Xenium BC data analysis

This vignette introduces the CAESAR.Suite workflow for the analysis of Xenium BC spatial transcriptomics dataset. In this vignette, the workflow of CAESAR.Suite consists of five steps

  • Reference dataset and target dataset preprocessing
  • Detect signature genes as cell type markers from scRNA-seq reference datasets
  • Annotate Xenium BC data using CAESAR
  • Enrichment analysis for Xenium BC data using CAESAR
  • Downstream analysis (i.e. , signature gene analysis, visualization of cell types and coembeddings)

Load and quality control both reference and target data

We demonstrate the application of CAESAR.Suite to Xenium data. In this vignette, the input data includes: BC_scRNAList — two scRNA-seq reference datasets, each with 3,000 cells; BC_XeniumList — two Xenium target datasets, each with 3,000 cells; and BC_feature_imgList — two feature matrices containing histology image information from the Xenium target datasets. For more details with respect to histology image feature extraction, see vignette. The genes of scRNA-seq reference datasets and Xenium target datasets are aligned. The package can be loaded with the command:

set.seed(1) # set a random seed for reproducibility.
library(CAESAR.Suite) # load the package of CAESAR.Suite method
library(Seurat)
library(ProFAST)
library(ggplot2)
library(msigdbr)
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union

Those data can be downloaded and load to the current working path by the following command:

githubURL <- "https://github.com/XiaoZhangryy/CAESAR.Suite/blob/master/vignettes_data/BC_scRNAList.rda?raw=true"
BC_scRNAList_file <- file.path(tempdir(), "BC_scRNAList.rda")
download.file(githubURL, BC_scRNAList_file, mode='wb')
load(BC_scRNAList_file)

print(BC_scRNAList)
#> $Ref1
#> An object of class Seurat 
#> 302 features across 7023 samples within 1 assay 
#> Active assay: RNA (302 features, 0 variable features)
#>  2 layers present: counts, data
#> 
#> $Ref2
#> An object of class Seurat 
#> 302 features across 8609 samples within 1 assay 
#> Active assay: RNA (302 features, 0 variable features)
#>  2 layers present: counts, data

githubURL <- "https://github.com/XiaoZhangryy/CAESAR.Suite/blob/master/vignettes_data/BC_XeniumList.rda?raw=true"
BC_XeniumList_file <- file.path(tempdir(), "BC_XeniumList.rda")
download.file(githubURL, BC_XeniumList_file, mode='wb')
load(BC_XeniumList_file)

print(BC_XeniumList)
#> $BC1
#> An object of class Seurat 
#> 302 features across 3000 samples within 1 assay 
#> Active assay: RNA (302 features, 0 variable features)
#>  2 layers present: counts, data
#> 
#> $BC2
#> An object of class Seurat 
#> 302 features across 3000 samples within 1 assay 
#> Active assay: RNA (302 features, 0 variable features)
#>  2 layers present: counts, data

githubURL <- "https://github.com/XiaoZhangryy/CAESAR.Suite/blob/master/vignettes_data/BC_feature_imgList.rda?raw=true"
BC_feature_imgList_file <- file.path(tempdir(), "BC_feature_imgList.rda")
download.file(githubURL, BC_feature_imgList_file, mode='wb')
load(BC_feature_imgList_file)

print(sapply(BC_feature_imgList, dim))
#>       BC1  BC2
#> [1,] 3000 3000
#> [2,]  576  576

Users can perform appropriate quality control on the reference dataset and target datasets. Genes expressed in less than one cell are required to remove to avoid unknown errors. Other quality control steps can be set by the user according to the data quality. Here, since scRNA-seq reference datasets and Xenium target datasets had been aligned, we do not perform quality control.

# BC_scRNAList <- lapply(BC_scRNAList,  function(seu) {
#     CreateSeuratObject(
#         counts = seu@assays$RNA@counts,
#         meta.data = [email protected],
#         min.features = 5,
#         min.cells = 1
#     )
# })
# 
# print(BC_scRNAList)
# 
# 
# BC_XeniumList <- lapply(BC_XeniumList,  function(seu) {
#     CreateSeuratObject(
#         counts = seu@assays$RNA@counts,
#         meta.data = [email protected],
#         min.features = 5,
#         min.cells = 1
#     )
# })
# 
# print(BC_XeniumList)
# 
# BC_feature_imgList <- lapply(1:2, function(i) {
#     BC_feature_imgList[[i]][colnames(BC_XeniumList[[i]]), ]
# })

Preprocessing and align reference and target data

First, we normalize the data and select the variable genes. We align genes and variable genes of reference and target data.

# align genes
common_genes <- Reduce(intersect, c(
    lapply(BC_scRNAList, rownames),
    lapply(BC_XeniumList, rownames)
))

print(length(common_genes))
#> [1] 302

# all common genes are used as variable genes, as only around 300 genes here
BC_scRNAList <- lapply(BC_scRNAList, function(seu) {
    seu <- seu[common_genes, ]
    seu <- NormalizeData(seu)
    VariableFeatures(seu) <- common_genes
    seu
})

BC_XeniumList <- lapply(BC_XeniumList, function(seu) {
    seu <- seu[common_genes, ]
    seu <- NormalizeData(seu)
    VariableFeatures(seu) <- common_genes
    seu
})

print(BC_scRNAList)
#> $Ref1
#> An object of class Seurat 
#> 302 features across 7023 samples within 1 assay 
#> Active assay: RNA (302 features, 302 variable features)
#>  2 layers present: counts, data
#> 
#> $Ref2
#> An object of class Seurat 
#> 302 features across 8609 samples within 1 assay 
#> Active assay: RNA (302 features, 302 variable features)
#>  2 layers present: counts, data
print(BC_XeniumList)
#> $BC1
#> An object of class Seurat 
#> 302 features across 3000 samples within 1 assay 
#> Active assay: RNA (302 features, 302 variable features)
#>  2 layers present: counts, data
#> 
#> $BC2
#> An object of class Seurat 
#> 302 features across 3000 samples within 1 assay 
#> Active assay: RNA (302 features, 302 variable features)
#>  2 layers present: counts, data

Detect signature genes for each cell type using scRNA-seq reference data

We introduce how to use CAESAR to detect signature genes form scRNA-seq reference data. First, we calculate the co-embeddings.

BC_scRNAList <- lapply(BC_scRNAList, ProFAST::NCFM, q = 50)
#> 2024-12-16 07:14:20.757617 : ***** Finish CoFAST, 0.002 mins elapsed.
#> 2024-12-16 07:14:20.961035 : ***** Finish CoFAST, 0.003 mins elapsed.

Then, we detect signature genes.

# calculate cell-gene distance
BC_scRNAList <- lapply(BC_scRNAList, ProFAST::pdistance, reduction = "ncfm")
#> Calculate co-embedding distance...
#> Calculate co-embedding distance...

# identify signature genes
sg_sc_List <- lapply(BC_scRNAList, function(seu) {
    print(table(seu$CellType))

    Idents(seu) <- seu$CellType
    find.sig.genes(seu)
})
#> 
#>       Endothelial              CAFs               PVL           B-cells 
#>                41               245                46                88 
#>      Plasmablasts           T-cells           Myeloid Cancer Epithelial 
#>              1453               902               206              4018 
#> Normal Epithelial 
#>                24 
#> 
#>       Endothelial              CAFs               PVL           B-cells 
#>              2778              1292              1285                99 
#>      Plasmablasts           T-cells           Myeloid Cancer Epithelial 
#>                51               641               285               212 
#> Normal Epithelial 
#>              1966

str(sg_sc_List)
#> List of 2
#>  $ Ref1:List of 9
#>   ..$ B-cells          :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0645 0.0653 0.0657 0.0674 0.0676 ...
#>   .. ..$ expr.prop       : num [1:302] 0.591 0.295 0.148 0.182 0.443 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.00216 0.00433 0.00173 0.01442 0.13771 ...
#>   .. ..$ label           : chr [1:302] "B-cells" "B-cells" "B-cells" "B-cells" ...
#>   .. ..$ gene            : chr [1:302] "MS4A1" "BANK1" "SPIB" "CCR7" ...
#>   ..$ CAFs             :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0683 0.0684 0.0684 0.0684 0.0686 ...
#>   .. ..$ expr.prop       : num [1:302] 0.51 0.376 0.376 0.739 0.918 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.00339 0.00162 0.00398 0.01107 0.01741 ...
#>   .. ..$ label           : chr [1:302] "CAFs" "CAFs" "CAFs" "CAFs" ...
#>   .. ..$ gene            : chr [1:302] "DPT" "PDGFRA" "GJB2" "POSTN" ...
#>   ..$ Cancer Epithelial:'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0881 0.0881 0.0881 0.0881 0.0882 ...
#>   .. ..$ expr.prop       : num [1:302] 0.892 0.967 0.922 0.82 0.824 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.0729 0.1684 0.1135 0.0483 0.0622 ...
#>   .. ..$ label           : chr [1:302] "Cancer Epithelial" "Cancer Epithelial" "Cancer Epithelial" "Cancer Epithelial" ...
#>   .. ..$ gene            : chr [1:302] "KRT8" "KRT7" "CLDN4" "EPCAM" ...
#>   ..$ Endothelial      :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0742 0.0743 0.0751 0.0755 0.0759 ...
#>   .. ..$ expr.prop       : num [1:302] 0.854 0.756 0.463 0.39 0.39 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.000573 0.00043 0.000716 0 0.000859 ...
#>   .. ..$ label           : chr [1:302] "Endothelial" "Endothelial" "Endothelial" "Endothelial" ...
#>   .. ..$ gene            : chr [1:302] "CLEC14A" "VWF" "CLDN5" "SOX17" ...
#>   ..$ Myeloid          :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0612 0.0616 0.0616 0.0616 0.0618 ...
#>   .. ..$ expr.prop       : num [1:302] 0.704 0.369 0.519 0.379 0.714 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.003521 0.000293 0.0022 0.00176 0.006161 ...
#>   .. ..$ label           : chr [1:302] "Myeloid" "Myeloid" "Myeloid" "Myeloid" ...
#>   .. ..$ gene            : chr [1:302] "IGSF6" "CD163" "MNDA" "ITGAX" ...
#>   ..$ Normal Epithelial:'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0823 0.0842 0.0859 0.0864 0.0865 ...
#>   .. ..$ expr.prop       : num [1:302] 0.417 0.292 0.25 0.417 0.75 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.00143 0.00286 0.00129 0.04958 0.49707 ...
#>   .. ..$ label           : chr [1:302] "Normal Epithelial" "Normal Epithelial" "Normal Epithelial" "Normal Epithelial" ...
#>   .. ..$ gene            : chr [1:302] "PIGR" "KIT" "KRT14" "KRT15" ...
#>   ..$ PVL              :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0743 0.0744 0.0747 0.0752 0.0752 ...
#>   .. ..$ expr.prop       : num [1:302] 0.8261 0.2609 0.0435 0.8043 0.7826 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.022789 0.00774 0.000717 0.057475 0.063351 ...
#>   .. ..$ label           : chr [1:302] "PVL" "PVL" "PVL" "PVL" ...
#>   .. ..$ gene            : chr [1:302] "PDGFRB" "PTN" "TCEAL7" "ACTA2" ...
#>   ..$ Plasmablasts     :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0637 0.0638 0.0639 0.0641 0.0644 ...
#>   .. ..$ expr.prop       : num [1:302] 0.847 0.971 0.886 0.405 0.182 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.04542 0.09803 0.11239 0.00808 0.01131 ...
#>   .. ..$ label           : chr [1:302] "Plasmablasts" "Plasmablasts" "Plasmablasts" "Plasmablasts" ...
#>   .. ..$ gene            : chr [1:302] "CD79A" "MZB1" "DERL3" "TNFRSF17" ...
#>   ..$ T-cells          :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0709 0.0711 0.0711 0.0711 0.0712 ...
#>   .. ..$ expr.prop       : num [1:302] 0.685 0.538 0.247 0.334 0.143 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.01797 0.01029 0.00539 0.00768 0.00327 ...
#>   .. ..$ label           : chr [1:302] "T-cells" "T-cells" "T-cells" "T-cells" ...
#>   .. ..$ gene            : chr [1:302] "CD3E" "CD3D" "CD247" "CD3G" ...
#>  $ Ref2:List of 9
#>   ..$ B-cells          :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0604 0.0607 0.061 0.0638 0.0649 ...
#>   .. ..$ expr.prop       : num [1:302] 0.364 0.263 0.869 0.596 0.96 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.000588 0.000705 0.002938 0.006933 0.011633 ...
#>   .. ..$ label           : chr [1:302] "B-cells" "B-cells" "B-cells" "B-cells" ...
#>   .. ..$ gene            : chr [1:302] "CD19" "TCL1A" "MS4A1" "BANK1" ...
#>   ..$ CAFs             :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0699 0.07 0.0701 0.0702 0.0702 ...
#>   .. ..$ expr.prop       : num [1:302] 0.57 0.924 0.711 0.94 0.861 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.0178 0.0692 0.0327 0.0977 0.0791 ...
#>   .. ..$ label           : chr [1:302] "CAFs" "CAFs" "CAFs" "CAFs" ...
#>   .. ..$ gene            : chr [1:302] "DPT" "FBLN1" "IGF1" "LUM" ...
#>   ..$ Cancer Epithelial:'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0686 0.07 0.0703 0.0718 0.0721 ...
#>   .. ..$ expr.prop       : num [1:302] 0.0519 0.0849 0.5708 0.0896 0.7736 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.00155 0.00286 0.02918 0.00512 0.04835 ...
#>   .. ..$ label           : chr [1:302] "Cancer Epithelial" "Cancer Epithelial" "Cancer Epithelial" "Cancer Epithelial" ...
#>   .. ..$ gene            : chr [1:302] "CEACAM6" "MKI67" "SCGB2A1" "TOP2A" ...
#>   ..$ Endothelial      :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0755 0.0755 0.0755 0.0755 0.0756 ...
#>   .. ..$ expr.prop       : num [1:302] 0.961 0.932 0.862 0.815 0.672 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.0777 0.058 0.0537 0.0566 0.0268 ...
#>   .. ..$ label           : chr [1:302] "Endothelial" "Endothelial" "Endothelial" "Endothelial" ...
#>   .. ..$ gene            : chr [1:302] "PECAM1" "VWF" "CLEC14A" "EGFL7" ...
#>   ..$ Myeloid          :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0622 0.0623 0.0623 0.0624 0.0624 ...
#>   .. ..$ expr.prop       : num [1:302] 0.621 0.695 0.47 0.839 0.509 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.001442 0.005646 0.000961 0.008289 0.000961 ...
#>   .. ..$ label           : chr [1:302] "Myeloid" "Myeloid" "Myeloid" "Myeloid" ...
#>   .. ..$ gene            : chr [1:302] "IGSF6" "LYZ" "ITGAX" "AIF1" ...
#>   ..$ Normal Epithelial:'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0704 0.0704 0.0705 0.0707 0.0708 ...
#>   .. ..$ expr.prop       : num [1:302] 0.948 0.895 0.658 0.68 0.911 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.1439 0.1423 0.0831 0.1138 0.1891 ...
#>   .. ..$ label           : chr [1:302] "Normal Epithelial" "Normal Epithelial" "Normal Epithelial" "Normal Epithelial" ...
#>   .. ..$ gene            : chr [1:302] "KRT8" "TACSTD2" "SDC4" "DSP" ...
#>   ..$ PVL              :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0691 0.07 0.07 0.0704 0.0708 ...
#>   .. ..$ expr.prop       : num [1:302] 0.2747 0.6654 0.0506 0.6833 0.6856 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.01338 0.05926 0.00614 0.11182 0.14104 ...
#>   .. ..$ label           : chr [1:302] "PVL" "PVL" "PVL" "PVL" ...
#>   .. ..$ gene            : chr [1:302] "AVPR1A" "NDUFA4L2" "FOXC2" "MYH11" ...
#>   ..$ Plasmablasts     :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0581 0.0694 0.0723 0.0745 0.0791 ...
#>   .. ..$ expr.prop       : num [1:302] 0.745 0.922 1 0.706 0.922 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.00105 0.01145 0.01542 0.00631 0.01718 ...
#>   .. ..$ label           : chr [1:302] "Plasmablasts" "Plasmablasts" "Plasmablasts" "Plasmablasts" ...
#>   .. ..$ gene            : chr [1:302] "TNFRSF17" "DERL3" "MZB1" "SLAMF7" ...
#>   ..$ T-cells          :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 0.0638 0.0639 0.0639 0.0642 0.0643 ...
#>   .. ..$ expr.prop       : num [1:302] 0.839 0.641 0.437 0.75 0.317 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.00791 0.00289 0.00276 0.02246 0.00314 ...
#>   .. ..$ label           : chr [1:302] "T-cells" "T-cells" "T-cells" "T-cells" ...
#>   .. ..$ gene            : chr [1:302] "CD3E" "CD3D" "CD3G" "IL7R" ...

Finally, select marker genes for each cell type from the signature gene list.

markerList <- lapply(sg_sc_List, marker.select, overlap.max = 1)

print(markerList)
#> $Ref1
#> $Ref1$`B-cells`
#> [1] "MS4A1" "BANK1" "SPIB"  "CCR7" 
#> 
#> $Ref1$CAFs
#> [1] "DPT"    "PDGFRA" "GJB2"   "POSTN" 
#> 
#> $Ref1$`Cancer Epithelial`
#> [1] "KRT8"  "KRT7"  "CLDN4" "EPCAM"
#> 
#> $Ref1$Endothelial
#> [1] "CLEC14A" "VWF"     "CLDN5"   "SOX17"  
#> 
#> $Ref1$Myeloid
#> [1] "IGSF6" "CD163" "MNDA"  "ITGAX"
#> 
#> $Ref1$`Normal Epithelial`
#> [1] "PIGR"  "KIT"   "KRT14" "KRT15"
#> 
#> $Ref1$PVL
#> [1] "PDGFRB" "PTN"    "ACTA2"  "PCOLCE"
#> 
#> $Ref1$Plasmablasts
#> [1] "CD79A"    "MZB1"     "DERL3"    "TNFRSF17"
#> 
#> $Ref1$`T-cells`
#> [1] "CD3E"  "CD3D"  "CD247" "CD3G" 
#> 
#> 
#> $Ref2
#> $Ref2$`B-cells`
#> [1] "CD19"  "TCL1A" "MS4A1" "BANK1"
#> 
#> $Ref2$CAFs
#> [1] "DPT"   "FBLN1" "IGF1"  "LUM"  
#> 
#> $Ref2$`Cancer Epithelial`
#> [1] "SCGB2A1" "AGR3"    "ESR1"    "FOXA1"  
#> 
#> $Ref2$Endothelial
#> [1] "PECAM1"  "VWF"     "CLEC14A" "EGFL7"  
#> 
#> $Ref2$Myeloid
#> [1] "IGSF6" "LYZ"   "ITGAX" "AIF1" 
#> 
#> $Ref2$`Normal Epithelial`
#> [1] "KRT8"    "TACSTD2" "SDC4"    "DSP"    
#> 
#> $Ref2$PVL
#> [1] "AVPR1A"   "NDUFA4L2" "MYH11"    "PDGFRB"  
#> 
#> $Ref2$Plasmablasts
#> [1] "TNFRSF17" "DERL3"    "MZB1"     "SLAMF7"  
#> 
#> $Ref2$`T-cells`
#> [1] "CD3E" "CD3D" "CD3G" "IL7R"

Annotate the MOB ST data using CAESAR and marker genes from scRNA-seq reference data

Similarly, we first calculate co-embeddings for Xenium BC dataset. The difference is that spatial transcriptome data has spatial coordinates and image feature information, so we can obtain image-based spatial aware co-embeddings.

BC_XeniumList <- lapply(1:2, function(i) {
    seu <- BC_XeniumList[[i]]

    # the spatial coordinates
    pos <- seu@meta.data[, c("x_centroid", "y_centroid")]
    print(head(pos))

    # the image feature
    feature_img <- BC_feature_imgList[[i]]

    seu <- CAESAR.coembedding.image(
        seu, feature_img, pos, reduction.name = "caesar", q = 50)
    seu
})
#>       x_centroid y_centroid
#> 24387  2296.2025   913.7803
#> 4049    852.6599  1739.8252
#> 11570  1259.9557  1564.8037
#> 25172  2199.9682  1074.7750
#> 32617  2665.6389  1595.0457
#> 13902   923.3366  2157.2375
#> Find the adjacency matrix by bisection method...
#> Current radius is 200.5
#> Median of neighborhoods is 0
#> Current radius is 100.75
#> Median of neighborhoods is 66
#> Current radius is 50.88
#> Median of neighborhoods is 17
#> Current radius is 50.88
#> Median of neighborhoods is 4
#> Step into function
#> Centering X
#> Calculate initial values using PCA
#> Finish the initialization! 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 2, elbo= -593983.513739, delbo=-59398351373919832491687936.000000 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 3, elbo= -574548.382010, delbo=0.032720 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 4, elbo= -569948.909649, delbo=0.008005 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 5, elbo= -567200.047658, delbo=0.004823 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 6, elbo= -565256.567256, delbo=0.003426 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 7, elbo= -563815.667637, delbo=0.002549 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 8, elbo= -562743.730446, delbo=0.001901 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 9, elbo= -561912.619046, delbo=0.001477 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 10, elbo= -561232.784890, delbo=0.001210 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 11, elbo= -560646.304523, delbo=0.001045 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 12, elbo= -560118.172819, delbo=0.000942 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 13, elbo= -559625.808512, delbo=0.000879 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 14, elbo= -559155.484286, delbo=0.000840 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 15, elbo= -558699.331457, delbo=0.000816 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 16, elbo= -558254.264172, delbo=0.000797 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 17, elbo= -557820.923119, delbo=0.000776 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 18, elbo= -557402.609585, delbo=0.000750 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 19, elbo= -557003.619831, delbo=0.000716 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 20, elbo= -556627.795572, delbo=0.000675 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 21, elbo= -556277.578078, delbo=0.000629 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 22, elbo= -555953.591518, delbo=0.000582 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 23, elbo= -555654.578032, delbo=0.000538 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 24, elbo= -555377.754873, delbo=0.000498 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 25, elbo= -555119.458514, delbo=0.000465 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 26, elbo= -554875.836816, delbo=0.000439 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 27, elbo= -554643.379624, delbo=0.000419 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 28, elbo= -554419.245297, delbo=0.000404 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 29, elbo= -554201.409294, delbo=0.000393 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 30, elbo= -553988.672079, delbo=0.000384
#> 2024-12-16 07:14:27.587101 : ***** Finish calculate CAESAR embedding, 0.094 mins elapsed.
#> The spatial cooridnates are 2 dimensions
#> Find the adjacency matrix by bisection method...
#> Current radius is 200.5
#> Median of neighborhoods is 0
#> Current radius is 100.75
#> Median of neighborhoods is 66
#> Current radius is 50.88
#> Median of neighborhoods is 17
#> Current radius is 50.88
#> Median of neighborhoods is 4
#>       x_centroid y_centroid
#> 24387  1832.7835  1032.5848
#> 4049    476.8307  2294.2419
#> 11570  1655.3104   332.9922
#> 25172  1699.3427  1361.4992
#> 32617  2694.3627   286.2827
#> 13902   971.3380  1172.3937
#> Find the adjacency matrix by bisection method...
#> Current radius is 200.5
#> Median of neighborhoods is 0
#> Current radius is 100.75
#> Median of neighborhoods is 65
#> Current radius is 50.88
#> Median of neighborhoods is 18
#> Current radius is 50.88
#> Median of neighborhoods is 5
#> Step into function
#> Centering X
#> Calculate initial values using PCA
#> Finish the initialization! 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 2, elbo= -592047.437411, delbo=-59204743741084802916286464.000000 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 3, elbo= -573230.881064, delbo=0.031782 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 4, elbo= -569049.338656, delbo=0.007295 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 5, elbo= -566508.571569, delbo=0.004465 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 6, elbo= -564595.023110, delbo=0.003378 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 7, elbo= -563091.668725, delbo=0.002663 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 8, elbo= -561950.440446, delbo=0.002027 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 9, elbo= -561090.315895, delbo=0.001531 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 10, elbo= -560430.285750, delbo=0.001176 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 11, elbo= -559903.561787, delbo=0.000940 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 12, elbo= -559464.796024, delbo=0.000784 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 13, elbo= -559083.431684, delbo=0.000682 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 14, elbo= -558739.806602, delbo=0.000615 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 15, elbo= -558420.977283, delbo=0.000571 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 16, elbo= -558118.730455, delbo=0.000541 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 17, elbo= -557828.101167, delbo=0.000521 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 18, elbo= -557546.793380, delbo=0.000504 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 19, elbo= -557274.701835, delbo=0.000488 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 20, elbo= -557013.461475, delbo=0.000469 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 21, elbo= -556765.652925, delbo=0.000445 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 22, elbo= -556533.732295, delbo=0.000417 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 23, elbo= -556318.910276, delbo=0.000386 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 24, elbo= -556120.557224, delbo=0.000357 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 25, elbo= -555936.435244, delbo=0.000331 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 26, elbo= -555763.467782, delbo=0.000311 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 27, elbo= -555598.470069, delbo=0.000297 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 28, elbo= -555438.565512, delbo=0.000288 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 29, elbo= -555281.327159, delbo=0.000283 
#> Start E-step 
#> Calculate XLB...Calculate M...Calculate Mu_h...Finish E-step 
#> Update mu 
#> Update B 
#> Update Lambda 
#> Update Phi 
#> iter = 30, elbo= -555124.780564, delbo=0.000282
#> 2024-12-16 07:14:34.333124 : ***** Finish calculate CAESAR embedding, 0.093 mins elapsed.
#> The spatial cooridnates are 2 dimensions
#> Find the adjacency matrix by bisection method...
#> Current radius is 200.5
#> Median of neighborhoods is 0
#> Current radius is 100.75
#> Median of neighborhoods is 65
#> Current radius is 50.88
#> Median of neighborhoods is 18
#> Current radius is 50.88
#> Median of neighborhoods is 5
names(BC_XeniumList) <- paste0("BC", 1:2)

print(BC_XeniumList)
#> $BC1
#> An object of class Seurat 
#> 302 features across 3000 samples within 1 assay 
#> Active assay: RNA (302 features, 302 variable features)
#>  2 layers present: counts, data
#>  1 dimensional reduction calculated: caesar
#> 
#> $BC2
#> An object of class Seurat 
#> 302 features across 3000 samples within 1 assay 
#> Active assay: RNA (302 features, 302 variable features)
#>  2 layers present: counts, data
#>  1 dimensional reduction calculated: caesar

Subsequently, the CAESAR co-embeddings and marker gene lists from scRNA-seq reference datasets are used to annotate the Xenium BC data.

# convert marker list to marker frequency matrix
marker.freq <- markerList2mat(markerList)

# perform annotation using CAESAR and save results to Seurat object
BC_XeniumList <- lapply(
    BC_XeniumList, CAESAR.annotation, marker.freq = marker.freq,
    reduction.name = "caesar", add.to.meta = TRUE
)
#> Calculate co-embedding distance...
#> Calculate co-embedding distance...
print(colnames(BC_XeniumList[[1]]@meta.data))
#>  [1] "orig.ident"             "nCount_RNA"             "nFeature_RNA"          
#>  [4] "x_centroid"             "y_centroid"             "CAESAR"                
#>  [7] "CAESARunasg"            "CAESARconf"             "dist_B.cells"          
#> [10] "dist_CAFs"              "dist_Cancer.Epithelial" "dist_Endothelial"      
#> [13] "dist_Myeloid"           "dist_Normal.Epithelial" "dist_PVL"              
#> [16] "dist_Plasmablasts"      "dist_T.cells"           "prob_B.cells"          
#> [19] "prob_CAFs"              "prob_Cancer.Epithelial" "prob_Endothelial"      
#> [22] "prob_Myeloid"           "prob_Normal.Epithelial" "prob_PVL"              
#> [25] "prob_Plasmablasts"      "prob_T.cells"

Downstream analysis

In the following, we visualize the CAESAR annotation results.

# set up colors
cols <- setNames(
    c(
        "#fdc086", "#386cb0", "#b30000", "#FBEA2E", "#731A73",
        "#FF8C00", "#F898CB", "#4DAF4A", "#a6cee3", "#737373"
    ),
    c(
        "B-cells", "CAFs", "Cancer Epithelial", "Endothelial", "Myeloid",
        "Normal Epithelial", "Plasmablasts", "PVL", "T-cells", "unassigned"
    )
)
celltypes <- c(
    "B-cells", "CAFs", "Cancer Epithelial", "Endothelial", "Myeloid",
    "Normal Epithelial", "Plasmablasts", "PVL", "T-cells", "unassigned"
)

BC_XeniumList <- lapply(BC_XeniumList, function(seu) {
    Idents(seu) <- factor(seu$CAESARunasg, levels = celltypes)

    pos <- seu@meta.data[, c("x_centroid", "y_centroid")]
    colnames(pos) <- paste0("pos", 1:2)
    seu@reductions[["pos"]] <- CreateDimReducObject(
        embeddings = as.matrix(pos),
        key = paste0("pos", "_"), assay = "RNA"
    )
    seu
})

First, we visualize the CAESAR annotation account for ‘unassigned’.

plots <- lapply(BC_XeniumList, function(seu) {
    DimPlot(seu, reduction = "pos", cols = cols, pt.size = 1)
})

cowplot::plot_grid(plotlist = plots, ncol = 1)

The confidence level of the CAESAR annotation can be visualized by

plots <- lapply(BC_XeniumList, function(seu) {
    FeaturePlot(
        seu,
        reduction = "pos", features = "CAESARconf", pt.size = 1,
        cols = c("blue", "lightgrey"), min.cutoff = 0.0, max.cutoff = 1.0
    )
})

cowplot::plot_grid(plotlist = plots, ncol = 1)

Next, we detect and visualize the signature genes for each cell type.

sg_List <- lapply(BC_XeniumList, find.sig.genes)

str(sg_List)
#> List of 2
#>  $ BC1:List of 9
#>   ..$ CAFs             :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 22.1 22.3 22.4 22.4 22.5 ...
#>   .. ..$ expr.prop       : num [1:302] 0.643 0.632 0.353 0.711 0.327 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.0794 0.0951 0.056 0.1397 0.0435 ...
#>   .. ..$ label           : chr [1:302] "CAFs" "CAFs" "CAFs" "CAFs" ...
#>   .. ..$ gene            : chr [1:302] "FBLN1" "PTGDS" "DPT" "CCDC80" ...
#>   ..$ Cancer Epithelial:'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 16.1 16.2 16.2 16.2 16.2 ...
#>   .. ..$ expr.prop       : num [1:302] 0.363 0.925 0.901 0.813 0.965 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.0823 0.2794 0.2695 0.217 0.3738 ...
#>   .. ..$ label           : chr [1:302] "Cancer Epithelial" "Cancer Epithelial" "Cancer Epithelial" "Cancer Epithelial" ...
#>   .. ..$ gene            : chr [1:302] "LYPD3" "AGR3" "MLPH" "SCD" ...
#>   ..$ Endothelial      :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 22.8 22.9 23 23 23 ...
#>   .. ..$ expr.prop       : num [1:302] 0.461 0.768 0.289 0.338 0.268 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.017 0.0451 0.0105 0.018 0.0177 ...
#>   .. ..$ label           : chr [1:302] "Endothelial" "Endothelial" "Endothelial" "Endothelial" ...
#>   .. ..$ gene            : chr [1:302] "HOXD9" "VWF" "EGFL7" "IL3RA" ...
#>   ..$ Myeloid          :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 27.5 27.5 27.6 28 28.1 ...
#>   .. ..$ expr.prop       : num [1:302] 0.64 0.609 0.594 0.426 0.888 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.0239 0.0489 0.0474 0.0385 0.1327 ...
#>   .. ..$ label           : chr [1:302] "Myeloid" "Myeloid" "Myeloid" "Myeloid" ...
#>   .. ..$ gene            : chr [1:302] "ITGAX" "HAVCR2" "IGSF6" "CD86" ...
#>   ..$ Normal Epithelial:'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 21.3 22.4 23.1 23.5 23.5 ...
#>   .. ..$ expr.prop       : num [1:302] 0.468 0.643 0.474 0.338 0.39 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.0379 0.1167 0.0548 0.0611 0.1114 ...
#>   .. ..$ label           : chr [1:302] "Normal Epithelial" "Normal Epithelial" "Normal Epithelial" "Normal Epithelial" ...
#>   .. ..$ gene            : chr [1:302] "PIGR" "KRT15" "KIT" "KRT6B" ...
#>   ..$ PVL              :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 23.2 23.3 23.5 23.5 23.6 ...
#>   .. ..$ expr.prop       : num [1:302] 0.885 0.596 0.442 0.5 0.596 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.196 0.185 0.117 0.166 0.223 ...
#>   .. ..$ label           : chr [1:302] "PVL" "PVL" "PVL" "PVL" ...
#>   .. ..$ gene            : chr [1:302] "PDGFRB" "ZEB1" "SFRP4" "EGFR" ...
#>   ..$ Plasmablasts     :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 29.1 29.7 30.7 31.3 32.3 ...
#>   .. ..$ expr.prop       : num [1:302] 0.667 0.444 0.556 0.852 0.556 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.00303 0.00774 0.00774 0.0111 0.01043 ...
#>   .. ..$ label           : chr [1:302] "Plasmablasts" "Plasmablasts" "Plasmablasts" "Plasmablasts" ...
#>   .. ..$ gene            : chr [1:302] "CD79A" "DERL3" "TNFRSF17" "MZB1" ...
#>   ..$ T-cells          :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 29.9 30 30.2 30.9 31 ...
#>   .. ..$ expr.prop       : num [1:302] 0.622 0.473 0.892 0.378 0.419 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.01196 0.00923 0.03076 0.01435 0.01128 ...
#>   .. ..$ label           : chr [1:302] "T-cells" "T-cells" "T-cells" "T-cells" ...
#>   .. ..$ gene            : chr [1:302] "CD3G" "CD3D" "CD3E" "CD69" ...
#>   ..$ unassigned       :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 25.2 25.2 25.2 25.3 25.3 ...
#>   .. ..$ expr.prop       : num [1:302] 0.699 0.6 0.519 0.439 0.791 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.349 0.243 0.137 0.131 0.573 ...
#>   .. ..$ label           : chr [1:302] "unassigned" "unassigned" "unassigned" "unassigned" ...
#>   .. ..$ gene            : chr [1:302] "MYLK" "KRT14" "KRT5" "MYH11" ...
#>  $ BC2:List of 10
#>   ..$ B-cells          :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 35.9 37.8 46 47 48.9 ...
#>   .. ..$ expr.prop       : num [1:302] 0.667 0.667 0.667 1 0.667 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.00334 0.00634 0.00968 0.01668 0.01568 ...
#>   .. ..$ label           : chr [1:302] "B-cells" "B-cells" "B-cells" "B-cells" ...
#>   .. ..$ gene            : chr [1:302] "TCL1A" "LILRA4" "SPIB" "PLD4" ...
#>   ..$ CAFs             :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 21.4 21.6 21.7 21.7 21.7 ...
#>   .. ..$ expr.prop       : num [1:302] 0.724 0.737 0.474 0.763 0.237 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.0751 0.1315 0.0683 0.1293 0.0322 ...
#>   .. ..$ label           : chr [1:302] "CAFs" "CAFs" "CAFs" "CAFs" ...
#>   .. ..$ gene            : chr [1:302] "FBLN1" "PDGFRA" "CRISPLD2" "CCDC80" ...
#>   ..$ Cancer Epithelial:'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 16.7 16.7 16.7 16.7 16.7 ...
#>   .. ..$ expr.prop       : num [1:302] 0.915 0.892 0.973 0.384 0.758 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.2341 0.2523 0.3097 0.0785 0.1941 ...
#>   .. ..$ label           : chr [1:302] "Cancer Epithelial" "Cancer Epithelial" "Cancer Epithelial" "Cancer Epithelial" ...
#>   .. ..$ gene            : chr [1:302] "AGR3" "MLPH" "ESR1" "LYPD3" ...
#>   ..$ Endothelial      :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 22.9 23 23 23 23 ...
#>   .. ..$ expr.prop       : num [1:302] 0.481 0.276 0.338 0.59 0.429 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.01362 0.00932 0.01541 0.03907 0.01828 ...
#>   .. ..$ label           : chr [1:302] "Endothelial" "Endothelial" "Endothelial" "Endothelial" ...
#>   .. ..$ gene            : chr [1:302] "HOXD9" "EGFL7" "SOX17" "KDR" ...
#>   ..$ Myeloid          :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 27.5 27.6 27.6 27.7 27.9 ...
#>   .. ..$ expr.prop       : num [1:302] 0.59 0.51 0.455 0.405 0.91 0.475 0.805 0.155 0.37 0.76 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.0207 0.045 0.0418 0.03 0.1332 ...
#>   .. ..$ label           : chr [1:302] "Myeloid" "Myeloid" "Myeloid" "Myeloid" ...
#>   .. ..$ gene            : chr [1:302] "ITGAX" "HAVCR2" "IGSF6" "CD86" ...
#>   ..$ Normal Epithelial:'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 20.4 20.8 21 21 21.3 ...
#>   .. ..$ expr.prop       : num [1:302] 0.594 0.267 0.711 0.406 0.867 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.105 0.0482 0.2372 0.0876 0.3869 ...
#>   .. ..$ label           : chr [1:302] "Normal Epithelial" "Normal Epithelial" "Normal Epithelial" "Normal Epithelial" ...
#>   .. ..$ gene            : chr [1:302] "KRT15" "PIGR" "KRT14" "KRT16" ...
#>   ..$ PVL              :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 21.9 22.1 22.2 22.3 22.4 ...
#>   .. ..$ expr.prop       : num [1:302] 0.7255 0.4706 0.451 0.1765 0.0588 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.2197 0.1109 0.1835 0.0231 0.0309 ...
#>   .. ..$ label           : chr [1:302] "PVL" "PVL" "PVL" "PVL" ...
#>   .. ..$ gene            : chr [1:302] "CAV1" "SFRP4" "ZEB1" "AVPR1A" ...
#>   ..$ Plasmablasts     :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 27.4 27.8 28.3 29.4 31.9 ...
#>   .. ..$ expr.prop       : num [1:302] 0.56 0.52 0.8 0.44 0.8 0.4 0.88 0.48 0.08 0.36 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.00403 0.00403 0.00975 0.00605 0.03361 ...
#>   .. ..$ label           : chr [1:302] "Plasmablasts" "Plasmablasts" "Plasmablasts" "Plasmablasts" ...
#>   .. ..$ gene            : chr [1:302] "CD79A" "TNFRSF17" "MZB1" "DERL3" ...
#>   ..$ T-cells          :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 30.7 31 31 31.6 31.8 ...
#>   .. ..$ expr.prop       : num [1:302] 0.84 0.531 0.691 0.531 0.333 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.024 0.0164 0.0319 0.0116 0.0134 ...
#>   .. ..$ label           : chr [1:302] "T-cells" "T-cells" "T-cells" "T-cells" ...
#>   .. ..$ gene            : chr [1:302] "CD3E" "CD3G" "IL7R" "CD3D" ...
#>   ..$ unassigned       :'data.frame':    302 obs. of  5 variables:
#>   .. ..$ distance        : num [1:302] 24.8 24.9 24.9 25 25 ...
#>   .. ..$ expr.prop       : num [1:302] 0.652 0.389 0.725 0.444 0.529 ...
#>   .. ..$ expr.prop.others: num [1:302] 0.361 0.144 0.558 0.144 0.381 ...
#>   .. ..$ label           : chr [1:302] "unassigned" "unassigned" "unassigned" "unassigned" ...
#>   .. ..$ gene            : chr [1:302] "MYLK" "MYH11" "ACTA2" "KRT5" ...

We remove unwanted variation by

dist_names <- paste0("dist_", gsub("-|/| ", ".", setdiff(celltypes, "unassigned")))

distList <- lapply(BC_XeniumList, function(seu) {
    as.matrix(seu@meta.data[, dist_names])
})

seuInt <- CAESAR.RUV(BC_XeniumList, distList, verbose = FALSE, species = "human")

metaInt <- Reduce(rbind, lapply(BC_XeniumList, function(seu) {
    as.matrix(seu@meta.data[, "CAESARunasg", drop = FALSE])
})) %>% as.data.frame()
colnames(metaInt) <- "CAESARunasg"
row.names(metaInt) <- colnames(seuInt)
seuInt <- AddMetaData(seuInt, metaInt, col.name = colnames(metaInt))
Idents(seuInt) <- factor(seuInt$CAESARunasg, levels = names(cols))

print(seuInt)
#> An object of class Seurat 
#> 302 features across 6000 samples within 1 assay 
#> Active assay: CAESAR (302 features, 0 variable features)
#>  2 layers present: counts, data

Then, we can visualize the top three signature genes by a dot plot.

# obtain the top three signature genes
celltypes_plot <- setdiff(celltypes, "unassigned")
top3sgs <- Intsg(sg_List, 3)[celltypes_plot]
print(top3sgs)
#> $`B-cells`
#> [1] "TCL1A"  "LILRA4" "SPIB"  
#> 
#> $CAFs
#> [1] "FBLN1"  "PTGDS"  "CCDC80"
#> 
#> $`Cancer Epithelial`
#> [1] "AGR3"  "LYPD3" "MLPH" 
#> 
#> $Endothelial
#> [1] "HOXD9" "EGFL7" "VWF"  
#> 
#> $Myeloid
#> [1] "ITGAX"  "HAVCR2" "IGSF6" 
#> 
#> $`Normal Epithelial`
#> [1] "PIGR"  "KRT15" "KRT6B"
#> 
#> $Plasmablasts
#> [1] "CD79A"    "TNFRSF17" "DERL3"   
#> 
#> $PVL
#> [1] "ZEB1"  "SFRP4" "CAV1" 
#> 
#> $`T-cells`
#> [1] "CD3G" "CD3E" "CD3D"

sg_features <- unname(unlist(top3sgs))

DotPlot(
    seuInt,
    idents = celltypes_plot, col.min = -1, col.max = 2, dot.scale = 7,
    features = sg_features, scale.min = 0, scale.max = 30
) + theme(axis.text.x = element_text(face = "italic", angle = 45, vjust = 1, hjust = 1))

Next, we calculate the UMAP projections of co-embeddings of cells and the selected signature genes.

# calculate coumap
BC_XeniumList <- lapply(
    BC_XeniumList, CoUMAP, reduction = "caesar",
    reduction.name = "caesarUMAP", gene.set = sg_features
)

df_gene_label <- data.frame(
    gene = unlist(top3sgs),
    label = rep(names(top3sgs), each = 3)
)

plots <- lapply(BC_XeniumList, function(seu) {
    CoUMAP.plot(
        seu, reduction = "caesarUMAP", gene_txtdata = df_gene_label,
        cols = c("gene" = "#000000", cols)
    )
})

cowplot::plot_grid(plotlist = plots, ncol = 1)

Enrichment analysis

Next, we show how to use CAESAR for enrichment analysis. Here we choose GOBP pathways as an example. Let’s first get some pathways.

pathway_list <- msigdbr(species = "Homo sapiens", category = "C5", subcategory = "GO:BP") %>%
    group_by(gs_name) %>%
    summarise(genes = list(intersect(gene_symbol, common_genes))) %>%
    tibble::deframe()
n.pathway_list <- sapply(pathway_list, length)
pathway_list <- pathway_list[n.pathway_list >= 5]

print(head(pathway_list))
#> $GOBP_ACTIN_CYTOSKELETON_REORGANIZATION
#> [1] "CSF3"    "CTTN"    "DAPK3"   "KIT"     "PDGFRA"  "RAPGEF3"
#> 
#> $GOBP_ACTIN_FILAMENT_BASED_MOVEMENT
#> [1] "ACTA2" "CAV1"  "DSC2"  "DSP"   "JUP"   "MYO5B" "STC1" 
#> 
#> $GOBP_ACTIN_FILAMENT_BASED_PROCESS
#>  [1] "ACTA2"    "AIF1"     "AQP1"     "CAV1"     "CCR7"     "CDC42EP1"
#>  [7] "CSF3"     "CTTN"     "CXCL12"   "DAPK3"    "DSC2"     "DSP"     
#> [13] "EDN1"     "ENAH"     "FLNB"     "JUP"      "KIT"      "MYH11"   
#> [19] "MYO5B"    "PDGFRA"   "PDGFRB"   "RAPGEF3"  "RHOH"     "SDC4"    
#> [25] "SFRP1"    "STC1"     "SVIL"     "TACSTD2"  "TYROBP"  
#> 
#> $GOBP_ACTIN_FILAMENT_BUNDLE_ORGANIZATION
#> [1] "AIF1"    "RAPGEF3" "SDC4"    "SFRP1"   "TACSTD2"
#> 
#> $GOBP_ACTIN_FILAMENT_ORGANIZATION
#>  [1] "AIF1"     "CCR7"     "CDC42EP1" "CSF3"     "CTTN"     "CXCL12"  
#>  [7] "ENAH"     "MYO5B"    "RAPGEF3"  "RHOH"     "SDC4"     "SFRP1"   
#> [13] "SVIL"     "TACSTD2" 
#> 
#> $GOBP_ACTIN_FILAMENT_POLYMERIZATION
#> [1] "AIF1"     "CCR7"     "CDC42EP1" "CSF3"     "CTTN"     "SVIL"

Then, we can test whether those pathways are enriched in BC1 section.

seuBC1 <- BC_XeniumList[[1]]

df_enrich <- CAESAR.enrich.pathway(
    seuBC1, pathway.list = pathway_list, reduction = "caesar"
)
#> Only the approximate p-values based on asymptotic theory are calculated as perm.num is set as 0.

# obtain significant enriched pathways
pathways <- pathway_list[df_enrich$asy.wei.pval.adj < 0.05]

Next, we can calculate the spot level enrichment scores and detect differentially enriched pathways.

enrich.score.BC1 <- CAESAR.enrich.score(seuBC1, pathways)
#> There are 223 pathways. The largest pathway has 98 genes.
#> Pathways with 5 genes finished, which includes 32 pathways, elapsed time is 0.778s.
#> Pathways with 6 genes finished, which includes 26 pathways, elapsed time is 0.502s.
#> Pathways with 7 genes finished, which includes 20 pathways, elapsed time is 0.412s.
#> Pathways with 8 genes finished, which includes 15 pathways, elapsed time is 0.273s.
#> Pathways with 9 genes finished, which includes 7 pathways, elapsed time is 0.144s.
#> Pathways with 10 genes finished, which includes 7 pathways, elapsed time is 0.145s.
#> Pathways with 11 genes finished, which includes 9 pathways, elapsed time is 0.173s.
#> Pathways with 12 genes finished, which includes 6 pathways, elapsed time is 0.125s.
#> Pathways with 13 genes finished, which includes 5 pathways, elapsed time is 0.107s.
#> Pathways with 14 genes finished, which includes 6 pathways, elapsed time is 0.122s.
#> Pathways with 15 genes finished, which includes 3 pathways, elapsed time is 0.074s.
#> Pathways with 16 genes finished, which includes 2 pathways, elapsed time is 0.057s.
#> Pathways with 17 genes finished, which includes 2 pathways, elapsed time is 0.056s.
#> Pathways with 18 genes finished, which includes 3 pathways, elapsed time is 0.077s.
#> Pathways with 19 genes finished, which includes 5 pathways, elapsed time is 0.135s.
#> Pathways with 20 genes finished, which includes 4 pathways, elapsed time is 0.09s.
#> Pathways with 21 genes finished, which includes 4 pathways, elapsed time is 0.09s.
#> Pathways with 22 genes finished, which includes 4 pathways, elapsed time is 0.091s.
#> Pathways with 23 genes finished, which includes 1 pathways, elapsed time is 0.042s.
#> Pathways with 24 genes finished, which includes 4 pathways, elapsed time is 0.091s.
#> Pathways with 25 genes finished, which includes 5 pathways, elapsed time is 0.106s.
#> Pathways with 26 genes finished, which includes 1 pathways, elapsed time is 0.043s.
#> Pathways with 27 genes finished, which includes 1 pathways, elapsed time is 0.042s.
#> Pathways with 29 genes finished, which includes 1 pathways, elapsed time is 0.042s.
#> Pathways with 30 genes finished, which includes 5 pathways, elapsed time is 0.107s.
#> Pathways with 31 genes finished, which includes 1 pathways, elapsed time is 0.043s.
#> Pathways with 32 genes finished, which includes 4 pathways, elapsed time is 0.092s.
#> Pathways with 34 genes finished, which includes 1 pathways, elapsed time is 0.042s.
#> Pathways with 35 genes finished, which includes 1 pathways, elapsed time is 0.041s.
#> Pathways with 36 genes finished, which includes 3 pathways, elapsed time is 0.074s.
#> Pathways with 37 genes finished, which includes 4 pathways, elapsed time is 0.092s.
#> Pathways with 38 genes finished, which includes 1 pathways, elapsed time is 0.042s.
#> Pathways with 39 genes finished, which includes 2 pathways, elapsed time is 0.058s.
#> Pathways with 41 genes finished, which includes 3 pathways, elapsed time is 0.168s.
#> Pathways with 42 genes finished, which includes 1 pathways, elapsed time is 0.043s.
#> Pathways with 43 genes finished, which includes 1 pathways, elapsed time is 0.043s.
#> Pathways with 44 genes finished, which includes 2 pathways, elapsed time is 0.058s.
#> Pathways with 47 genes finished, which includes 1 pathways, elapsed time is 0.04s.
#> Pathways with 48 genes finished, which includes 1 pathways, elapsed time is 0.041s.
#> Pathways with 49 genes finished, which includes 1 pathways, elapsed time is 0.039s.
#> Pathways with 50 genes finished, which includes 1 pathways, elapsed time is 0.04s.
#> Pathways with 52 genes finished, which includes 3 pathways, elapsed time is 0.072s.
#> Pathways with 55 genes finished, which includes 1 pathways, elapsed time is 0.04s.
#> Pathways with 56 genes finished, which includes 1 pathways, elapsed time is 0.043s.
#> Pathways with 57 genes finished, which includes 1 pathways, elapsed time is 0.04s.
#> Pathways with 60 genes finished, which includes 3 pathways, elapsed time is 0.073s.
#> Pathways with 63 genes finished, which includes 1 pathways, elapsed time is 0.041s.
#> Pathways with 73 genes finished, which includes 1 pathways, elapsed time is 0.039s.
#> Pathways with 78 genes finished, which includes 1 pathways, elapsed time is 0.043s.
#> Pathways with 79 genes finished, which includes 1 pathways, elapsed time is 0.039s.
#> Pathways with 86 genes finished, which includes 1 pathways, elapsed time is 0.039s.
#> Pathways with 87 genes finished, which includes 2 pathways, elapsed time is 0.083s.
#> Pathways with 98 genes finished, which includes 1 pathways, elapsed time is 0.039s.

dep.pvals <- CAESAR.CTDEP(seuBC1, enrich.score.BC1)
head(dep.pvals)
#>                                                                                                                                         CAFs
#> GOBP_ACTIVATED_T_CELL_PROLIFERATION                                                                                            2.995968e-138
#> GOBP_ACTIVATION_OF_IMMUNE_RESPONSE                                                                                              1.002358e-87
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE                                                                                                  7.012863e-118
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATIC_RECOMBINATION_OF_IMMUNE_RECEPTORS_BUILT_FROM_IMMUNOGLOBULIN_SUPERFAMILY_DOMAINS  3.263156e-77
#> GOBP_ADAPTIVE_THERMOGENESIS                                                                                                     1.000000e+00
#> GOBP_ALCOHOL_METABOLIC_PROCESS                                                                                                 5.080902e-141
#>                                                                                                                                Cancer Epithelial
#> GOBP_ACTIVATED_T_CELL_PROLIFERATION                                                                                                 1.000000e+00
#> GOBP_ACTIVATION_OF_IMMUNE_RESPONSE                                                                                                  1.000000e+00
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE                                                                                                       1.000000e+00
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATIC_RECOMBINATION_OF_IMMUNE_RECEPTORS_BUILT_FROM_IMMUNOGLOBULIN_SUPERFAMILY_DOMAINS      1.000000e+00
#> GOBP_ADAPTIVE_THERMOGENESIS                                                                                                         3.004367e-50
#> GOBP_ALCOHOL_METABOLIC_PROCESS                                                                                                      1.000000e+00
#>                                                                                                                                 Endothelial
#> GOBP_ACTIVATED_T_CELL_PROLIFERATION                                                                                            5.954576e-26
#> GOBP_ACTIVATION_OF_IMMUNE_RESPONSE                                                                                             3.672744e-42
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE                                                                                                  1.103258e-07
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATIC_RECOMBINATION_OF_IMMUNE_RECEPTORS_BUILT_FROM_IMMUNOGLOBULIN_SUPERFAMILY_DOMAINS 5.000408e-23
#> GOBP_ADAPTIVE_THERMOGENESIS                                                                                                    1.000000e+00
#> GOBP_ALCOHOL_METABOLIC_PROCESS                                                                                                 2.514726e-70
#>                                                                                                                                      Myeloid
#> GOBP_ACTIVATED_T_CELL_PROLIFERATION                                                                                             6.898713e-39
#> GOBP_ACTIVATION_OF_IMMUNE_RESPONSE                                                                                              1.037095e-97
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE                                                                                                  4.172045e-161
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATIC_RECOMBINATION_OF_IMMUNE_RECEPTORS_BUILT_FROM_IMMUNOGLOBULIN_SUPERFAMILY_DOMAINS 3.232044e-107
#> GOBP_ADAPTIVE_THERMOGENESIS                                                                                                     1.000000e+00
#> GOBP_ALCOHOL_METABOLIC_PROCESS                                                                                                  9.999950e-01
#>                                                                                                                                Normal Epithelial
#> GOBP_ACTIVATED_T_CELL_PROLIFERATION                                                                                                 1.000000e+00
#> GOBP_ACTIVATION_OF_IMMUNE_RESPONSE                                                                                                  2.641846e-02
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE                                                                                                       1.000000e+00
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATIC_RECOMBINATION_OF_IMMUNE_RECEPTORS_BUILT_FROM_IMMUNOGLOBULIN_SUPERFAMILY_DOMAINS      1.759878e-06
#> GOBP_ADAPTIVE_THERMOGENESIS                                                                                                         3.064926e-11
#> GOBP_ALCOHOL_METABOLIC_PROCESS                                                                                                      9.999960e-01
#>                                                                                                                                         PVL
#> GOBP_ACTIVATED_T_CELL_PROLIFERATION                                                                                            8.678340e-14
#> GOBP_ACTIVATION_OF_IMMUNE_RESPONSE                                                                                             1.153115e-10
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE                                                                                                  1.170283e-05
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATIC_RECOMBINATION_OF_IMMUNE_RECEPTORS_BUILT_FROM_IMMUNOGLOBULIN_SUPERFAMILY_DOMAINS 8.290364e-10
#> GOBP_ADAPTIVE_THERMOGENESIS                                                                                                    9.984776e-01
#> GOBP_ALCOHOL_METABOLIC_PROCESS                                                                                                 1.535537e-18
#>                                                                                                                                Plasmablasts
#> GOBP_ACTIVATED_T_CELL_PROLIFERATION                                                                                            5.299316e-10
#> GOBP_ACTIVATION_OF_IMMUNE_RESPONSE                                                                                             1.273776e-18
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE                                                                                                  9.008437e-29
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATIC_RECOMBINATION_OF_IMMUNE_RECEPTORS_BUILT_FROM_IMMUNOGLOBULIN_SUPERFAMILY_DOMAINS 4.040162e-15
#> GOBP_ADAPTIVE_THERMOGENESIS                                                                                                    1.000000e+00
#> GOBP_ALCOHOL_METABOLIC_PROCESS                                                                                                 9.975925e-01
#>                                                                                                                                     T-cells
#> GOBP_ACTIVATED_T_CELL_PROLIFERATION                                                                                            5.258666e-37
#> GOBP_ACTIVATION_OF_IMMUNE_RESPONSE                                                                                             7.172298e-46
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE                                                                                                  6.747899e-69
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATIC_RECOMBINATION_OF_IMMUNE_RECEPTORS_BUILT_FROM_IMMUNOGLOBULIN_SUPERFAMILY_DOMAINS 1.098426e-41
#> GOBP_ADAPTIVE_THERMOGENESIS                                                                                                    1.000000e+00
#> GOBP_ALCOHOL_METABOLIC_PROCESS                                                                                                 1.641314e-07
#>                                                                                                                                  unassigned
#> GOBP_ACTIVATED_T_CELL_PROLIFERATION                                                                                            1.854664e-04
#> GOBP_ACTIVATION_OF_IMMUNE_RESPONSE                                                                                             2.732494e-11
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE                                                                                                  8.361507e-01
#> GOBP_ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATIC_RECOMBINATION_OF_IMMUNE_RECEPTORS_BUILT_FROM_IMMUNOGLOBULIN_SUPERFAMILY_DOMAINS 1.848410e-28
#> GOBP_ADAPTIVE_THERMOGENESIS                                                                                                    2.169946e-23
#> GOBP_ALCOHOL_METABOLIC_PROCESS                                                                                                 1.000000e+00

We can visualize the spatial heatmap of enrichment score.

seuBC1 <- AddMetaData(seuBC1, as.data.frame(enrich.score.BC1))

pathway <- "GOBP_VASCULATURE_DEVELOPMENT"
FeaturePlot(seuBC1, features = pathway, reduction = "pos") +
    scale_color_gradientn(
        colors = c("#fff7f3", "#fcc5c0", "#f768a1", "#ae017e", "#49006a"),
        values = scales::rescale(seq(0, 1, 0.25)),
        limits = c(0, 1)
    ) +
    theme(
        legend.position = "right",
        legend.justification = "center",
        legend.box = "vertical"
    )
#> Scale for colour is already present.
#> Adding another scale for colour, which will replace the existing scale.

Session Info
sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#>  [1] dplyr_1.1.4        msigdbr_7.5.1      ggplot2_3.5.1      ProFAST_1.4       
#>  [5] gtools_3.9.5       Seurat_5.1.0       CAESAR.Suite_0.1.0 SeuratObject_5.0.2
#>  [9] sp_2.1-4           rmarkdown_2.29    
#> 
#> loaded via a namespace (and not attached):
#>   [1] matrixStats_1.4.1           spatstat.sparse_3.1-0      
#>   [3] httr_1.4.7                  RColorBrewer_1.1-3         
#>   [5] tools_4.4.2                 sctransform_0.4.1          
#>   [7] backports_1.5.0             utf8_1.2.4                 
#>   [9] R6_2.5.1                    lazyeval_0.2.2             
#>  [11] uwot_0.2.2                  withr_3.0.2                
#>  [13] prettyunits_1.2.0           gridExtra_2.3              
#>  [15] progressr_0.15.1            cli_3.6.3                  
#>  [17] Biobase_2.67.0              spatstat.explore_3.3-3     
#>  [19] fastDummies_1.7.4           labeling_0.4.3             
#>  [21] sass_0.4.9                  mvtnorm_1.3-2              
#>  [23] spatstat.data_3.1-4         proxy_0.4-27               
#>  [25] ggridges_0.5.6              pbapply_1.7-2              
#>  [27] harmony_1.2.3               scater_1.35.0              
#>  [29] parallelly_1.40.1           readxl_1.4.3               
#>  [31] rstudioapi_0.17.1           RSQLite_2.3.9              
#>  [33] FNN_1.1.4.1                 generics_0.1.3             
#>  [35] ica_1.0-3                   spatstat.random_3.3-2      
#>  [37] car_3.1-3                   Matrix_1.7-1               
#>  [39] ggbeeswarm_0.7.2            fansi_1.0.6                
#>  [41] DescTools_0.99.58           S4Vectors_0.45.2           
#>  [43] abind_1.4-8                 lifecycle_1.0.4            
#>  [45] yaml_2.3.10                 CompQuadForm_1.4.3         
#>  [47] carData_3.0-5               SummarizedExperiment_1.37.0
#>  [49] BiocFileCache_2.15.0        SparseArray_1.7.2          
#>  [51] Rtsne_0.17                  grid_4.4.2                 
#>  [53] blob_1.2.4                  promises_1.3.2             
#>  [55] crayon_1.5.3                GiRaF_1.0.1                
#>  [57] miniUI_0.1.1.1              lattice_0.22-6             
#>  [59] haven_2.5.4                 beachmat_2.23.5            
#>  [61] cowplot_1.1.3               KEGGREST_1.47.0            
#>  [63] sys_3.4.3                   maketools_1.3.1            
#>  [65] pillar_1.9.0                knitr_1.49                 
#>  [67] GenomicRanges_1.59.1        boot_1.3-31                
#>  [69] gld_2.6.6                   future.apply_1.11.3        
#>  [71] codetools_0.2-20            leiden_0.4.3.1             
#>  [73] glue_1.8.0                  spatstat.univar_3.1-1      
#>  [75] data.table_1.16.4           vctrs_0.6.5                
#>  [77] png_0.1-8                   spam_2.11-0                
#>  [79] org.Mm.eg.db_3.20.0         cellranger_1.1.0           
#>  [81] gtable_0.3.6                cachem_1.1.0               
#>  [83] xfun_0.49                   S4Arrays_1.7.1             
#>  [85] mime_0.12                   survival_3.7-0             
#>  [87] SingleCellExperiment_1.29.1 fitdistrplus_1.2-1         
#>  [89] ROCR_1.0-11                 nlme_3.1-166               
#>  [91] bit64_4.5.2                 filelock_1.0.3             
#>  [93] progress_1.2.3              RcppAnnoy_0.0.22           
#>  [95] GenomeInfoDb_1.43.2         bslib_0.8.0                
#>  [97] irlba_2.3.5.1               vipor_0.4.7                
#>  [99] KernSmooth_2.23-24          colorspace_2.1-1           
#> [101] BiocGenerics_0.53.3         DBI_1.2.3                  
#> [103] ade4_1.7-22                 Exact_3.3                  
#> [105] tidyselect_1.2.1            DR.SC_3.4                  
#> [107] curl_6.0.1                  bit_4.5.0.1                
#> [109] compiler_4.4.2              httr2_1.0.7                
#> [111] BiocNeighbors_2.1.2         expm_1.0-0                 
#> [113] xml2_1.3.6                  DelayedArray_0.33.3        
#> [115] plotly_4.10.4               scales_1.3.0               
#> [117] lmtest_0.9-40               rappdirs_0.3.3             
#> [119] stringr_1.5.1               digest_0.6.37              
#> [121] goftest_1.2-3               spatstat.utils_3.1-1       
#> [123] XVector_0.47.0              htmltools_0.5.8.1          
#> [125] pkgconfig_2.0.3             MatrixGenerics_1.19.0      
#> [127] dbplyr_2.5.0                fastmap_1.2.0              
#> [129] rlang_1.1.4                 htmlwidgets_1.6.4          
#> [131] ggthemes_5.1.0              UCSC.utils_1.3.0           
#> [133] shiny_1.10.0                farver_2.1.2               
#> [135] jquerylib_0.1.4             zoo_1.8-12                 
#> [137] jsonlite_1.8.9              BiocParallel_1.41.0        
#> [139] mclust_6.1.1                BiocSingular_1.23.0        
#> [141] magrittr_2.0.3              Formula_1.2-5              
#> [143] scuttle_1.17.0              GenomeInfoDbData_1.2.13    
#> [145] dotCall64_1.2               patchwork_1.3.0            
#> [147] munsell_0.5.1               Rcpp_1.0.13-1              
#> [149] babelgene_22.9              viridis_0.6.5              
#> [151] reticulate_1.40.0           furrr_0.3.1                
#> [153] stringi_1.8.4               rootSolve_1.8.2.4          
#> [155] zlibbioc_1.52.0             MASS_7.3-61                
#> [157] org.Hs.eg.db_3.20.0         plyr_1.8.9                 
#> [159] parallel_4.4.2              PRECAST_1.6.5              
#> [161] listenv_0.9.1               ggrepel_0.9.6              
#> [163] forcats_1.0.0               lmom_3.2                   
#> [165] deldir_2.0-4                Biostrings_2.75.3          
#> [167] splines_4.4.2               tensor_1.5                 
#> [169] hms_1.1.3                   igraph_2.1.2               
#> [171] ggpubr_0.6.0                spatstat.geom_3.3-4        
#> [173] ggsignif_0.6.4              RcppHNSW_0.6.0             
#> [175] buildtools_1.0.0            reshape2_1.4.4             
#> [177] biomaRt_2.63.0              stats4_4.4.2               
#> [179] ScaledMatrix_1.15.0         evaluate_1.0.1             
#> [181] httpuv_1.6.15               RANN_2.6.2                 
#> [183] tidyr_1.3.1                 purrr_1.0.2                
#> [185] polyclip_1.10-7             future_1.34.0              
#> [187] scattermore_1.2             rsvd_1.0.5                 
#> [189] broom_1.0.7                 xtable_1.8-4               
#> [191] e1071_1.7-16                RSpectra_0.16-2            
#> [193] rstatix_0.7.2               later_1.4.1                
#> [195] viridisLite_0.4.2           class_7.3-22               
#> [197] tibble_3.2.1                memoise_2.0.1              
#> [199] beeswarm_0.4.0              AnnotationDbi_1.69.0       
#> [201] IRanges_2.41.2              cluster_2.1.8              
#> [203] globals_0.16.3