Package 'COAP'

Title: High-Dimensional Covariate-Augmented Overdispersed Poisson Factor Model
Description: A covariate-augmented overdispersed Poisson factor model is proposed to jointly perform a high-dimensional Poisson factor analysis and estimate a large coefficient matrix for overdispersed count data. More details can be referred to Liu et al. (2024) <doi:10.1093/biomtc/ujae031>.
Authors: Wei Liu [aut, cre], Qingzhi Zhong [aut]
Maintainer: Wei Liu <[email protected]>
License: GPL-3
Version: 1.2
Built: 2024-12-29 08:14:11 UTC
Source: CRAN

Help Index


Generate simulated data

Description

Generate simulated data from covariate-augmented Poisson factor models

Usage

gendata_simu(
  seed = 1,
  n = 300,
  p = 50,
  d = 20,
  q = 6,
  rank0 = 3,
  rho = c(1.5, 1),
  sigma2_eps = 0.1,
  seed.beta = 1
)

Arguments

seed

a postive integer, the random seed for reproducibility of data generation process.

n

a postive integer, specify the sample size.

p

a postive integer, specify the dimension of count variables.

d

a postive integer, specify the dimension of covariate matrix.

q

a postive integer, specify the number of factors.

rank0

a postive integer, specify the rank of the coefficient matrix.

rho

a numeric vector with length 2 and positive elements, specify the signal strength of regression coefficient and loading matrix, respectively.

sigma2_eps

a positive real, the variance of overdispersion error.

seed.beta

a postive integer, the random seed for reproducibility of data generation process by fixing the regression coefficient matrix beta.

Details

None

Value

return a list including the following components: (1) X, the high-dimensional count matrix; (2) Z, the high-dimensional covriate matrix; (3) bbeta0, the low-rank large coefficient matrix; (4) B0, the loading matrix; (5) H0, the factor matrix; (6) rank: the true rank of bbeta0; (7) q: the true number of factors.

References

None

See Also

RR_COAP

Examples

n <- 300; p <- 100
d <- 20; q <- 6; r <- 3
datlist <- gendata_simu(n=n, p=p, d=20, q=q, rank0=r)
str(datlist)

Fit the COAP model

Description

Fit the covariate-augmented overdispersed Poisson factor model

Usage

RR_COAP(
  X_count,
  multiFac = rep(1, nrow(X_count)),
  Z = matrix(1, nrow(X_count), 1),
  rank_use = 5,
  q = 15,
  epsELBO = 1e-05,
  maxIter = 30,
  verbose = TRUE,
  joint_opt_beta = FALSE,
  fast_svd = TRUE
)

Arguments

X_count

a count matrix, the observed count matrix.

multiFac

an optional vector, the normalization factor for each unit; default as full-one vector.

Z

an optional matrix, the covariate matrix; default as a full-one column vector if there is no additional covariates.

rank_use

an optional integer, specify the rank of the regression coefficient matrix; default as 5.

q

an optional string, specify the number of factors; default as 15.

epsELBO

an optional positive vlaue, tolerance of relative variation rate of the envidence lower bound value, defualt as '1e-5'.

maxIter

the maximum iteration of the VEM algorithm. The default is 30.

verbose

a logical value, whether output the information in iteration.

joint_opt_beta

a logical value, whether use the joint optimization method to update bbeta. The default is FALSE, which means using the separate optimization method.

fast_svd

a logical value, whether use the fast SVD algorithm in the update of bbeta; default is TRUE.

Details

None

Value

return a list including the following components: (1) H, the predicted factor matrix; (2) B, the estimated loading matrix; (3) bbeta, the estimated low-rank large coefficient matrix; (4) invLambda, the inverse of the estimated variances of error; (5) H0, the factor matrix; (6) ELBO: the ELBO value when algorithm stops; (7) ELBO_seq: the sequence of ELBO values.

References

Liu, W. and Q. Zhong (2024). High-dimensional covariate-augmented overdispersed poisson factor model. arXiv preprint arXiv:2402.15071.

See Also

None

Examples

n <- 300; p <- 100
d <- 20; q <- 6; r <- 3
datlist <- gendata_simu(n=n, p=p, d=20, q=q, rank0=r)
str(datlist)
fitlist <- RR_COAP(X_count=datlist$X, Z = datlist$Z, q=6, rank_use=3)
str(fitlist)

Select the parameters in COAP models

Description

Select the number of factors and the rank of coefficient matrix in the covariate-augmented overdispersed Poisson factor model

Usage

selectParams(
  X_count,
  Z,
  multiFac = rep(1, nrow(X_count)),
  q_max = 15,
  r_max = 24,
  threshold = c(0.1, 0.01),
  verbose = TRUE,
  ...
)

Arguments

X_count

a count matrix, the observed count matrix.

Z

an optional matrix, the covariate matrix; default as a full-one column vector if there is no additional covariates.

multiFac

an optional vector, the normalization factor for each unit; default as full-one vector.

q_max

an optional string, specify the upper bound for the number of factors; default as 15.

r_max

an optional integer, specify the upper bound for the rank of the regression coefficient matrix; default as 24.

threshold

an optional 2-dimensional positive vector, specify the the thresholds that filters the singular values of beta and B, respectively.

verbose

a logical value, whether output the information in iteration.

...

other arguments passed to the function RR_COAP.

Details

The threshold is to filter the singular values with low signal, to assist the identification of underlying model structure.

Value

return a named vector with names 'hr' and 'hq', the estimated rank and number of factors.

References

None

See Also

RR_COAP

Examples

n <- 300; p <- 100
d <- 20; q <- 6; r <- 3
datlist <- gendata_simu(seed=30, n=n, p=p, d=20, q=q, rank0=r)
str(datlist)
set.seed(1)
para_vec <- selectParams(X_count=datlist$X, Z = datlist$Z)
print(para_vec)