Package 'CPGLIB'

Title: Competing Proximal Gradients Library
Description: Functions to generate ensembles of generalized linear models using competing proximal gradients. The optimal sparsity and diversity tuning parameters are selected via an alternating grid search.
Authors: Anthony Christidis [aut, cre], Stefan Van Aelst [aut], Ruben Zamar [aut]
Maintainer: Anthony Christidis <[email protected]>
License: GPL (>= 2)
Version: 1.1.1
Built: 2024-12-12 07:07:16 UTC
Source: CRAN

Help Index


Coefficients for CPGLIB Object

Description

coef.CPGLIB returns the coefficients for a CPGLIB object.

Usage

## S3 method for class 'CPGLIB'
coef(object, groups = NULL, ensemble_average = FALSE, ...)

Arguments

object

An object of class CPGLIB.

groups

The groups in the ensemble for the coefficients. Default is all of the groups in the ensemble.

ensemble_average

Option to return the average of the coefficients over all the groups in the ensemble. Default is FALSE.

...

Additional arguments for compatibility.

Value

The coefficients for the CPGLIB object.

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

cpg

Examples

# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 300
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 150
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1

# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)

# CPGLIB - Multiple Groups
cpg.out <- cpg(x.train, y.train,
               glm_type="Logistic",
               G=5, include_intercept=TRUE,
               alpha_s=3/4, alpha_d=1,
               lambda_sparsity=0.01, lambda_diversity=1,
               tolerance=1e-5, max_iter=1e5)
               
# Coefficients for each group                
cpg.coef <- coef(cpg.out, ensemble_average = FALSE)

Coefficients for cv.CPGLIB Object

Description

coef.cv.CPGLIB returns the coefficients for a cv.CPGLIB object.

Usage

## S3 method for class 'cv.CPGLIB'
coef(object, groups = NULL, ensemble_average = FALSE, ...)

Arguments

object

An object of class cv.CPGLIB.

groups

The groups in the ensemble for the coefficients. Default is all of the groups in the ensemble.

ensemble_average

Option to return the average of the coefficients over all the groups in the ensemble. Default is FALSE.

...

Additional arguments for compatibility.

Value

The coefficients for the cv.CPGLIB object. Default is FALSE.

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

cv.cpg

Examples

# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 300
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 150
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1

# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)
mean(y.test)

# CV CPGLIB - Multiple Groups
cpg.out <- cv.cpg(x.train, y.train,
                  glm_type = "Logistic",
                  G = 5, include_intercept = TRUE,
                  alpha_s = 3/4, alpha_d = 1,
                  n_lambda_sparsity = 100, n_lambda_diversity = 100,
                  tolerance = 1e-5, max_iter = 1e5)
cpg.coef <- coef(cpg.out)

# Coefficients for each group                
cpg.coef <- coef(cpg.out, ensemble_average = FALSE)

Coefficients for cv.ProxGrad Object

Description

coef.cv.ProxGrad returns the coefficients for a cv.ProxGrad object.

Usage

## S3 method for class 'cv.ProxGrad'
coef(object, ...)

Arguments

object

An object of class cv.ProxGrad.

...

Additional arguments for compatibility.

Value

The coefficients for the cv.ProxGrad object.

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

cv.ProxGrad

Examples

# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1

# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)

# CV ProxGrad - Single Group
proxgrad.out <- cv.ProxGrad(x.train, y.train,
                            glm_type = "Logistic",
                            include_intercept = TRUE,
                            alpha_s = 3/4,
                            n_lambda_sparsity = 100, 
                            tolerance = 1e-5, max_iter = 1e5)

# Coefficients
coef(proxgrad.out)

Coefficients for ProxGrad Object

Description

coef.ProxGrad returns the coefficients for a ProxGrad object.

Usage

## S3 method for class 'ProxGrad'
coef(object, ...)

Arguments

object

An object of class ProxGrad.

...

Additional arguments for compatibility.

Value

The coefficients for the ProxGrad object.

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

ProxGrad

Examples

# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1

# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)

# ProxGrad - Single Group
proxgrad.out <- ProxGrad(x.train, y.train,
                         glm_type = "Logistic",
                         include_intercept = TRUE,
                         alpha_s = 3/4,
                         lambda_sparsity = 0.01, 
                         tolerance = 1e-5, max_iter = 1e5)

# Coefficients
coef(proxgrad.out)

Competing Proximal Gradients Library for Ensembles of Generalized Linear Models

Description

cpg computes the coefficients for ensembles of generalized linear models via competing proximal gradients.

Usage

cpg(
  x,
  y,
  glm_type = c("Linear", "Logistic")[1],
  G = 5,
  include_intercept = TRUE,
  alpha_s = 3/4,
  alpha_d = 1,
  lambda_sparsity,
  lambda_diversity,
  tolerance = 1e-08,
  max_iter = 1e+05
)

Arguments

x

Design matrix.

y

Response vector.

glm_type

Description of the error distribution and link function to be used for the model. Must be one of "Linear" or "Logistic". Default is "Linear".

G

Number of groups in the ensemble.

include_intercept

Argument to determine whether there is an intercept. Default is TRUE.

alpha_s

Sparsity mixing parmeter. Default is 3/4.

alpha_d

Diversity mixing parameter. Default is 1.

lambda_sparsity

Sparsity tuning parameter value.

lambda_diversity

Diversity tuning parameter value.

tolerance

Convergence criteria for the coefficients. Default is 1e-8.

max_iter

Maximum number of iterations in the algorithm. Default is 1e5.

Value

An object of class cpg

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

coef.CPGLIB, predict.CPGLIB

Examples

# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 300
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 150
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1

# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma  =  Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma  =  Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)

# CPGLIB - Multiple Groups
cpg.out <- cpg(x.train, y.train,
               glm_type = "Logistic",
               G = 5, include_intercept = TRUE,
               alpha_s = 3/4, alpha_d = 1,
               lambda_sparsity = 0.01, lambda_diversity = 1,
               tolerance = 1e-5, max_iter = 1e5)

# Predictions
cpg.prob <- predict(cpg.out, newx = x.test, type = "prob", 
                    groups = 1:cpg.out$G, ensemble_type = "Model-Avg")
cpg.class <- predict(cpg.out, newx = x.test, type = "prob", 
                     groups = 1:cpg.out$G, ensemble_type = "Model-Avg")
plot(prob.test, cpg.prob, pch = 20)
abline(h = 0.5,v = 0.5)
mean((prob.test-cpg.prob)^2)
mean(abs(y.test-cpg.class))

Competing Proximal Gradients Library for Ensembles of Generalized Linear Models - Cross-Validation

Description

cv.cpg computes and cross-validates the coefficients for ensembles of generalized linear models via competing proximal gradients.

Usage

cv.cpg(
  x,
  y,
  glm_type = c("Linear", "Logistic")[1],
  G = 5,
  full_diversity = FALSE,
  include_intercept = TRUE,
  alpha_s = 3/4,
  alpha_d = 1,
  n_lambda_sparsity = 100,
  n_lambda_diversity = 100,
  tolerance = 1e-08,
  max_iter = 1e+05,
  n_folds = 10,
  n_threads = 1
)

Arguments

x

Design matrix.

y

Response vector.

glm_type

Description of the error distribution and link function to be used for the model. Must be one of "Linear" or "Logistic". Default is "Linear".

G

Number of groups in the ensemble.

full_diversity

Argument to determine if the overlap between the models should be zero. Default is FALSE.

include_intercept

Argument to determine whether there is an intercept. Default is TRUE.

alpha_s

Sparsity mixing parmeter. Default is 3/4.

alpha_d

Diversity mixing parameter. Default is 1.

n_lambda_sparsity

Number of candidates for sparsity tuning parameter. Default is 100.

n_lambda_diversity

Number of candidates for diveristy tuning parameter. Default is 100.

tolerance

Convergence criteria for the coefficients. Default is 1e-8.

max_iter

Maximum number of iterations in the algorithm. Default is 1e5.

n_folds

Number of cross-validation folds. Default is 10.

n_threads

Number of threads. Default is a single thread.

Value

An object of class cv.cpg

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

coef.cv.CPGLIB, predict.cv.CPGLIB

Examples

# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 300
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 150
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1

# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)

# CV CPGLIB - Multiple Groups
cpg.out <- cv.cpg(x.train, y.train,
                  glm_type = "Logistic",
                  G = 5, include_intercept = TRUE,
                  alpha_s = 3/4, alpha_d = 1,
                  n_lambda_sparsity = 100, n_lambda_diversity = 100,
                  tolerance = 1e-5, max_iter = 1e5)

# Predictions
cpg.prob <- predict(cpg.out, newx = x.test, type = "prob", 
                    groups = 1:cpg.out$G, ensemble_type = "Model-Avg")
cpg.class <- predict(cpg.out, newx = x.test, type = "class", 
                     groups = 1:cpg.out$G, ensemble_type = "Model-Avg")
plot(prob.test, cpg.prob, pch = 20)
abline(h = 0.5,v = 0.5)
mean((prob.test-cpg.prob)^2)
mean(abs(y.test-cpg.class))

Generalized Linear Models via Proximal Gradients - Cross-validation

Description

cv.ProxGrad computes and cross-validates the coefficients for generalized linear models using proximal gradients.

Usage

cv.ProxGrad(
  x,
  y,
  glm_type = c("Linear", "Logistic")[1],
  include_intercept = TRUE,
  alpha_s = 3/4,
  n_lambda_sparsity = 100,
  tolerance = 1e-08,
  max_iter = 1e+05,
  n_folds = 10,
  n_threads = 1
)

Arguments

x

Design matrix.

y

Response vector.

glm_type

Description of the error distribution and link function to be used for the model. Must be one of "Linear" or "Logistic". Default is "Linear".

include_intercept

Argument to determine whether there is an intercept. Default is TRUE.

alpha_s

Elastic net mixing parmeter. Default is 3/4.

n_lambda_sparsity

Sparsity tuning parameter value. Default is 100.

tolerance

Convergence criteria for the coefficients. Default is 1e-8.

max_iter

Maximum number of iterations in the algorithm. Default is 1e5.

n_folds

Number of cross-validation folds. Default is 10.

n_threads

Number of threads. Default is a single thread.

Value

An object of class cv.ProxGrad

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

coef.cv.ProxGrad, predict.cv.ProxGrad

Examples

# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1

# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)

# ProxGrad - Single Groups
proxgrad.out <- cv.ProxGrad(x.train, y.train,
                            glm_type = "Logistic",
                            include_intercept = TRUE,
                            alpha_s = 3/4, 
                            n_lambda_sparsity = 100, 
                            tolerance = 1e-5, max_iter = 1e5)

# Predictions
proxgrad.prob <- predict(proxgrad.out, newx = x.test, type = "prob")
proxgrad.class <- predict(proxgrad.out, newx = x.test, type = "class")
plot(prob.test, proxgrad.prob, pch = 20)
abline(h = 0.5,v = 0.5)
mean((prob.test-proxgrad.prob)^2)
mean(abs(y.test-proxgrad.class))

Predictions for CPGLIB Object

Description

predict.CPGLIB returns the predictions for a CPGLIB object.

Usage

## S3 method for class 'CPGLIB'
predict(
  object,
  newx,
  groups = NULL,
  ensemble_type = c("Model-Avg", "Coef-Avg", "Weighted-Prob", "Majority-Vote")[1],
  class_type = c("prob", "class")[1],
  ...
)

Arguments

object

An object of class CPGLIB.

newx

New data for predictions.

groups

The groups in the ensemble for the predictions. Default is all of the groups in the ensemble.

ensemble_type

The type of ensembling function for the models. Options are "Model-Avg", "Coef-Avg" or "Weighted-Prob" for classifications predictions. Default is "Model-Avg".

class_type

The type of predictions for classification. Options are "prob" and "class". Default is "prob".

...

Additional arguments for compatibility.

Value

The predictions for the CPGLIB object.

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

cpg

Examples

# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 300
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 150
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1

# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)

# CPGLIB - Multiple Groups
cpg.out <- cpg(x.train, y.train,
               glm_type = "Logistic",
               G = 5, include_intercept = TRUE,
               alpha_s = 3/4, alpha_d = 1,
               lambda_sparsity = 0.01, lambda_diversity = 1,
               tolerance = 1e-5, max_iter = 1e5)

# Predictions
cpg.prob <- predict(cpg.out, newx = x.test, type = "prob", 
                    groups = 1:cpg.out$G, ensemble_type = "Model-Avg")
cpg.class <- predict(cpg.out, newx = x.test, type = "prob", 
                     groups = 1:cpg.out$G, ensemble_type = "Model-Avg")
plot(prob.test, cpg.prob, pch=20)
abline(h=0.5,v=0.5)
mean((prob.test-cpg.prob)^2)
mean(abs(y.test-cpg.class))

Predictions for cv.ProxGrad Object

Description

predict.cv.CPGLIB returns the predictions for a ProxGrad object.

Usage

## S3 method for class 'cv.CPGLIB'
predict(
  object,
  newx,
  groups = NULL,
  ensemble_type = c("Model-Avg", "Coef-Avg", "Weighted-Prob", "Majority-Vote")[1],
  class_type = c("prob", "class")[1],
  ...
)

Arguments

object

An object of class cv.CPGLIB.

newx

New data for predictions.

groups

The groups in the ensemble for the predictions. Default is all of the groups in the ensemble.

ensemble_type

The type of ensembling function for the models. Options are "Model-Avg", "Coef-Avg" or "Weighted-Prob" for classifications predictions. Default is "Model-Avg".

class_type

The type of predictions for classification. Options are "prob" and "class". Default is "prob".

...

Additional arguments for compatibility.

Value

The predictions for the cv.CPGLIB object.

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

cv.cpg

Examples

# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 300
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 150
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1

# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)
mean(y.test)

# CV CPGLIB - Multiple Groups
cpg.out <- cv.cpg(x.train, y.train,
                  glm_type = "Logistic",
                  G = 5, include_intercept = TRUE,
                  alpha_s = 3/4, alpha_d = 1,
                  n_lambda_sparsity = 100, n_lambda_diversity = 100,
                  tolerance = 1e-5, max_iter = 1e5)

# Predictions
cpg.prob <- predict(cpg.out, newx = x.test, type = "prob", 
                    groups = 1:cpg.out$G, ensemble_type = "Model-Avg")
cpg.class <- predict(cpg.out, newx = x.test, type = "class", 
                     groups = 1:cpg.out$G, ensemble_type = "Model-Avg")
plot(prob.test, cpg.prob, pch = 20)
abline(h = 0.5,v = 0.5)
mean((prob.test-cpg.prob)^2)
mean(abs(y.test-cpg.class))

Predictions for cv.ProxGrad Object

Description

predict.cv.ProxGrad returns the predictions for a ProxGrad object.

Usage

## S3 method for class 'cv.ProxGrad'
predict(object, newx, type = c("prob", "class")[1], ...)

Arguments

object

An object of class cv.ProxGrad.

newx

New data for predictions.

type

The type of predictions for binary response. Options are "prob" (default) and "class".

...

Additional arguments for compatibility.

Value

The predictions for the cv.ProxGrad object.

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

cv.ProxGrad

Examples

# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1

# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)

# CV ProxGrad - Single Group
proxgrad.out <- cv.ProxGrad(x.train, y.train,
                            glm_type = "Logistic",
                            include_intercept = TRUE,
                            alpha_s = 3/4,
                            n_lambda_sparsity = 100, 
                            tolerance = 1e-5, max_iter = 1e5)

# Predictions
proxgrad.prob <- predict(proxgrad.out, newx = x.test, type = "prob")
proxgrad.class <- predict(proxgrad.out, newx = x.test, type = "class")
plot(prob.test, proxgrad.prob, pch = 20)
abline(h = 0.5,v = 0.5)
mean((prob.test-proxgrad.prob)^2)
mean(abs(y.test-proxgrad.class))

Predictions for ProxGrad Object

Description

predict.ProxGrad returns the predictions for a ProxGrad object.

Usage

## S3 method for class 'ProxGrad'
predict(object, newx, type = c("prob", "class")[1], ...)

Arguments

object

An object of class ProxGrad

newx

New data for predictions.

type

The type of predictions for binary response. Options are "prob" (default) and "class".

...

Additional arguments for compatibility.

Value

The predictions for the ProxGrad object.

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

ProxGrad

Examples

# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1

# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)

# ProxGrad - Single Group
proxgrad.out <- ProxGrad(x.train, y.train,
                         glm_type = "Logistic",
                         include_intercept = TRUE,
                         alpha_s = 3/4,
                         lambda_sparsity = 0.01, 
                         tolerance = 1e-5, max_iter = 1e5)

# Predictions
proxgrad.prob <- predict(proxgrad.out, newx = x.test, type = "prob")
proxgrad.class <- predict(proxgrad.out, newx = x.test, type = "class")
plot(prob.test, proxgrad.prob, pch = 20)
abline(h = 0.5,v = 0.5)
mean((prob.test-proxgrad.prob)^2)
mean(abs(y.test-proxgrad.class))

Generalized Linear Models via Proximal Gradients

Description

ProxGrad computes the coefficients for generalized linear models using proximal gradients.

Usage

ProxGrad(
  x,
  y,
  glm_type = c("Linear", "Logistic")[1],
  include_intercept = TRUE,
  alpha_s = 3/4,
  lambda_sparsity,
  tolerance = 1e-08,
  max_iter = 1e+05
)

Arguments

x

Design matrix.

y

Response vector.

glm_type

Description of the error distribution and link function to be used for the model. Must be one of "Linear" or "Logistic" . Default is "Linear".

include_intercept

Argument to determine whether there is an intercept. Default is TRUE.

alpha_s

Elastic net mixing parmeter. Default is 3/4.

lambda_sparsity

Sparsity tuning parameter value.

tolerance

Convergence criteria for the coefficients. Default is 1e-8.

max_iter

Maximum number of iterations in the algorithm. Default is 1e5.

Value

An object of class ProxGrad.

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

coef.ProxGrad, predict.ProxGrad

Examples

# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1

# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)

# ProxGrad - Single Group
proxgrad.out <- ProxGrad(x.train, y.train,
                         glm_type = "Logistic",
                         include_intercept = TRUE,
                         alpha_s = 3/4,
                         lambda_sparsity = 0.01, 
                         tolerance = 1e-5, max_iter = 1e5)

# Predictions
proxgrad.prob <- predict(proxgrad.out, newx = x.test, type = "prob")
proxgrad.class <- predict(proxgrad.out, newx = x.test, type = "class")
plot(prob.test, proxgrad.prob, pch = 20)
abline(h = 0.5,v = 0.5)
mean((prob.test-proxgrad.prob)^2)
mean(abs(y.test-proxgrad.class))