Title: | Fixed Coupon Bond Valuation Allowing for Odd Coupon Periods and Various Day Count Conventions |
---|---|
Description: | Analysis of large datasets of fixed coupon bonds, allowing for irregular first and last coupon periods and various day count conventions. With this package you can compute the yield to maturity, the modified and MacAulay durations and the convexity of fixed-rate bonds. It provides the function AnnivDates, which can be used to evaluate the quality of the data and return time-invariant properties and temporal structure of a bond. |
Authors: | Djatschenko Wadim [aut, cre] |
Maintainer: | Djatschenko Wadim <[email protected]> |
License: | GPL-3 |
Version: | 0.1.1 |
Built: | 2024-12-19 06:25:39 UTC |
Source: | CRAN |
AccrInt returns the amount of interest accrued from some starting date up to some end date and the number of days of interest on the end date.
AccrInt( StartDate = as.Date(NA), EndDate = as.Date(NA), Coup = as.numeric(NA), DCC = as.numeric(NA), RV = as.numeric(NA), CpY = as.numeric(NA), Mat = as.Date(NA), YearNCP = as.Date(NA), EOM = as.numeric(NA), DateOrigin = as.Date("1970-01-01"), InputCheck = 1 )
AccrInt( StartDate = as.Date(NA), EndDate = as.Date(NA), Coup = as.numeric(NA), DCC = as.numeric(NA), RV = as.numeric(NA), CpY = as.numeric(NA), Mat = as.Date(NA), YearNCP = as.Date(NA), EOM = as.numeric(NA), DateOrigin = as.Date("1970-01-01"), InputCheck = 1 )
StartDate |
Calendar date on which interest accrual starts. Date class object with format "%Y-%m-%d". (required) |
EndDate |
Calendar date up to which interest accrues. Date class object with format "%Y-%m-%d". (required) |
Coup |
Nominal interest rate per year in percent. (required) |
DCC |
The day count convention for interest accrual. (required) |
RV |
The redemption value of the bond. Default: 100. |
CpY |
Number of interest payments per year (non-negative integer; element of the set {1,2,3,4,6,12}. Default: 2. |
Mat |
So-called "maturity date" i.e. date on which the redemption value and the final interest are paid. Date class object with format "%Y-%m-%d". |
YearNCP |
Year figure of the next coupon payment date after |
EOM |
Boolean indicating whether the bond follows the End-of-Month rule. |
DateOrigin |
Determines the starting point for the daycount in "Date" objects. Default: "1970-01-01". |
InputCheck |
If 1, the input variables are checked for the correct format. Default: 1. |
DCC |
required input |
_____________________ | _____________________________________________ |
1,3,5,6,8,10,11,12,15,16 | StartDate , EndDate ,
Coup , DCC , RV |
2,14 | StartDate , EndDate ,
Coup , DCC , RV ,
CpY , EOM |
4 | StartDate , EndDate ,
Coup , DCC , RV ,
CpY , EOM ,
YearNCP |
7 | StartDate , EndDate ,
Coup , DCC , RV ,
Mat |
9,13 | StartDate , EndDate ,
Coup , DCC , RV ,
EOM |
=================== | ======================================== |
Assuming that there is no accrued interest on StartDate
the function
AccrInt computes the amount of interest accrued up to EndDate
under the terms of the specified day count convention DCC
. The function
returns a list of two numerics AccrInt
, and DaysAccrued
.
If InputCheck = 1
the input variables are checked for the correct
format. The core feature of this function is the proper handling of the
day count conventions presented below. The type of the day
count convention determines the amount of the accrued interest that has
to be paid by the buyer in the secondary market if the settlement
takes place between two coupon payment dates.
Many different day count conventions are used in the market.
Since there is no central authority that develops these conventions
there is no standardized nomenclature. The tables below provide
alternative names that often are used for the respective conventions.
Type View(List.DCC)
for a list of the day count methods
currently implemented.
Detailed descriptions of the conventions and their application may be found in Djatschenko (2018), and the other provided references.
Day Count Conventions
Actual/Actual (ISDA) | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 1 |
___________ | | | ___ | ________________________________________________ |
other names | | | Actual/Actual, Act/Act, Act/Act (ISDA) | |
___________ | | | ___ | ________________________________________________ |
references | | | ISDA (1998); ISDA (2006) section 4.16 (b) | |
========== | | | === | =========================================== |
Actual/Actual (ICMA) | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 2 |
___________ | | | ___ | ________________________________________________ |
other names | | | Actual/Actual (ISMA), Act/Act (ISMA), | |
| | Act/Act (ICMA), ISMA-99 | ||
___________ | | | ___ | ________________________________________________ |
references | | | ICMA Rule 251; ISDA (2006) section 4.16 (c); | |
| | SWX (2003) | ||
========== | | | === | =========================================== |
Actual/Actual (AFB) | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 3 |
___________ | | | ___ | ________________________________________________ |
other names | | | AFB Method, Actual/Actual (Euro), | |
| | Actual/Actual AFB FBF, ACT/365-366 (leap day) | ||
___________ | | | ___ | ________________________________________________ |
references | | | ISDA (1998); EBF (2004) | |
========== | | | === | =========================================== |
Actual/365L | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 4 |
___________ | | | ___ | ________________________________________________ |
other names | | | Act/365-366, ISMA-Year | |
___________ | | | ___ | ________________________________________________ |
references | | | ICMA Rule 251; SWX (2003) | |
========== | | | === | =========================================== |
30/360 | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 5 |
___________ | | | ___ | ________________________________________________ |
other names | | | 360/360, Bond Basis, 30/360 ISDA | |
___________ | | | ___ | ________________________________________________ |
references | | | ISDA (2006) section 4.16 (f); | |
| | MSRB (2017) Rule G-33 | ||
========== | | | === | =========================================== |
30E/360 | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 6 |
___________ | | | ___ | ________________________________________________ |
other names | | | Eurobond Basis, Special German (30S/360), | |
| | ISMA-30/360 | ||
___________ | | | ___ | ________________________________________________ |
references | | | ICMA Rule 251; ISDA (2006) section 4.16 (g); | |
| | SWX (2003) | ||
========== | | | === | =========================================== |
30E/360 (ISDA) | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 7 |
___________ | | | ___ | ________________________________________________ |
other names | | | none | |
___________ | | | ___ | ________________________________________________ |
references | | | ISDA (2006) section 4.16 (h) | |
========== | | | === | =========================================== |
30/360 (German) | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 8 |
___________ | | | ___ | ________________________________________________ |
other names | | | 360/360 (German Master); German (30/360) | |
___________ | | | ___ | ________________________________________________ |
references | | | EBF (2004); SWX (2003) | |
========== | | | === | =========================================== |
30/360 US | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 9 |
___________ | | | ___ | ________________________________________________ |
other names | | | 30/360, US (30U/360), 30/360 (SIA) | |
___________ | | | ___ | ________________________________________________ |
references | | | Mayle (1993); SWX (2003) | |
========== | | | === | =========================================== |
Actual/365 (Fixed) | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 10 |
___________ | | | ___ | ________________________________________________ |
other names | | | Act/365 (Fixed), A/365 (Fixed), A/365F, English | |
___________ | | | ___ | ________________________________________________ |
references | | | ISDA (2006) section 4.16 (d); SWX (2003) | |
========== | | | === | =========================================== |
Actual(NL)/365 | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 11 |
___________ | | | ___ | ________________________________________________ |
other names | | | Act(No Leap Year)/365 | |
___________ | | | ___ | ________________________________________________ |
references | | | Krgin (2002); Thomson Reuters EIKON | |
========== | | | === | =========================================== |
Actual/360 | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 12 |
___________ | | | ___ | ________________________________________________ |
other names | | | Act/360, A/360, French | |
___________ | | | ___ | ________________________________________________ |
references | | | ISDA (2006) section 4.16 (e); SWX (2003) | |
========== | | | === | =========================================== |
30/365 | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 13 |
___________ | | | ___ | ________________________________________________ |
references | | | Krgin (2002); Thomson Reuters EIKON | |
========== | | | === | =========================================== |
Act/365 (Canadian Bond) | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 14 |
___________ | | | ___ | ________________________________________________ |
references | | | IIAC (2018); Thomson Reuters EIKON | |
========== | | | === | =========================================== |
Act/364 | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 15 |
___________ | | | ___ | ________________________________________________ |
references | | | Thomson Reuters EIKON | |
========== | | | === | =========================================== |
BusDay/252 (Brazilian) | |||
___________ | | | ___ | ________________________________________________ |
DCC | | | = | 16 |
___________ | | | ___ | ________________________________________________ |
other names | | | BUS/252, BD/252 | |
___________ | | | ___ | ________________________________________________ |
references | | | Caputo Silva et al. (2010), | |
| | Itau Unibanco S.A. (2017) | ||
========== | | | === | =========================================== |
Accrued interest on EndDate
, given the other characteristics.
The number of days of interest from StartDate
to EndDate
.
Banking Federation of the European Union (EBF), 2004, Master Agreement for Financial Transactions - Supplement to the Derivatives Annex - Interest Rate Transactions.
Caputo Silva, Anderson, Lena Oliveira de Carvalho, and Octavio Ladeira de Medeiros, 2010, Public Debt: The Brazilian Experience (National Treasury Secretariat and World Bank, Brasilia, BR).
Djatschenko, Wadim, The Nitty Gritty of Bond Valuation: A Generalized Methodology for Fixed Coupon Bond Analysis Allowing for Irregular Periods and Various Day Count Conventions (November 5, 2018). Available at SSRN: https://ssrn.com/abstract=3205167.
International Capital Market Association (ICMA), 2010, Rule 251 Accrued Interest Calculation - Excerpt from ICMA's Rules and Recommendations.
Investment Industry Association of Canada (IIAC), 2018, Canadian Conventions in Fixed Income Markets - A Reference Document of Fixed Income Securities Formulas and Practices; Release: 1.3.
International Swaps and Derivatives Association (ISDA), Inc., 1998, "EMU and Market Conventions: Recent Developments".
International Swaps and Derivatives Association (ISDA), 2006, Inc., 2006 ISDA Definitions., New York.
Itau Unibanco S.A., 2017, Brazilian Sovereign Fixed Income and Foreign Exchange Markets - Handbook (First Edition).
Krgin, Dragomir, 2002, The Handbook of Global Fixed Income Calculations. (Wiley, New York).
Mayle, Jan, 1993, Standard Securities Calculation Methods: Fixed Income Securities Formulas for Price, Yield, and Accrued Interest, volume 1, New York: Securities Industry Association, third edition.
Municipal Securities Rulemaking Board (MSRB), 2017, MSRB Rule Book, Washington, DC: Municipal Securities Rulemaking Board.
SWX Swiss Exchange and D. Christie, 2003, "Accrued Interest & Yield Calculations and Determination of Holiday Calendars".
StartDate<-rep(as.Date("2011-08-31"),16) EndDate<-rep(as.Date("2012-02-29"),16) Coup<-rep(5.25,16) DCC<-seq(1,16) RV<-rep(10000,16) CpY<-rep(2,16) Mat<-rep(as.Date("2021-08-31"),16) YearNCP<-rep(2012,16) EOM<-rep(1,16) DCC_Comparison<-data.frame(StartDate,EndDate,Coup,DCC,RV,CpY,Mat,YearNCP,EOM) AccrIntOutput<-apply(DCC_Comparison[,c('StartDate','EndDate','Coup','DCC', 'RV','CpY','Mat','YearNCP','EOM')],1,function(y) AccrInt(y[1],y[2],y[3], y[4],y[5],y[6],y[7],y[8],y[9])) # warnings are due to apply's conversion of the variables' classes in # DCC_Comparison to class "character" Accrued_Interest<-do.call(rbind,lapply(AccrIntOutput, function(x) x[[1]])) Days_Accrued<-do.call(rbind,lapply(AccrIntOutput, function(x) x[[2]])) DCC_Comparison<-cbind(DCC_Comparison,Accrued_Interest,Days_Accrued) DCC_Comparison
StartDate<-rep(as.Date("2011-08-31"),16) EndDate<-rep(as.Date("2012-02-29"),16) Coup<-rep(5.25,16) DCC<-seq(1,16) RV<-rep(10000,16) CpY<-rep(2,16) Mat<-rep(as.Date("2021-08-31"),16) YearNCP<-rep(2012,16) EOM<-rep(1,16) DCC_Comparison<-data.frame(StartDate,EndDate,Coup,DCC,RV,CpY,Mat,YearNCP,EOM) AccrIntOutput<-apply(DCC_Comparison[,c('StartDate','EndDate','Coup','DCC', 'RV','CpY','Mat','YearNCP','EOM')],1,function(y) AccrInt(y[1],y[2],y[3], y[4],y[5],y[6],y[7],y[8],y[9])) # warnings are due to apply's conversion of the variables' classes in # DCC_Comparison to class "character" Accrued_Interest<-do.call(rbind,lapply(AccrIntOutput, function(x) x[[1]])) Days_Accrued<-do.call(rbind,lapply(AccrIntOutput, function(x) x[[2]])) DCC_Comparison<-cbind(DCC_Comparison,Accrued_Interest,Days_Accrued) DCC_Comparison
AnnivDates returns a bond's time-invariant characteristics and temporal structure as a list of three or four named data frames.
AnnivDates( Em = as.Date(NA), Mat = as.Date(NA), CpY = as.numeric(NA), FIPD = as.Date(NA), LIPD = as.Date(NA), FIAD = as.Date(NA), RV = as.numeric(NA), Coup = as.numeric(NA), DCC = as.numeric(NA), EOM = as.numeric(NA), DateOrigin = as.Date("1970-01-01"), InputCheck = 1, FindEOM = FALSE, RegCF.equal = 0 )
AnnivDates( Em = as.Date(NA), Mat = as.Date(NA), CpY = as.numeric(NA), FIPD = as.Date(NA), LIPD = as.Date(NA), FIAD = as.Date(NA), RV = as.numeric(NA), Coup = as.numeric(NA), DCC = as.numeric(NA), EOM = as.numeric(NA), DateOrigin = as.Date("1970-01-01"), InputCheck = 1, FindEOM = FALSE, RegCF.equal = 0 )
Em |
The bond's issue date. (required) |
Mat |
Maturity date, i.e. date on which the redemption value and the final interest are paid. (required) |
CpY |
Number of interest payments per year (non-negative integer; element of the set {0,1,2,3,4,6,12}. Default: 2. |
FIPD |
First interest payment date after |
LIPD |
Last interest payment date prior to |
FIAD |
Date on which the interest accrual starts (so-called "dated date"). |
RV |
The redemption value of the bond. Default: 100. |
Coup |
Nominal interest rate per year in percent. Default: |
DCC |
The day count convention the bond follows. Default: |
EOM |
Boolean indicating whether the bond follows the End-of-Month rule. Default: |
DateOrigin |
Determines the starting point for the daycount in "Date" objects. Default: "1970-01-01". |
InputCheck |
If 1, the input variables are checked for the correct format. Default: 1. |
FindEOM |
If |
RegCF.equal |
If 0, the amounts of regular cash flows are calculated according to the
stipulated |
AnnivDates generates a list of the three data frames Warnings
, Traits
and DateVectors
. If the variable Coup
is passed to the function,
the output contains additionally the data frame PaySched
. AnnivDates is meant to analyze
large data frames. Therefore some features are implemented to evaluate the quality of the data. The
output of these features is stored in the data frame Warnings
. Please see section Value
for a detailed description of the tests run and the meaning of the variables in Warnings
. The
data frame Traits
contains all time-invariant bond characteristics that were either provided by
the user or calculated by the function. The data frame DateVectors
contains three vectors
of Date-Objects named RealDates
, CoupDates
and AnnivDates
and three vectors of
numerics named RD_indexes
, CD_indexes
and AD_indexes
. These vectors are
used in the other functions of this package according to the methodology presented in Djatschenko (2018).
The data frame PaySched
matches CoupDates
to the actual amount of interest that the bond pays on the respective interest payment date. Section
Value provides further information on the output of the function AnnivDates. Below
information on the proper input format is provided. Subsequently follows information on the operating
principle of the function AnnivDates and on the assumptions that are met to
estimate the points in time needed to evaluate a bond.
The dates Em
, Mat
, FIPD
, LIPD
and FIAD
can be provided as
"Date" with format "%Y-%m-%d"
, or
"numeric" with the appropriate DateOrigin
, or
number of class "character" with the appropriate DateOrigin
, or
string of class "character" in the format "yyyy-mm-dd"
.
CpY
, RV
and Coup
can be provided either as class "numeric" or as a number of
class "character".
The provided issue date (Em
) is instantly substituted by the first interest accrual
date (FIAD
) if FIAD
is available and different from Em
.
Before the determination of the bond's date characteristics begins, the code evaluates the provided calendar dates for plausibility. In this process implausible dates are dropped. The sort of corresponding implausibility is identified and stored in a warning flag. (See section Value for details.)
The remaining valid calendar dates are used to gauge whether the bond follows the End-of-Month-Rule. The resulting parameter est_EOM can take on the following values:
Case 1: | FIPD and LIPD are both NA |
___________ | ____________________________________ |
est_EOM = 1 |
, if Mat is the last day of a month. |
est_EOM = 0 |
, else. |
========== | ================================ |
Case 2: | FIPD is NA and LIPD is a valid calendar date |
___________ | ____________________________________ |
est_EOM = 1 |
, if LIPD is the last day of a month. |
est_EOM = 0 |
, else. |
========== | ================================ |
Case 3: | FIPD is a valid calendar date and LIPD is NA |
___________ | ____________________________________ |
est_EOM = 1 |
, if FIPD is the last day of a month. |
est_EOM = 0 |
, else. |
========== | ================================ |
Case 4: | FIPD and LIPD are valid calendar dates |
___________ | ____________________________________ |
est_EOM = 1 |
, if LIPD is the last day of a month. |
est_EOM = 0 |
, else. |
========== | ================================ |
If EOM
is initially missing or NA
or not element of {0,1}
, EOM
is set est_EOM
with a warning.
If the initially provided value of EOM
deviates from est_EOM
, the following two
cases apply:
________ | _________________________________________ |
Case 1: | If EOM = 0 and est_EOM = 1 : |
EOM is not overridden and remains EOM = 0 |
|
________ | _________________________________________ |
Case 2: | If EOM = 1 and est_EOM = 0 : |
EOM is overridden and set EOM = 0 with a warning. |
|
Keeping EOM = 1 in this case would conflict with |
|
the provided Mat , FIPD or LIPD . |
|
________ | _________________________________________ |
Note: | Set the option FindEOM=TRUE to always use |
est_EOM found by the code. |
|
======= | ==================================== |
If FIPD
and LIPD
are both available, the lengths of the first and final coupon
periods are determinate and can be "regular", "long" or "short". To find the interest payment dates
between FIPD
and LIPD
the following assumptions are met:
The interest payment dates between FIPD and LIPD are evenly distributed.
The value of EOM determines the location of all interest payment dates.
If assumption 1 is violated, the exact locatations of the interest payment dates between
FIPD
and LIPD
are ambiguous. The assumption is violated particularly, if
FIPD
and LIPD
are in the same month of the same year but not on the same day, or
the month difference between FIPD
and LIPD
is not a multiple of the number
of months implied by CpY
, or
FIPD
and LIPD
are not both last day in month,
their day figures differ and the day figure difference between FIPD
and LIPD
is not due to different month lengths.
In each of the three cases, FIPD
and LIPD
are dropped
with the flag IPD_CpY_Corrupt = 1
.
If neither FIPD
nor LIPD
are available the code
evaluates the bond based only upon the required variables Em
and
Mat
(and CpY
, which is 2
by default). Since FIPD is
not given, it is impossible to distinguish between a "short" and "long" odd
first coupon period, without an assumption on the number of interest
payment dates. Consequently the first coupon period is assumed to be either
"regular" or "short". The locations of FIPD
and LIPD
are
estimated under the following assumptions:
The final coupon period is "regular".
The interest payment dates between the estimated FIPD and Mat are evenly distributed.
The value of EOM determines the location of all interest payment dates.
If LIPD
is available but FIPD
is not, the length
of the final coupon payment period is determined by LIPD
and
Mat
and can be "regular", "long" or "short". The locations of
the interest payment dates are estimated under the following assumptions:
The first coupon period is either "regular" or "short".
The interest payment dates between the estimated FIPD and LIPD are evenly distributed.
The value of EOM determines the location of all interest payment dates.
If FIPD
is available but LIPD
is not, the length
of the first coupon payment period is determined by Em
and
FIPD
and can be "regular", "long" or "short". The locations of
the interest payment dates are estimated under the following assumptions:
The final coupon period is either "regular" or "short".
The interest payment dates between FIPD and the estimated LIPD are evenly distributed.
The value of EOM determines the location of all interest payment dates.
All dates are returned irrespective of whether they are on a business day or not.
A vector of Date class objects with format "%Y-%m-%d" in ascending order, that contains the issue date, all actual coupon payment dates and the maturity date.
A vector of numerics capturing the temporal structure of the bond.
A vector of Date class objects with format "%Y-%m-%d" in ascending order, that contains all actual coupon payment dates and the maturity date.
A vector of numerics capturing the temporal structure of the bond.
A vector of Date class objects with format "%Y-%m-%d" in ascending order, that contains all theoretical coupon anniversary dates. The first value of AnnivDates is the anniversary date immediately preceding the issue date, if the bond has an irregular first coupon period; otherwise it is the issue date. The final value of AnnivDates is the anniversary date immediately succeeding the maturity date, if the bond has an irregular final coupon period; otherwise it is the maturity date.
A vector of numerics capturing the temporal structure of the bond.
A vector of Date class objects with format "%Y-%m-%d" in ascending order, that contains all actual coupon payment dates and the maturity date.
A vector of class "numeric" objects, that contains the actual amounts of
interest that the bond pays on the respective coupon payment dates. The unit of these payments is the
same as that of RV
that was passed to the function. RV
is not included in the final
interest payment.
PaySched
is created only if the variable Coup
is provided.
The starting point for the daycount in "Date" objects.
Number of interest payments per year.
Date on which the interest accrual starts (so-called "dated date").
The bond's issue date that was used for calculations.
The bond's issue date that was entered.
The first interest payment date after Em
that was used for calculations.
If the entered FIPD
was dropped during the calculation process,
the value is NA
.
The first interest payment date after Em
that was entered.
The estimated first interest payment date after Em
. NA
, if
a valid FIPD
was entered.
The last interest payment date prior to Mat
that was used for
calculations. If the entered LIPD
was dropped during the calculation
process, the value is NA
.
The last interest payment date prior to Mat
that was entered.
The estimated last interest payment date prior to Mat
. NA
,
if a valid LIPD
was entered.
The maturity date that was entered.
Reference date that determines the day figures of all AnnivDates.
A character string indicating the type of the first coupon period. Values: "long", "regular", "short".
Length of the first coupon period as a fraction of a regular coupon period.
A character string indicating the type of the last coupon period. Values: "long", "regular", "short".
Length of the final coupon period as a fraction of a regular coupon period.
The redemption value of the bond.
Nominal interest rate per year in percent.
The day count convention the bond follows.
The value of EOM
that was entered.
The estimated value of EOM
.
The value of EOM
that was used in the calculations.
A set of flags that indicate the occurrence of warnings during the execution. Below they are listed according to the hierarchical structure within the function AnnivDates.
Em_FIAD_differ = | ||
1 | , if the provided issue date (Em ) was substituted by the first |
|
interest accrual date (FIAD ). |
||
This happens, if FIAD is available and different from Em . |
||
________________________________________________ | ||
Note: No warning is displayed. | ||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
EmMatMissing = | ||
1 | , if either issue date (Em ) or maturity date (Mat ) or both |
|
are missing or NA . |
||
________________________________________________ | ||
Output: RealDates = NA , CoupDates = NA , |
||
AnnivDates = NA , FCPType = NA , LCPType = NA . |
||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
CpYOverride = | ||
1 | , if number of interest periods per year (CpY ) is missing or |
|
NA , or if the provided CpY is not element of {0,1,2,3,4,6,12}. |
||
________________________________________________ | ||
Note: CpY is set 2, and the execution continues. |
||
________________________________________________ | ||
Output: as if CpY = 2 was provided initially. |
||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
RV_set100percent = | ||
1 | , if the redemption value (RV ) is missing or NA . |
|
________________________________________________ | ||
Note: RV is set 100, and the execution continues. |
||
________________________________________________ | ||
Output: as if RV = 100 was provided initially. |
||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
NegLifeFlag = | ||
1 | , if the provided maturity date (Mat ) is before or on the |
|
provided issue date (Em ). |
||
________________________________________________ | ||
Output: RealDates = NA , CoupDates = NA , |
||
AnnivDates = NA , FCPType = NA , LCPType = NA . |
||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
ZeroFlag = | ||
1 | , if number of interest payments per year (CpY ) is 0 . |
|
________________________________________________ | ||
Output: RealDates = (Em,Mat) , CoupDates = Mat , |
||
AnnivDates = (Em,Mat) , FCPType = NA , LCPType = NA . |
||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
Em_Mat_SameMY = | ||
1 | , if the issue date (Em ) and the maturity date (Mat ) are in the |
|
same month of the same year but not on the same day, while | ||
CpY is an element of {1,2,3,4,6,12}. |
||
________________________________________________ | ||
Output: RealDates = (Em,Mat) , CoupDates = Mat , |
||
FCPType = short , LCPType = short . |
||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
ChronErrorFlag = | ||
1 | , if the provided dates are in a wrong chronological order. | |
________________________________________________ | ||
Note: | ||
The correct ascending chronological order is: | ||
issue date (Em ), first interest payment date (FIPD ), |
||
last interest payment date (LIPD ), maturity date (Mat ). |
||
FIPD and LIPD are set as.Date(NA) . |
||
________________________________________________ | ||
Output: as if FIPD and LIPD were not provided initially. |
||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
FIPD_LIPD_equal = | ||
1 | if Em < FIPD = LIPD < Mat . |
|
________________________________________________ | ||
Output: AnnivDates contains FIPD and has at least 3 elements. |
||
RealDates = (Em,FIPD,Mat) , CoupDates = (FIPD,Mat) . |
||
FCPType and LCPType can be "short", "regular" or "long". | ||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
IPD_CpY_Corrupt = | ||
1 | , if the provided first interest payment date (FIPD ) and last |
|
interest payment date (LIPD ) are inconsistent with the |
||
provided number of interest payments per year (CpY ). |
||
________________________________________________ | ||
Note: | ||
Inconsistency occurs if | ||
1. FIPD and LIPD are in the same month of the same year |
||
but not on the same day, or | ||
2. the number of months between FIPD and LIPD is not a |
||
multiple of the number of months implied by CpY , or |
||
3. FIPD and LIPD are not both last day in month, their |
||
day figures differ and the day figure difference between | ||
FIPD and LIPD is not due to different month lengths. |
||
In each of the three cases keeping the provided values of | ||
FIPD and LIPD would violate the assumption, that the |
||
anniversary dates between FIPD and LIPD are evenly |
||
distributed. | ||
________________________________________________ | ||
FIPD and LIPD are set as.Date(NA) |
||
and the execution continues. | ||
________________________________________________ | ||
Output: | ||
as if FIPD and LIPD were not provided initially. |
||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
EOM_Deviation = | ||
1 | , if the provided value of EOM deviates from the value that |
|
is inferred from the provided calendar dates. | ||
________________________________________________ | ||
Note: | ||
The program analyses the valid values of Em , Mat , FIPD and |
||
LIPD to determine the appropriate value of EOM . |
||
If the initially provided value of EOM deviates from the value |
||
determined by the program, there might be an inconsistency | ||
in the provided data. | ||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
EOMOverride = | ||
1 | , if the provided value of EOM is overridden by a value that |
|
is inferred from the provided calendar dates. | ||
________________________________________________ | ||
Note: | ||
This happens automatically if EOM is initially missing or NA |
||
or not element of {0,1} and if the provided value of EOM |
||
conflicts with the provided values of FIPD , LIPD or Mat , |
||
e.g. if est_EOM = 0 but EOM = 1 . |
||
If EOM_Deviation = 1 and the option FindEOM is set TRUE , |
||
the initially provided value of EOM is also overridden by the |
||
value that is inferred from the provided calendar dates if | ||
est_EOM = 1 but EOM = 0 . |
||
________________________________________________ | ||
Output: | ||
as if the value of EOM that is found by the program was |
||
provided initially. | ||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
DCCOverride = | ||
1 | if DCC is missing or NA or not element of c(1:16). |
|
________________________________________________ | ||
Note: | ||
If the program cannot process the provided day count | ||
identifier DCC , it overrides it with DCC = 2. |
||
________________________________________________ | ||
Output: | ||
as if DCC = 2 was provided initially. |
||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
NoCoups = | ||
1 | , if there are no coupon payments between the provided | |
issue date (Em ) and the maturity date (Mat ), but the |
||
provided (CpY ) is not zero. |
||
________________________________________________ | ||
Output: | ||
RealDates = (Em,Mat) , CoupDates = (Mat) , |
||
AnnivDates contains Mat and has either |
||
2 or 3 elements, FCPType = LCPType and |
||
can be "short" , "regular" or "long" . |
||
___________________ | ___ | ________________________________________________ |
0 | , else. | |
================= | === | =========================================== |
Djatschenko, Wadim, The Nitty Gritty of Bond Valuation: A Generalized Methodology for Fixed Coupon Bond Analysis Allowing for Irregular Periods and Various Day Count Conventions (November 5, 2018). Available at SSRN: https://ssrn.com/abstract=3205167.
data(SomeBonds2016) # Applying the function AnnivDates to the data frame SomeBonds2016. system.time( FullAnalysis<-apply(SomeBonds2016[,c('Issue.Date','Mat.Date','CpY.Input','FIPD.Input', 'LIPD.Input','FIAD.Input','RV.Input','Coup.Input','DCC.Input','EOM.Input')],1,function(y) AnnivDates(y[1],y[2],y[3],y[4],y[5],y[6],y[7],y[8],y[9],y[10],RegCF.equal=1)), gcFirst = TRUE) # warnings are due to apply's conversion of the variables' classes in # SomeBonds2016 to class "character" # The output stored in FullAnalysis ist a nested list. # Lets look at what is stored in FullAnalysis for a random bond: randombond<-sample(c(1:nrow(SomeBonds2016)),1) FullAnalysis[[randombond]] # Extracting the data frame Warnings: AllWarnings<-do.call(rbind,lapply(FullAnalysis, `[[`, 1)) summary(AllWarnings) # binding the Warnings to the bonds BondsWithWarnings<-cbind(SomeBonds2016,AllWarnings) # Extracting the data frame Traits: AllTraits<-do.call(rbind,lapply(FullAnalysis, `[[`, 2)) summary(AllTraits) # binding the Traits to the bonds BondsWithTraits<-cbind(SomeBonds2016,AllTraits) # Extracting the data frame AnnivDates: AnnivDates<-lapply(lapply(FullAnalysis, `[[`, 3), `[[`, 5) AnnivDates<-lapply(AnnivDates, `length<-`, max(lengths(AnnivDates))) AnnivDates<-as.data.frame(do.call(rbind, AnnivDates)) AnnivDates<-as.data.frame(lapply(AnnivDates, as.Date, as.Date(AllTraits$DateOrigin[1]))) # binding the AnnivDates to the bonds: BondsWithAnnivDates<-cbind(SomeBonds2016,AnnivDates) # Extracting the data frames PaySched for each bond and creating a panel: CoupSched<-lapply(FullAnalysis, `[[`, 4) CoupSchedPanel<-SomeBonds2016[rep(row.names(SomeBonds2016),sapply(CoupSched, nrow)),] CoupSched<-as.data.frame(do.call(rbind, CoupSched)) CoupSchedPanel<-cbind(CoupSchedPanel,CoupSched)
data(SomeBonds2016) # Applying the function AnnivDates to the data frame SomeBonds2016. system.time( FullAnalysis<-apply(SomeBonds2016[,c('Issue.Date','Mat.Date','CpY.Input','FIPD.Input', 'LIPD.Input','FIAD.Input','RV.Input','Coup.Input','DCC.Input','EOM.Input')],1,function(y) AnnivDates(y[1],y[2],y[3],y[4],y[5],y[6],y[7],y[8],y[9],y[10],RegCF.equal=1)), gcFirst = TRUE) # warnings are due to apply's conversion of the variables' classes in # SomeBonds2016 to class "character" # The output stored in FullAnalysis ist a nested list. # Lets look at what is stored in FullAnalysis for a random bond: randombond<-sample(c(1:nrow(SomeBonds2016)),1) FullAnalysis[[randombond]] # Extracting the data frame Warnings: AllWarnings<-do.call(rbind,lapply(FullAnalysis, `[[`, 1)) summary(AllWarnings) # binding the Warnings to the bonds BondsWithWarnings<-cbind(SomeBonds2016,AllWarnings) # Extracting the data frame Traits: AllTraits<-do.call(rbind,lapply(FullAnalysis, `[[`, 2)) summary(AllTraits) # binding the Traits to the bonds BondsWithTraits<-cbind(SomeBonds2016,AllTraits) # Extracting the data frame AnnivDates: AnnivDates<-lapply(lapply(FullAnalysis, `[[`, 3), `[[`, 5) AnnivDates<-lapply(AnnivDates, `length<-`, max(lengths(AnnivDates))) AnnivDates<-as.data.frame(do.call(rbind, AnnivDates)) AnnivDates<-as.data.frame(lapply(AnnivDates, as.Date, as.Date(AllTraits$DateOrigin[1]))) # binding the AnnivDates to the bonds: BondsWithAnnivDates<-cbind(SomeBonds2016,AnnivDates) # Extracting the data frames PaySched for each bond and creating a panel: CoupSched<-lapply(FullAnalysis, `[[`, 4) CoupSchedPanel<-SomeBonds2016[rep(row.names(SomeBonds2016),sapply(CoupSched, nrow)),] CoupSched<-as.data.frame(do.call(rbind, CoupSched)) CoupSchedPanel<-cbind(CoupSchedPanel,CoupSched)
BondVal.Price computes a bond's clean price given its yield.
BondVal.Price( YtM = as.numeric(NA), SETT = as.Date(NA), Em = as.Date(NA), Mat = as.Date(NA), CpY = as.numeric(NA), FIPD = as.Date(NA), LIPD = as.Date(NA), FIAD = as.Date(NA), RV = as.numeric(NA), Coup = as.numeric(NA), DCC = as.numeric(NA), EOM = as.numeric(NA), DateOrigin = as.Date("1970-01-01"), InputCheck = 1, FindEOM = FALSE, RegCF.equal = 0, SimpleLastPeriod = TRUE, Calc.Method = 1, AnnivDatesOutput = as.list(NA) )
BondVal.Price( YtM = as.numeric(NA), SETT = as.Date(NA), Em = as.Date(NA), Mat = as.Date(NA), CpY = as.numeric(NA), FIPD = as.Date(NA), LIPD = as.Date(NA), FIAD = as.Date(NA), RV = as.numeric(NA), Coup = as.numeric(NA), DCC = as.numeric(NA), EOM = as.numeric(NA), DateOrigin = as.Date("1970-01-01"), InputCheck = 1, FindEOM = FALSE, RegCF.equal = 0, SimpleLastPeriod = TRUE, Calc.Method = 1, AnnivDatesOutput = as.list(NA) )
YtM |
The bond's yield to maturity p.a. on |
SETT |
The settlement date. Date class object with format "%Y-%m-%d". (required) |
Em |
The bond's issue date. Date class object with format "%Y-%m-%d". (required) |
Mat |
So-called "maturity date" i.e. date on which the redemption value and the final interest are paid. Date class object with format "%Y-%m-%d". (required) |
CpY |
Number of interest payments per year (non-negative integer; element of the set {0,1,2,3,4,6,12}. Default: 2. |
FIPD |
First interest payment date after |
LIPD |
Last interest payment date before |
FIAD |
Date on which the interest accrual starts (so-called "dated date"). Date class object with format "%Y-%m-%d". Default: |
RV |
The redemption value of the bond. Default: |
Coup |
Nominal interest rate per year in percent. Default: |
DCC |
The day count convention the bond follows. Default: |
EOM |
Boolean indicating whether the bond follows the End-of-Month rule. Default: |
DateOrigin |
Determines the starting point for the daycount in "Date" objects. Default: "1970-01-01". |
InputCheck |
If 1, the input variables are checked for the correct format. Default: 1. |
FindEOM |
If |
RegCF.equal |
If 0, the amounts of regular cash flows are calculated according to the
stipulated |
SimpleLastPeriod |
Specifies the interest calculation method in the final coupon period. Default: |
Calc.Method |
If 1, discount powers are computed with the same DCC as accrued interest. If 0, discount powers are computed with DCC=2. Default: 1. |
AnnivDatesOutput |
A list containing the output of the function AnnivDates. Default: |
The function BondVal.Price uses the function AnnivDates to analyze the bond and computes the clean price, the accrued interest, the dirty price and the sensitivity measures modified duration (ModDUR), MacAulay duration (MacDUR) and convexity according to the methodology presented in Djatschenko (2018).
The bond's clean price.
The amount of accrued interest.
The bond's dirty price.
Annualized yield to maturity.
Modified duration in years.
MacAulay duration in years.
Convexity in years.
Modified duration in periods.
MacAulay duration in periods.
Convexity in periods.
Relative Position of the settlement date in regular periods.
Djatschenko, Wadim, The Nitty Gritty of Bond Valuation: A Generalized Methodology for Fixed Coupon Bond Analysis Allowing for Irregular Periods and Various Day Count Conventions (November 5, 2018). Available at SSRN: https://ssrn.com/abstract=3205167.
data(PanelSomeBonds2016) randombond<-sample(c(1:length(which(!(duplicated(PanelSomeBonds2016$ID.No))))),1) df.randombond<-PanelSomeBonds2016[which(PanelSomeBonds2016$ID.No==randombond),] PreAnalysis.randombond<-suppressWarnings(AnnivDates( unlist(df.randombond[ 1,c('Issue.Date','Mat.Date','CpY.Input','FIPD.Input','LIPD.Input', 'FIAD.Input','RV.Input','Coup.Input','DCC.Input','EOM.Input')], use.names=FALSE))) system.time( for (i in c(1:nrow(df.randombond))) { BondVal.Price.Output<-suppressWarnings(BondVal.Price( unlist( df.randombond[ i,c('YtM.Input','TradeDate','Issue.Date','Mat.Date','CpY.Input', 'FIPD.Input','LIPD.Input','FIAD.Input','RV.Input','Coup.Input', 'DCC.Input','EOM.Input')],use.names=FALSE), AnnivDatesOutput=PreAnalysis.randombond)) df.randombond$CP.Out[i]<-BondVal.Price.Output$CP } ) plot(seq(1,nrow(df.randombond),by=1),df.randombond$CP.Out,"l")
data(PanelSomeBonds2016) randombond<-sample(c(1:length(which(!(duplicated(PanelSomeBonds2016$ID.No))))),1) df.randombond<-PanelSomeBonds2016[which(PanelSomeBonds2016$ID.No==randombond),] PreAnalysis.randombond<-suppressWarnings(AnnivDates( unlist(df.randombond[ 1,c('Issue.Date','Mat.Date','CpY.Input','FIPD.Input','LIPD.Input', 'FIAD.Input','RV.Input','Coup.Input','DCC.Input','EOM.Input')], use.names=FALSE))) system.time( for (i in c(1:nrow(df.randombond))) { BondVal.Price.Output<-suppressWarnings(BondVal.Price( unlist( df.randombond[ i,c('YtM.Input','TradeDate','Issue.Date','Mat.Date','CpY.Input', 'FIPD.Input','LIPD.Input','FIAD.Input','RV.Input','Coup.Input', 'DCC.Input','EOM.Input')],use.names=FALSE), AnnivDatesOutput=PreAnalysis.randombond)) df.randombond$CP.Out[i]<-BondVal.Price.Output$CP } ) plot(seq(1,nrow(df.randombond),by=1),df.randombond$CP.Out,"l")
BondVal.Yield returns a bond's yield to maturity given its clean price.
BondVal.Yield( CP = as.numeric(NA), SETT = as.Date(NA), Em = as.Date(NA), Mat = as.Date(NA), CpY = as.numeric(NA), FIPD = as.Date(NA), LIPD = as.Date(NA), FIAD = as.Date(NA), RV = as.numeric(NA), Coup = as.numeric(NA), DCC = as.numeric(NA), EOM = as.numeric(NA), DateOrigin = as.Date("1970-01-01"), InputCheck = 1, FindEOM = FALSE, RegCF.equal = 0, SimpleLastPeriod = TRUE, Precision = .Machine$double.eps^0.75, Calc.Method = 1, AnnivDatesOutput = as.list(NA) )
BondVal.Yield( CP = as.numeric(NA), SETT = as.Date(NA), Em = as.Date(NA), Mat = as.Date(NA), CpY = as.numeric(NA), FIPD = as.Date(NA), LIPD = as.Date(NA), FIAD = as.Date(NA), RV = as.numeric(NA), Coup = as.numeric(NA), DCC = as.numeric(NA), EOM = as.numeric(NA), DateOrigin = as.Date("1970-01-01"), InputCheck = 1, FindEOM = FALSE, RegCF.equal = 0, SimpleLastPeriod = TRUE, Precision = .Machine$double.eps^0.75, Calc.Method = 1, AnnivDatesOutput = as.list(NA) )
CP |
The bond's clean price on |
SETT |
The settlement date. Date class object with format "%Y-%m-%d". (required) |
Em |
The bond's issue date. Date class object with format "%Y-%m-%d". (required) |
Mat |
So-called "maturity date" i.e. date on which the redemption value and the final interest are paid. Date class object with format "%Y-%m-%d". (required) |
CpY |
Number of interest payments per year (non-negative integer; element of the set {0,1,2,3,4,6,12}. Default: 2. |
FIPD |
First interest payment date after |
LIPD |
Last interest payment date before |
FIAD |
Date on which the interest accrual starts (so-called "dated date"). Date class object with format "%Y-%m-%d". Default: |
RV |
The redemption value of the bond. Default: |
Coup |
Nominal interest rate per year in percent. Default: |
DCC |
The day count convention the bond follows. Default: |
EOM |
Boolean indicating whether the bond follows the End-of-Month rule. Default: |
DateOrigin |
Determines the starting point for the daycount in "Date" objects. Default: "1970-01-01". |
InputCheck |
If 1, the input variables are checked for the correct format. Default: 1. |
FindEOM |
If |
RegCF.equal |
If 0, the amounts of regular cash flows are calculated according to the
stipulated |
SimpleLastPeriod |
Specifies the interest calculation method in the final coupon period. Default: |
Precision |
desired precision in YtM-calculation. Default: |
Calc.Method |
If 1, discount powers are computed with the same DCC as accrued interest. If 0, discount powers are computed with DCC=2. Default: 1. |
AnnivDatesOutput |
A list containing the output of the function AnnivDates. Default: |
BondVal.Yield uses the function AnnivDates to analyze the bond and computes the yield to maturity, the accrued interest, the dirty price and the sensitivity measures modified duration (ModDUR), MacAulay duration (MacDUR) and convexity according to the methodology presented in Djatschenko (2018). The yield to maturity is determined numerically using the Newton-Raphson method.
The bond's clean price.
The amount of accrued interest.
The bond's dirty price.
Annualized yield to maturity.
Modified duration in years.
MacAulay duration in years.
Convexity in years.
Modified duration in periods.
MacAulay duration in periods.
Convexity in periods.
Relative Position of the settlement date in regular periods.
Djatschenko, Wadim, The Nitty Gritty of Bond Valuation: A Generalized Methodology for Fixed Coupon Bond Analysis Allowing for Irregular Periods and Various Day Count Conventions (November 5, 2018). Available at SSRN: https://ssrn.com/abstract=3205167.
data(PanelSomeBonds2016) randombond<-sample(c(1:length(which(!(duplicated(PanelSomeBonds2016$ID.No))))),1) df.randombond<-PanelSomeBonds2016[which(PanelSomeBonds2016$ID.No==randombond),] PreAnalysis.randombond<-suppressWarnings(AnnivDates( unlist(df.randombond[ 1,c('Issue.Date','Mat.Date','CpY.Input','FIPD.Input','LIPD.Input', 'FIAD.Input','RV.Input','Coup.Input','DCC.Input','EOM.Input')], use.names=FALSE))) system.time( for (i in c(1:nrow(df.randombond))) { BondVal.Yield.Output<-suppressWarnings(BondVal.Yield( unlist(df.randombond[i,c('CP.Input','TradeDate','Issue.Date','Mat.Date', 'CpY.Input','FIPD.Input','LIPD.Input','FIAD.Input','RV.Input', 'Coup.Input','DCC.Input','EOM.Input')],use.names=FALSE), AnnivDatesOutput=PreAnalysis.randombond)) df.randombond$YtM.Out[i]<-BondVal.Yield.Output$ytm.p.a. } ) plot(seq(1,nrow(df.randombond),by=1),df.randombond$YtM.Out,"l")
data(PanelSomeBonds2016) randombond<-sample(c(1:length(which(!(duplicated(PanelSomeBonds2016$ID.No))))),1) df.randombond<-PanelSomeBonds2016[which(PanelSomeBonds2016$ID.No==randombond),] PreAnalysis.randombond<-suppressWarnings(AnnivDates( unlist(df.randombond[ 1,c('Issue.Date','Mat.Date','CpY.Input','FIPD.Input','LIPD.Input', 'FIAD.Input','RV.Input','Coup.Input','DCC.Input','EOM.Input')], use.names=FALSE))) system.time( for (i in c(1:nrow(df.randombond))) { BondVal.Yield.Output<-suppressWarnings(BondVal.Yield( unlist(df.randombond[i,c('CP.Input','TradeDate','Issue.Date','Mat.Date', 'CpY.Input','FIPD.Input','LIPD.Input','FIAD.Input','RV.Input', 'Coup.Input','DCC.Input','EOM.Input')],use.names=FALSE), AnnivDatesOutput=PreAnalysis.randombond)) df.randombond$YtM.Out[i]<-BondVal.Yield.Output$ytm.p.a. } ) plot(seq(1,nrow(df.randombond),by=1),df.randombond$YtM.Out,"l")
DP returns a bond's temporal and pecuniary characteristics on the desired calendar date according to the methodology presented in Djatschenko (2018).
DP( CP = as.numeric(NA), SETT = as.Date(NA), Em = as.Date(NA), Mat = as.Date(NA), CpY = as.numeric(NA), FIPD = as.Date(NA), LIPD = as.Date(NA), FIAD = as.Date(NA), RV = as.numeric(NA), Coup = as.numeric(NA), DCC = as.numeric(NA), EOM = as.numeric(NA), DateOrigin = as.Date("1970-01-01"), InputCheck = 1, FindEOM = FALSE, RegCF.equal = 0, AnnivDatesOutput = as.list(NA) )
DP( CP = as.numeric(NA), SETT = as.Date(NA), Em = as.Date(NA), Mat = as.Date(NA), CpY = as.numeric(NA), FIPD = as.Date(NA), LIPD = as.Date(NA), FIAD = as.Date(NA), RV = as.numeric(NA), Coup = as.numeric(NA), DCC = as.numeric(NA), EOM = as.numeric(NA), DateOrigin = as.Date("1970-01-01"), InputCheck = 1, FindEOM = FALSE, RegCF.equal = 0, AnnivDatesOutput = as.list(NA) )
CP |
The bond's clean price. |
SETT |
The settlement date. Date class object with format "%Y-%m-%d". (required) |
Em |
The bond's issue date. Date class object with format "%Y-%m-%d". (required) |
Mat |
So-called "maturity date" i.e. date on which the redemption value and the final interest are paid. Date class object with format "%Y-%m-%d". (required) |
CpY |
Number of interest payments per year (non-negative integer; element of the set {0,1,2,3,4,6,12}. Default: 2. |
FIPD |
First interest payment date after |
LIPD |
Last interest payment date before |
FIAD |
Date on which the interest accrual starts (so-called "dated date"). Date class object with format "%Y-%m-%d". Default: |
RV |
The redemption value of the bond. Default: 100. |
Coup |
Nominal interest rate per year in percent. Default: |
DCC |
The day count convention the bond follows. Default: |
EOM |
Boolean indicating whether the bond follows the End-of-Month rule. Default: |
DateOrigin |
Determines the starting point for the daycount in "Date" objects. Default: "1970-01-01". |
InputCheck |
If 1, the input variables are checked for the correct format. Default: 1. |
FindEOM |
If |
RegCF.equal |
If 0, the amounts of regular cash flows are calculated according to the
stipulated |
AnnivDatesOutput |
A list containing the output of the function AnnivDates. Default: |
The function DP generates a list of the two data frames Dates
and Cash
,
which contain the relevant date-related and pecuniary characteristics that were either provided
by the user or calculated by the function. Value provides further information on the
output.
The number of days accrued from Previous_CouponDate to Next_CouponDate, incl. the earlier and excl. the later date.
The number of interest accruing days in the coupon period from Previous_CouponDate to Next_CouponDate.
Sum of Clean_Price and Accrued_Interest.
The clean price entered.
The amount of accrued interest on SettlementDate.
The interest payment on Next_CouponDate.
Djatschenko, Wadim, The Nitty Gritty of Bond Valuation: A Generalized Methodology for Fixed Coupon Bond Analysis Allowing for Irregular Periods and Various Day Count Conventions (November 5, 2018). Available at SSRN: https://ssrn.com/abstract=3205167.
CP<-rep(100,16) SETT<-rep(as.Date("2014-10-15"),16) Em<-rep(as.Date("2013-11-30"),16) Mat<-rep(as.Date("2021-04-21"),16) CpY<-rep(2,16) FIPD<-rep(as.Date("2015-02-28"),16) LIPD<-rep(as.Date("2020-02-29"),16) FIAD<-rep(as.Date("2013-11-30"),16) RV<-rep(100,16) Coup<-rep(5.25,16) DCC<-seq(1,16,by=1) DP.DCC_Comparison<-data.frame(CP,SETT,Em,Mat,CpY,FIPD,LIPD,FIAD,RV,Coup,DCC) # you can pass an array to AnnivDates List<-suppressWarnings( AnnivDates(unlist(DP.DCC_Comparison[1,c(3:11)],use.names=FALSE)) ) # and use its output in DP suppressWarnings( DP(unlist(DP.DCC_Comparison[1,c(1:11)],use.names=FALSE),AnnivDatesOutput=List) ) # or just apply DP to the data frame DP.Output<-suppressWarnings( apply(DP.DCC_Comparison[,c('CP','SETT','Em','Mat','CpY','FIPD', 'LIPD','FIAD','RV','Coup','DCC')], 1,function(y) DP(y[1],y[2],y[3],y[4],y[5],y[6],y[7], y[8],y[9],y[10],y[11]))) DiryPrice<-do.call(rbind,lapply(lapply(DP.Output, `[[`, 2), `[[`, 1)) DP.DCC_Comparison<-cbind(DP.DCC_Comparison,DiryPrice) DP.DCC_Comparison
CP<-rep(100,16) SETT<-rep(as.Date("2014-10-15"),16) Em<-rep(as.Date("2013-11-30"),16) Mat<-rep(as.Date("2021-04-21"),16) CpY<-rep(2,16) FIPD<-rep(as.Date("2015-02-28"),16) LIPD<-rep(as.Date("2020-02-29"),16) FIAD<-rep(as.Date("2013-11-30"),16) RV<-rep(100,16) Coup<-rep(5.25,16) DCC<-seq(1,16,by=1) DP.DCC_Comparison<-data.frame(CP,SETT,Em,Mat,CpY,FIPD,LIPD,FIAD,RV,Coup,DCC) # you can pass an array to AnnivDates List<-suppressWarnings( AnnivDates(unlist(DP.DCC_Comparison[1,c(3:11)],use.names=FALSE)) ) # and use its output in DP suppressWarnings( DP(unlist(DP.DCC_Comparison[1,c(1:11)],use.names=FALSE),AnnivDatesOutput=List) ) # or just apply DP to the data frame DP.Output<-suppressWarnings( apply(DP.DCC_Comparison[,c('CP','SETT','Em','Mat','CpY','FIPD', 'LIPD','FIAD','RV','Coup','DCC')], 1,function(y) DP(y[1],y[2],y[3],y[4],y[5],y[6],y[7], y[8],y[9],y[10],y[11]))) DiryPrice<-do.call(rbind,lapply(lapply(DP.Output, `[[`, 2), `[[`, 1)) DP.DCC_Comparison<-cbind(DP.DCC_Comparison,DiryPrice) DP.DCC_Comparison
List of the day count conventions implemented.
data(List.DCC)
data(List.DCC)
A data frame with 16 rows and 3 variables:
Identifier.
Names of the day count convention.
Reference.
Banking Federation of the European Union (EBF), 2004, Master Agreement for Financial Transactions - Supplement to the Derivatives Annex - Interest Rate Transactions.
Caputo Silva, Anderson, Lena Oliveira de Carvalho, and Octavio Ladeira de Medeiros, 2010, Public Debt: The Brazilian Experience (National Treasury Secretariat and World Bank, Brasilia, BR).
International Capital Market Association (ICMA), 2010, Rule 251 Accrued Interest Calculation - Excerpt from ICMA's Rules and Recommendations.
Investment Industry Association of Canada (IIAC), 2018, Canadian Conventions in Fixed Income Markets - A Reference Document of Fixed Income Securities Formulas and Practices; Release: 1.3.
International Swaps and Derivatives Association (ISDA), Inc., 1998, "EMU and Market Conventions: Recent Developments".
International Swaps and Derivatives Association (ISDA), 2006, Inc., 2006 ISDA Definitions., New York.
Itau Unibanco S.A., 2017, Brazilian Sovereign Fixed Income and Foreign Exchange Markets - Handbook (First Edition).
Krgin, Dragomir, 2002, The Handbook of Global Fixed Income Calculations. (Wiley, New York).
Mayle, Jan, 1993, Standard Securities Calculation Methods: Fixed Income Securities Formulas for Price, Yield, and Accrued Interest, volume 1, New York: Securities Industry Association, third edition.
Municipal Securities Rulemaking Board (MSRB), 2017, MSRB Rule Book, Washington, DC: Municipal Securities Rulemaking Board.
SWX Swiss Exchange and D. Christie, 2003, "Accrued Interest & Yield Calculations and Determination of Holiday Calendars".
This data frame contains all Saturdays and Sundays and the following Brazilian national holidays:
New Year's Day (always on 01. Jan)
Shrove Monday (variable date)
Shrove Tuesday (variable date)
Good Friday (variable date)
Tiradentes' Day (always on 21. Apr)
Labour Day (always on 01. May)
Corpus Christi (variable date)
Independence Day (always on 07. Sep)
Our Lady of Aparecida (always on 12. Oct)
All Souls' Day (always on 02. Nov)
Republic Day (always on 15. Nov)
Christmas Day (always on 25. Dec)
data(NonBusDays.Brazil)
data(NonBusDays.Brazil)
A data frame with 40378 rows and 3 variables:
Holiday.Name
Date
Weekday
Itau Unibanco S.A., 2017, Brazilian Sovereign Fixed Income and Foreign Exchange Markets - Handbook (First Edition).
A simulated dataset of 100 plain vanilla fixed coupon corporate bonds issued in 2016.
data(PanelSomeBonds2016)
data(PanelSomeBonds2016)
A data frame with 12718 rows and 16 variables:
Identification number of the security.
Type of the bond's coupon.
The bond's issue date. Object of class Date
with format "%Y-%m-%d"
.
Date on which the interest accrual starts (so-called
"dated date"). Object of class Date with format
"%Y-%m-%d"
.
First interest payment date after Issue.Date
.
Object of class Date with format "%Y-%m-%d"
.
Last interest payment date before Mat.Date
.
Object of class Date with format "%Y-%m-%d"
.
So-called "maturity date" i.e. date on which the
redemption value and the final interest are paid.
Object of class Date with format "%Y-%m-%d"
.
Number of interest payments per year. Object of class numeric.
The nominal interest p.a. of the bond in percent. Object of class numeric.
The face value (= redemption value, par value) of the bond in percent.
The day count convention the bond follows. Type ?AccrInt for details.
Boolean indicating whether the bond follows the End-of-Month rule.
The calendar date on which the clean price was observed.
The settlement date that corresponds to TradeDate
.
The clean price of the bond on TradeDate
.
The annualized yield to maturity of the bond on TradeDate
.
A simulated dataset of 100 plain vanilla fixed coupon corporate bonds issued in 2016.
data(SomeBonds2016)
data(SomeBonds2016)
A data frame with 100 rows and 12 variables:
Identification number of the security.
Type of the bond's coupon.
The bond's issue date. Object of class Date
with format "%Y-%m-%d"
.
Date on which the interest accrual starts (so-called
"dated date"). Object of class Date with format
"%Y-%m-%d"
.
First interest payment date after Issue.Date
.
Object of class Date with format "%Y-%m-%d"
.
Last interest payment date before Mat.Date
.
Object of class Date with format "%Y-%m-%d"
.
So-called "maturity date" i.e. date on which the
redemption value and the final interest are paid.
Object of class Date with format "%Y-%m-%d"
.
Number of interest payments per year. Object of class numeric.
The nominal interest p.a. of the bond in percent. Object of class numeric.
The face value (= redemption value, par value) of the bond in percent.
The day count convention the bond follows. Type ?AccrInt for details.
Boolean indicating whether the bond follows the End-of-Month rule.