
Package: CNVreg (via r-universe)
March 10, 2025

Type Package

Title CNV-Profile Regression for Copy Number Variants Association
Analysis with Penalized Regression

Version 1.0

Description Performs copy number variants association analysis with
Lasso and Weighted Fusion penalized regression. Creates a ``CNV
profile curve'' to represent an individual’s CNV events across a
genomic region so to capture variations in CNV length and
dosage. When evaluating association, the CNV profile curve is
directly used as a predictor in the regression model, avoiding
the need to predefine CNV loci. CNV profile regression
estimates CNV effects at each genome position, making the
results comparable across different studies. The penalization
encourages sparsity in variable selection with a Lasso penalty
and encourages effect smoothness between consecutive CNV events
with a weighted fusion penalty, where the weight controls the
level of smoothing between adjacent CNVs. For more details, see
Si (2024) <doi:10.1101/2024.11.23.624994>.

License GPL-3

Depends R (>= 4.1.0)

VignetteBuilder knitr

Imports stats, Matrix, doParallel, dplyr, foreach, glmnet, tidyr

Encoding UTF-8

NeedsCompilation no

LazyData true

Suggests rmarkdown, knitr, rlang, tidyverse, markdown, kableExtra,
patchwork, ggplot2, withr

Author Yaqin Si [aut], Shannon T. Holloway [ctb, cre], Jung-Ying Tzeng
[ctb]

Maintainer Shannon T. Holloway <shannon.t.holloway@gmail.com>

RoxygenNote 7.3.2

1

https://doi.org/10.1101/2024.11.23.624994

2 CNVCOVY

Collate 'utils.R' 'probPred.R' 'linearPred.R' 'logLH.R' 'loss.R'
'helpful_tests.R' 'ctnsSolution.R' 'rwlsSolution.R'
'Wtsmth_Fit.R' 'nfoldSplit.R' 'WTsmth_nFold_CV.R' 'breakCNV.R'
'datadescrip.R' 'wideDataRaw.R' 'wideFrequency.R'
'weightMatrix.R' 'prep.R'

Repository CRAN

Date/Publication 2025-03-10 16:50:21 UTC

Config/pak/sysreqs libicu-dev

Contents
CNVCOVY . 2
cvfit_WTSMTH . 3
fit_WTSMTH . 5
prep . 7

Index 9

CNVCOVY Simulated data with copy number variants (CNV), Covariates (Cov),
and outcomes traits (Y_QT for a continuous outcome and Y_BT for a
binary outcome)for the illustration of CNV association analysis with
penalized regression in CNVreg.

Description

Simulated data with copy number variants (CNV), Covariates (Cov), and outcomes traits (Y_QT
for a continuous outcome and Y_BT for a binary outcome)for the illustration of CNV association
analysis with penalized regression in CNVreg.

Usage

data("CNVCOVY")

Format

CNVCOVY.RData provides 4 datasets: CNV, Cov, Y_QT, and Y_BT.

• CNV. A data frame of 2680 CNV records, it has 5 variables:

– ID. The sample ID of the CNV records in each row. There are 797 unique IDs.
– CHR. An integer variable, the chromosome number of CNV records.
– BP1. A numeric variable, the starting breakpoint of the CNV records.
– BP2. A numeric variable, the ending breakpoint of the CNV records.
– TYPE. An integer variable, how many copies of the CNV present.

• Cov. A data frame contains covariats of 900 samples (including 797 samples in the CNV data
set). Cov has 3 variables.

cvfit_WTSMTH 3

– ID. The sample ID of 900 individuals (900 unique IDs).
– Sex. An integer covariate, sex of each sample: 0 male, 1 female.
– Age. A numeric covariate, age of each sample.

• Y_QT and Y_BT are two data frames for outcomes traits. Y_QT contains a continuous trait.
Y_BT contains a binary trait. Both have 2 variables

– ID. The sample ID of 900 individuals (900 unique IDs).
– Y. Y_QT has a numeric variable range (-4.89 – 16.70) Y_BT has an integer variable with

controls 0 and cases 1.

cvfit_WTSMTH Penalized Regression with Lasso and Weighted Fusion Penalties with
Cross-Validation

Description

Uses n-fold cross-validation (CV) to fit a penalized regression model with Lasso penalty and weighted
fusion penalty. Return the loss of all pair of tuning parameters, find the best pair of tuning param-
eters with the lowest loss, and estimate the regression coefficient. The CV process fine-tunes the
tuning parameters required for the penalty terms and find the pair of lambda_1 and lambda_2 that
minimizes the average validation loss.

Usage

cvfit_WTSMTH(
data,
lambda1 = seq(-8, 0, 1),
lambda2 = seq(-8, 8, 1),
weight = NULL,
family = c("gaussian", "binomial"),
cv.control = list(n.fold = 5L, n.core = 1L, stratified = FALSE),
iter.control = list(max.iter = 8L, tol.beta = 10^(-3), tol.loss = 10^(-6)),
verbose = TRUE

)

Arguments

data An object of class "WTsmth.data" as generated by prep()

lambda1 A numeric vector. Lambda_1 values to be considered that controls the Lasso
penalty. Provided values will be transformed to 2^(lambda1). The default value
is c(-8:0). The user can customize the range and step_size of the candidate
tuning parameters In most cases, the user will need to run the function more
than one time to adjust the range and step_size of tuning parameters to locate
to a reasonable range according to the ‘Loss‘ and ‘selected.lambda‘ from the
previous round of model fitting

4 cvfit_WTSMTH

lambda2 A numeric vector. Lambda_2 values to be considered that controls the weighted
fusion penalty. Provided values will be transformed to 2^(lambda2). The default
value is c(-8:8). The user can customize the range and step_size of the candidate
tuning parameters In most cases, the user will need to run the function more
than one time to adjust the range and step_size of tuning parameters to locate
to a reasonable range according to the ‘Loss‘ and ‘selected.lambda‘ from the
previous round of model fitting.

weight A character. The type of weighting. Must be one of (‘eql‘, ‘keql‘, ‘wcs‘, ‘kwcs‘,
‘wif‘, ‘kwif‘), which indicates the equal weight, K x equal weight, Cosine sim-
ilarity, K x cosine similarity, inverse frequency, and K x inverse frequency re-
spectively, where K is the number of individuals in each CNV active region.
‘eql‘ and ‘keql‘ gives equal weight to adjacent CNVs. ‘wcs‘ and ‘kwcs‘ allow
similar CNV fragments to have more similar effect size. ‘wif‘ and ‘kwif‘ will
encourage CNV with lower frequency to borrow information from nearby more
frequent CNV fragments. Considering that CNVs usually present in some CNV-
active regions and there are large regions in between with no CNV at all. K will
describe the number of individuals having any CNV activities in a CNV-active
region, and varying the weight according to the sample size across regions.

family A character. The family of the outcome. Must be one of "gaussian" (Y is con-
tinuous) or "binomial" (Y is binary).

cv.control A list object. Allows user to control cross-validation procedure. Allowed el-
ements are ‘n.fold‘, the number of cross-validation folds with a default value
of 5, depends on the sample size, it can be chosen to have other folds (such
as 3, 10); ‘n.core‘ is the number of cores to use in procedure, check available
computation resource before choosing; and ‘stratified‘, if TRUE and ‘family‘ =
"binomial", the folds will be stratified within each category of Y (this option is
recommended if either category of the outcome is "rare".)

iter.control A list object. Allows the user to control iteratively update procedure. Allowed
elements are ‘max.iter‘, the maximum number of iterations, it guarantees the
function returns results within reasonable time; ‘tol.beta‘ is the threshold below
which the procedure is deemed converged, which controls the absolute differ-
ence between consecutive beta updates. ‘tol.loss‘ is the threshold below which
the procedure is deemed converged, which controls the difference in consecutive
loss updates.

verbose A logical object. If ‘TRUE‘, print progression updates.

Value

A list containing 1. ‘Loss‘: The average loss of the validation set for all pairs of candidate tuning
parameters, the smaller the loss, the better performance of the corresponding pair of parameters.
2. ‘selected.lambda‘ :The selected tuning parameter values that minimized the loss. 3. ‘coef‘ the
model coefficient estimate (coef) at the selected tuning parameters.

Examples

Note we use here a very small example data set and few candidate lambda1
and lambda2 to expedite examples.

fit_WTSMTH 5

load toy dataset
data("CNVCOVY")

prepare data format for regression analysis

Continuous outcome Y_QT
frag_data <- prep(CNV = CNV, Y = Y_QT, Z = Cov, rare.out = 0.05)
QT_tune <- cvfit_WTSMTH(frag_data,

lambda1 = seq(-4.75, -5.25, -0.25),
lambda2 = seq(18, 22, 1),
weight = "eql",
family = "gaussian")

Binary outcome Y_BT

We can directly replace frag_data$Y with Y_BT in the correct format,
ensuring that the ordering matches that of the prepared object.

rownames(Y_BT) <- Y_BT$ID
frag_data$Y <- Y_BT[names(frag_data$Y), "Y"] |> drop()
names(frag_data$Y) <- rownames(frag_data$Z)

Or, we can also repeat the prep() call
frag_data <- prep(CNV = CNV, Y = Y_BT, Z = Cov, rare.out = 0.05)

BT_tune <- cvfit_WTSMTH(frag_data,
lambda1 = c(-5.25, -5, -4.75),
lambda2 = c(5, 6, 7),
weight = "eql",
family = "binomial")

fit_WTSMTH Penalized Regression with Lasso and Weighted Fusion Penalties with
Given Parameters

Description

Performs penalized regression with Lasso penalty and weighted fusion penalty for a given pair of
tuning parameters (lambda1 and lambda2), which is determined by the user based on prior knowl-
edge or use any number just for testing purpose.

Usage

fit_WTSMTH(
data,
lambda1,
lambda2,
weight = NULL,
family = c("gaussian", "binomial"),

6 fit_WTSMTH

iter.control = list(max.iter = 8L, tol.beta = 10^(-3), tol.loss = 10^(-6)),
...

)

Arguments

data An object of class "WTsmth.data" as generated by prep()

lambda1 A scalar numeric. Lambda_1 value to be considered. Provided value will be
transformed to 2^(lambda1).

lambda2 A scalar numeric Lambda_2 value to be considered. Provided value will be
transformed to 2^(lambda2).

weight A character. The type of weighting. Must be one of eql, keql, wcs, kwcs,
wif, kwif indicating equal weight, K x equal weight, Cosine similarity, K x
cosine similarity, inverse frequency, and K x inverse frequency, where K is the
number of individuals in each CNV-active region. ‘eql‘ and ‘keql‘ gives equal
weight to adjacent CNVs. ‘wcs‘ and ‘kwcs‘ allow similar CNV fragments to
have more similar effect size. ‘wif‘ and ‘kwif‘ will encourage CNV with lower
frequency to borrow information from nearby more frequent CNV fragments.
Considering that CNVs usually present in some CNV-active regions and there
are large regions in between with no CNV at all. K will describe the number of
individuals having any CNV activities in a CNV-active region, and varying the
weight according to the sample size across regions.

family A character. The family of the outcome. Must be one of "gaussian" (Y is con-
tinuous) or "binomial" (Y is binary).

iter.control A list object. Allows user to control iterative update procedure. Allowed el-
ements are "max.iter", the maximum number of iterations; "tol.beta", the dif-
ference between consecutive beta updates below which the procedure is deemed
converged; and "tol.loss", the difference in consecutive loss updates below which
the procedure is deemed converged.

... Ignored.

Value

A numeric vector. The estimated model parameters

Examples

Note we use here a very small example data set to expedite examples.

load toy dataset
data("CNVCOVY")

prepare data format for regression analysis

Continuous outcome Y_QT
frag_data <- prep(CNV = CNV, Y = Y_QT, Z = Cov, rare.out = 0.05)
QT_fit <- fit_WTSMTH(frag_data,

lambda1 = -5,

prep 7

lambda2 = 21,
weight = "eql",
family = "gaussian")

Binary outcome Y_BT

We can directly replace frag_data$Y with Y_BT in the correct format,
ensuring that the ordering matches that of the prepared object.

rownames(Y_BT) <- Y_BT$ID
frag_data$Y <- Y_BT[names(frag_data$Y), "Y"] |> drop()
names(frag_data$Y) <- rownames(frag_data$Z)

Or, we can also repeat the prep() call
frag_data <- prep(CNV = CNV, Y = Y_BT, Z = Cov, rare.out = 0.05)

BT_fit <- fit_WTSMTH(frag_data,
lambda1 = -5,
lambda2 = 6,
weight = "eql",
family = "binomial")

prep Prepare Data for Analysis

Description

Required preprocessing of analysis data. Function converts an individual’s CNV events within
a genomic region (from one chromosome) to a CNV profile curve, further processes it as CNV
fragments, and filter out rare fragments. In addition, the adjacency relationship between CNV
fragments is analyzed and weight matrices are generated. The resulting ‘WTsmth.data‘ object, is
provided as input to the regression analysis.

Usage

prep(CNV, Y, Z = NULL, rare.out = 0.05)

Arguments

CNV A data.frame in PLINK format. Specifically, must contain columns:

• "ID": character, unique identity for each sample
• "CHR": integer, allowed range 1-22 NOTE: only 1 CHR can be present,

which means this function processes one chromosome at a time.
• "BP1": integer, CNV event starting position,
• "BP2": integer, CNV event ending position, each record must have BP1 <=

BP2, CNV at least 1bp (or other unit length)
• "TYPE": integer, range 0, 1, 3, 4, and larger allowed, i.e., 2 is not allowed.

8 prep

Y A data.frame. Must include column "ID". Must have 2 columns. For binary,
values must be 0 (control) or 1 (case). For continuous, values must be real
number. Y$ID must contain all unique CNV$ID. Y and Z have the same IDs.

Z A data.frame. Must include column "ID". All other columns are covariates,
which can be continuous, binary, or categorical variables. At a minimum, Z
must contain all unique CNV$ID values.

rare.out A scalar numeric in the range [0, 0.5); event rates below this value are filtered
out of the data.

Value

An S3 object of class "WTsmth.data" extending a list object containing

• design CNV data converted to design matrix.

• Z The processed covariate matrix.

• Y The processed response vector.

• weight.structure A Matrix object. The structure of the weight matrix.

• weight.options A matrix object. Each row is the multiplicative vector to obtain each avail-
able weight. Specifically, the A matrix is obtained as weight_option[i,] * weight.structure
where i = 1-6 with 1="eql", 2="keql", 3="wcs", 4="kwcs", 5="wif", and 6="kwif".

• CNVR.info A data.frame containing details about the fragment structure.

Examples

Note we use here a very small example data set to expedite examples.

load toy dataset
data("CNVCOVY")

Continuous outcome Y_QT
frag_data <- prep(CNV = CNV, Y = Y_QT, Z = Cov, rare.out = 0.05)

Index

∗ datasets
CNVCOVY, 2

CNV (CNVCOVY), 2
CNVCOVY, 2
Cov (CNVCOVY), 2
cvfit_WTSMTH, 3

fit_WTSMTH, 5

prep, 7

Y_BT (CNVCOVY), 2
Y_QT (CNVCOVY), 2

9

	CNVCOVY
	cvfit_WTSMTH
	fit_WTSMTH
	prep
	Index

