United States with High Spatiotemporal Resolution.” Environment International 130: 104909. doi:10.1016/j.envint.2019.104909.
Di, Qian, Yaguang Wei, Alexandra Shtein, Carolynne Hultquist, Xiaoshi Xing, Heresh Amini, Liuhua Shi, et al. 2021. “Daily and Annual Pm2.5 Concentrations for the Contiguous United States, 1-Km Grids, V1 (2000 - 2016).” NASA Socioeconomic Data; Applications Center (SEDAC). doi:10.7927/0rvr-4538.
Trims a data frame or an S3 object's .data
attributs.
trim_it(data_obj, trim_quantiles, variable)
trim_it(data_obj, trim_quantiles, variable)
data_obj |
A data frame or an S3 object containing the data to be
trimmed. For a data frame, the function operates directly on it. For an S3
object, the function expects a |
trim_quantiles |
A numeric vector of length 2 specifying the lower and upper quantiles used for trimming the data. |
variable |
The name of the variable in the data on which the trimming is to be applied. |
Returns a trimmed data frame or an S3 object with the $.data attribute trimmed, depending on the input type.
# Example usage with a data frame df <- data.frame(id = 1:10, value = rnorm(100)) trimmed_df <- trim_it(df, c(0.1, 0.9), "value") # Example usage with an S3 object data_obj <- list() class(data_obj) <- "myobject" data_obj$.data <- df trimmed_data_obj <- trim_it(data_obj, c(0.1, 0.9), "value")
# Example usage with a data frame df <- data.frame(id = 1:10, value = rnorm(100)) trimmed_df <- trim_it(df, c(0.1, 0.9), "value") # Example usage with an S3 object data_obj <- list() class(data_obj) <- "myobject" data_obj$.data <- df trimmed_data_obj <- trim_it(data_obj, c(0.1, 0.9), "value")