Title: | Detection of Statistically Significant Combinations of SNPs in Association Mapping |
---|---|
Description: | A significant pattern mining-based toolbox for region-based genome-wide association studies and higher-order epistasis analyses, implementing the methods described in Llinares-López et al. (2017) <doi:10.1093/bioinformatics/btx071>. |
Authors: | Felipe Llinares-López [aut, cph], Laetitia Papaxanthos [aut, cph], Damian Roqueiro [aut, cph], Matthew Baker [ctr], Mikołaj Rybiński [ctr], Uwe Schmitt [ctr], Dean Bodenham [aut, cre, cph], Karsten Borgwardt [aut, fnd, cph] |
Maintainer: | Dean Bodenham <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.6.1 |
Built: | 2024-11-27 06:31:41 UTC |
Source: | CRAN |
Constructor for CASMAP class object.
Constructor for CASMAP class object, which needs the mode
parameter to be set by the user. Please see the examples.
mode
Either 'regionGWAS'
or 'higherOrderEpistasis'
.
alpha
A numeric value setting the Family-wise Error Rate (FWER).
Must be strictly between 0
and 1
. Default
value is 0.05
.
max_comb_size
A numeric specifying the maximum length of
combinations. For example, if set to 4
,
then only combinations of size between 1
and 4
(inclusive) will be considered.
To consider combinations of arbitrary (maximal)
length, use value 0
, which is the default
value.
readFiles
Read the data, label and possibly covariates
files. Parameters are genotype_file
,
for the data, phenotype_file
for the
labels and (optional) covariates_file
for the covariates. The option
plink_file_root
is not supported
in the current version, but will be supported
in future versions.
setMode
Can set/change the mode, but note that any
data files will need to read in again using
the readFiles
command.
setTargetFWER
Can set/change the Family-wise
Error Rate (FWER). Takes a numeric
parameter alpha
, strictly between
0
and 1
.
execute
Once the data files have been read, can execute the algorithm. Please note that, depending on the size of the data files, this could take a long time.
getSummary
Returns a data frame with a summary of the
results from the execution, but not any
significant regions/itemsets. See
getSignificantRegions
,
getSignificantInteractions
, and
getSignificantClusterRepresentatives
.
writeSummary
Directly write the information
from getSummary
to file.
regionGWAS
MethodsgetSignificantRegions
Returns a data frame with the
the significant regions. Only valid when
mode='regionGWAS'
.
getSignificantClusterRepresentatives
Returns a data
frame with the
the representatives of the significant
clusters. This will be a subset of the regions
returned from getSignificantRegions
.
Only valid when mode='regionGWAS'
.
writeSignificantRegions
Writes the data from
getSignificantRegions
to file, which
must be specified in the parameter
path
.
Only valid when mode='regionGWAS'
.
writeSignificantClusterRepresentatives
Writes the data
from
getSignificantClusterRepresentatives
to
file, which must be specified in the parameter
path
.
Only valid when mode='regionGWAS'
.
higherOrderEpistasis
MethodsgetSignificantInteractions
Returns the frame
from getSignificantInteractions
to
file, which must be specified in the parameter
path
. Only valid
when mode='higherOrderEpistasis'
.
writeSignificantInteractions
Writes a data frame with
the significant interactions. Only valid
when mode='higherOrderEpistasis'
.
A. Terada, M. Okada-Hatakeyama, K. Tsuda and J. Sese Statistical significance of combinatorial regulations, Proceedings of the National Academy of Sciences (2013) 110 (32): 12996-13001
F. Llinares-Lopez, D. G. Grimm, D. Bodenham, U. Gieraths, M. Sugiyama, B. Rowan and K. Borgwardt, Genome-wide detection of intervals of genetic heterogeneity associated with complex traits, ISMB 2015, Bioinformatics (2015) 31 (12): i240-i249
L. Papaxanthos, F. Llinares-Lopez, D. Bodenham, K .Borgwardt, Finding significant combinations of features in the presence of categorical covariates, Advances in Neural Information Processing Systems 29 (NIPS 2016), 2271-2279.
F. Llinares-Lopez, L. Papaxanthos, D. Bodenham, D. Roqueiro and K .Borgwardt, Genome-wide genetic heterogeneity discovery with categorical covariates. Bioinformatics 2017, 33 (12): 1820-1828.
## An example using the "regionGWAS" mode fastcmh <- CASMAP(mode="regionGWAS") # initialise object datafile <- getExampleDataFilename() # file name of example data labelsfile <- getExampleLabelsFilename() # file name of example labels covfile <- getExampleCovariatesFilename() # file name of example covariates # read the data, labels and covariate files fastcmh$readFiles(genotype_file=getExampleDataFilename(), phenotype_file=getExampleLabelsFilename(), covariate_file=getExampleCovariatesFilename() ) # execute the algorithm (this may take some time) fastcmh$execute() #get the summary results summary_results <- fastcmh$getSummary() #get the significant regions sig_regions <- fastcmh$getSignificantRegions() #get the clustered representatives for the significant regions sig_cluster_rep <- fastcmh$getSignificantClusterRepresentatives() ## Another example of regionGWAS fais <- CASMAP(mode="regionGWAS") # initialise object # read the data and labels, but no covariates fastcmh$readFiles(genotype_file=getExampleDataFilename(), phenotype_file=getExampleLabelsFilename()) ## Another example, doing higher order epistasis search facs <- CASMAP(mode="higherOrderEpistasis") # initialise object
## An example using the "regionGWAS" mode fastcmh <- CASMAP(mode="regionGWAS") # initialise object datafile <- getExampleDataFilename() # file name of example data labelsfile <- getExampleLabelsFilename() # file name of example labels covfile <- getExampleCovariatesFilename() # file name of example covariates # read the data, labels and covariate files fastcmh$readFiles(genotype_file=getExampleDataFilename(), phenotype_file=getExampleLabelsFilename(), covariate_file=getExampleCovariatesFilename() ) # execute the algorithm (this may take some time) fastcmh$execute() #get the summary results summary_results <- fastcmh$getSummary() #get the significant regions sig_regions <- fastcmh$getSignificantRegions() #get the clustered representatives for the significant regions sig_cluster_rep <- fastcmh$getSignificantClusterRepresentatives() ## Another example of regionGWAS fais <- CASMAP(mode="regionGWAS") # initialise object # read the data and labels, but no covariates fastcmh$readFiles(genotype_file=getExampleDataFilename(), phenotype_file=getExampleLabelsFilename()) ## Another example, doing higher order epistasis search facs <- CASMAP(mode="higherOrderEpistasis") # initialise object
Path to CASMAP_example_covariates_1.txt
in inst/extdata
.
The covariates categories for the data set
CASMAP_example_data_1.txt
, the path to which is given by
getExampleDataFilename
.
getExampleCovariatesFilename()
getExampleCovariatesFilename()
A single column vector of 100 labels, each of which
is 0
or 1
(same format as labels file).
Path to the file containing the labels, for reading in to
CASMAP object using the readFiles
function.
getExampleDataFilename
,
getExampleLabelsFilename
covfile <- getExampleCovariatesFilename()
covfile <- getExampleCovariatesFilename()
Path to CASMAP_example_data_1.txt
in inst/extdata
.
A dataset containing binary samples for the regionGWAS method.
There are accompanying labels and covariates dataset.
getExampleDataFilename()
getExampleDataFilename()
A matrix of 0
s and 1
s, with 1000 rows (features)
and 100 columns
(samples). In other words, each column is a sample, and each sample
has 1000 binary features.
Path to the file containing the data, for reading in to
CASMAP object using the readFiles
function.
Note that the significant region is [99, 102]
.
getExampleLabelsFilename
,
getExampleCovariatesFilename
datafile <- getExampleDataFilename()
datafile <- getExampleDataFilename()
Path to CASMAP_example_labels_1.txt
in inst/extdata
.
A dataset containing the binary labels for the data in the file
CASMAP_example_data_1.txt
, the path to which is given by
getExampleDataFilename
.
getExampleLabelsFilename()
getExampleLabelsFilename()
A single column of 100 labels, each of which is either 0
or 1
.
Path to the file containing the labels, for reading in to
CASMAP object using the readFiles
function.
getExampleDataFilename
,
getExampleCovariatesFilename
labelsfile <- getExampleLabelsFilename()
labelsfile <- getExampleLabelsFilename()