
Package: BioPred (via r-universe)
November 5, 2024

Type Package

Title An R Package for Biomarkers Analysis in Precision Medicine

Version 1.0.2

Date 2024-11-03

Maintainer Zihuan Liu <zihuan.liu@abbvie.com>

Description Provides functions for training extreme gradient boosting
model using propensity score A-learning and weight-learning
methods. For further details, see Liu et al. (2024)
<doi:10.1093/bioinformatics/btae592>.

Encoding UTF-8

Language en

License GPL-3

Imports xgboost, pROC, ggplot2, PropCIs, survival, survminer, mgcv,
onewaytests, car

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, kableExtra

VignetteBuilder knitr

NeedsCompilation no

Depends R (>= 4.0.0)

LazyData true

Author Zihuan Liu [aut, cre], Yan Sun [aut], Xin Huang [aut]

Repository CRAN

Date/Publication 2024-11-04 08:30:13 UTC

Config/pak/sysreqs cmake make libicu-dev libjpeg-dev libpng-dev
libxml2-dev libssl-dev

1

https://doi.org/10.1093/bioinformatics/btae592

2 cat_summary

Contents

cat_summary . 2
cdf_plot . 3
cut_perf . 4
eval_metric_bin . 6
eval_metric_con . 7
eval_metric_sur . 8
fixcut_bin . 9
fixcut_con . 10
fixcut_sur . 12
gam_ctr_plot . 14
gam_plot . 16
get_subgroup_results . 18
predictive_biomarker_imp . 19
roc_bin . 20
roc_bin_plot . 21
scat_cont_plot . 23
subgrp_perf . 24
subgrp_perf_pred . 26
tutorial_data . 28
XGBoostSub_bin . 29
XGBoostSub_con . 31
XGBoostSub_sur . 33

Index 36

cat_summary Summarize Categorical Variables in Subgroup

Description

This function provides a summary of categorical variables in a dataset.

Usage

cat_summary(
yvar,
yname,
xvars,
xname.list,
data,
yvar.display = yvar,
xvars.display = xvars

)

cdf_plot 3

Arguments

yvar Name of the variable for summary.

yname A vector of ordered y values.

xvars Names of the variables for grouping.

xname.list A list (same order as xvars) of ordered x values for each xvar.

data The dataset.

yvar.display Display name for yvar.

xvars.display Display name for xvars.

Value

A list containing the contingency table, frequency table, and percentage table.

Examples

Load a sample dataset
data <- data.frame(

outcome = sample(c("A", "B", "C"), 100, replace = TRUE), # categorical outcome
group1 = sample(c("Male", "Female"), 100, replace = TRUE), # group variable 1
group2 = sample(c("Young", "Old"), 100, replace = TRUE) # group variable 2

)

Summarize categorical outcome by two grouping variables
cat_summary(

yvar = "outcome",
yname = c("A", "B", "C"), # ordered categories for outcome
xvars = c("group1", "group2"),
xname.list = list(c("Male", "Female"), c("Young", "Old")),
data = data,
yvar.display = "Outcome Category",
xvars.display = c("Gender", "Age Group")

)

cdf_plot CDF Plot for a biomarker

Description

Cumulative Distribution Function (CDF) plot for a biomarker.

Usage

cdf_plot(xvar, data, y.int = 5, xlim = NULL, xvar.display = xvar, group = NULL)

4 cut_perf

Arguments

xvar The biomarker name.

data The dataset.

y.int Increasement interval on the y.

xlim cdf plot range for xvar, when NULL, c(min(x), max(x)) will be used.

xvar.display Display name of the biomarker.

group A separate CDF line will be plotted for each group.

Value

A ggplot object representing the CDF inverse plot.

Examples

Load a sample dataset
data <- data.frame(
biomarker = rnorm(100, mean = 50, sd = 10),
group = sample(c("Group A", "Group B"), 100, replace = TRUE)

)

Basic CDF plot for a single biomarker without groups
cdf_plot(
xvar = "biomarker",
data = data,
y.int = 10,
xlim = c(30, 70),
xvar.display = "Biomarker Level"

)
CDF plot for a biomarker with groups
cdf_plot(

xvar = "biomarker",
data = data,
y.int = 10,
xlim = c(30, 70),
xvar.display = "Biomarker Level",
group = "group"

)

cut_perf Cutoff Performance Evaluation

Description

This function evaluates the performance of a predictive model at a selected cutoff point.

cut_perf 5

Usage

cut_perf(
yvar,
censorvar = NULL,
xvar,
cutoff,
dir,
xvars.adj = NULL,
data,
type,
yvar.display = yvar,
xvar.display = xvar

)

Arguments

yvar Response variable name.

censorvar Censoring variable name (0-censored, 1-event).

xvar Biomarker name.

cutoff Selected cutoff value.

dir Direction for desired subgroup (">", ">=", "<", "<=").

xvars.adj Other covariates to adjust when evaluating the performance.

data Data frame containing the variables.

type Type of analysis: "c" for continuous, "s" for survival, and "b" for binary.

yvar.display Display name of response variable.

xvar.display Display name of biomarker variable.

Value

A list containing various performance metrics and optionally, plots.

Examples

Load a sample dataset
data <- data.frame(

survival_time = rexp(100, rate = 0.1), # survival time
status = sample(c(0, 1), 100, replace = TRUE), # censoring status
biomarker = rnorm(100, mean = 0, sd = 1), # biomarker levels
covariate1 = rnorm(100, mean = 50, sd = 10) # an additional covariate

)
Perform cutoff performance evaluation for continuous outcome
data$continuous_outcome <- rnorm(100, mean = 10, sd = 5)
cut_perf(

yvar = "continuous_outcome",
xvar = "biomarker",
cutoff = 0.5,
dir = ">=",

6 eval_metric_bin

data = data,
type = "c",
yvar.display = "Continuous Outcome",
xvar.display = "Biomarker Level"

)

Perform cutoff performance evaluation for binary outcome
data$binary_outcome <- sample(c(0, 1), 100, replace = TRUE)
cut_perf(

yvar = "binary_outcome",
xvar = "biomarker",
cutoff = 0,
dir = "<=",
data = data,
type = "b",
yvar.display = "Binary Outcome",
xvar.display = "Biomarker Level"

)

eval_metric_bin Evaluation Metrics for XGBoostSub_bin Model

Description

Function for evaluating XGBoostSub_bin model performance.

Usage

eval_metric_bin(model, X_feature, y_label, pi, trt, Loss_type = "A_learning")

Arguments

model The trained XGBoostSub_bin model object.

X_feature The input features matrix.

y_label The input y matrix.

pi The propensity scores vector, which should range from 0 to 1, representing the
probability of assignment to treatment.

trt The treatment indicator vector. Should take values of 1 or -1, where 1 represents
the treatment group and -1 represents the control group.

Loss_type Type of loss function to use: "A_learning" or "Weight_learning".

Details

eval_metric: Function for Evaluating XGBoostSub_bin Model Performance

This function evaluates the performance of an XGBoostSub_bin model using a A-learning or weight-
learning function.

eval_metric_con 7

Value

Evaluation result of the XGBoostSub_bin model.

eval_metric_con Evaluation Metrics for XGBoostSub_con Model

Description

Function for evaluating XGBoostSub_con model performance.

Usage

eval_metric_con(model, X_feature, y_label, pi, trt, Loss_type = "A_learning")

Arguments

model The trained XGBoostSub_con model object.

X_feature The input features matrix.

y_label The input y matrix.

pi The propensity scores vector, which should range from 0 to 1, representing the
probability of assignment to treatment.

trt The treatment indicator vector. Should take values of 1 or -1, where 1 represents
the treatment group and -1 represents the control group.

Loss_type Type of loss function to use: "A_learning" or "Weight_learning".

Details

eval_metric: Function for Evaluating XGBoostSub_con Model Performance

This function evaluates the performance of an XGBoostSub_con model using a A-learning or
weight-learning function.

Value

Evaluation result of the XGBoostSub_con model.

8 eval_metric_sur

eval_metric_sur Evaluation Metrics for XGBoostSub_sur Model

Description

Function for evaluating XGBoostSub_sur model performance.

Usage

eval_metric_sur(
model,
X_feature,
y_label,
pi,
trt,
censor,
Loss_type = "A_learning"

)

Arguments

model The trained XGBoostSub_sur model object.

X_feature The input features matrix.

y_label The input y matrix.

pi The propensity scores vector, which should range from 0 to 1, representing the
probability of assignment to treatment.

trt The treatment indicator vector. Should take values of 1 or -1, where 1 represents
the treatment group and -1 represents the control group.

censor The censor status vector. Should take values of 1 or 0, where 1 represents cen-
soring and 0 represents an observed event.

Loss_type Type of loss function to use: "A_learning" or "Weight_learning".

Details

eval_metric: Function for Evaluating XGBoostSub_con Model Performance

This function evaluates the performance of an XGBoostSub_con model using a A-learning or
weight-learning function.

Value

Evaluation result of the XGBoostSub_sur model.

fixcut_bin 9

fixcut_bin Fixed Cutoff Analysis for Individual Biomarker Associated with Bi-
nary Outcome Variables

Description

This function conducts fixed cutoff analysis for individual biomarker associated with binary out-
come variables.

Usage

fixcut_bin(
yvar,
xvar,
dir,
cutoffs,
data,
method = "Fisher",
yvar.display = yvar,
xvar.display = xvar,
vert.x = FALSE

)

Arguments

yvar Binary response variable name. 0 represents controls and 1 represents cases.

xvar Biomarker name.

dir Cutoff direction for the desired subgroup. Options are ">", ">=", "<", or "<=".

cutoffs A vector of candidate cutoffs.

data The dataset containing the variables.

method Method for cutoff selection. Options are "Fisher", "Youden", "Conc.Prob", "Ac-
curacy", or "Kappa". - "Fisher": Minimizes the Fisher test p-value. - "Youden":
Maximizes the Youden index. - "Conc.Prob": Maximizes sensitivity * speci-
ficity. - "Accuracy": Maximizes accuracy. - "Kappa": Maximizes Kappa coeffi-
cient.

yvar.display Display name of the response variable.

xvar.display Display name of the predictor variable.

vert.x Whether to display the cutoff in a 90-degree angle when plotting (saves space).

Value

A list containing statistical summaries, selected cutoff statistics, selected cutoff value, confusion
matrix, and a ggplot object for visualization.

10 fixcut_con

Examples

Load a sample dataset
data <- data.frame(

outcome = sample(c(0, 1), 100, replace = TRUE),
biomarker = rnorm(100, mean = 0, sd = 1)

)

Perform fixed cutoff analysis using the "Fisher" method for a biomarker
fixcut_bin(

yvar = "outcome",
xvar = "biomarker",
dir = ">",
cutoffs = seq(-2, 2, by = 0.5),
data = data,
method = "Fisher",
yvar.display = "Binary Outcome",
xvar.display = "Biomarker Level",
vert.x = TRUE

)

Perform fixed cutoff analysis using the "Youden" method
fixcut_bin(

yvar = "outcome",
xvar = "biomarker",
dir = "<",
cutoffs = seq(-2, 2, by = 0.5),
data = data,
method = "Youden",
yvar.display = "Binary Outcome",
xvar.display = "Biomarker Level",
vert.x = FALSE

)

Perform fixed cutoff analysis using "Accuracy" method with different direction
fixcut_bin(

yvar = "outcome",
xvar = "biomarker",
dir = ">=",
cutoffs = c(-1, 0, 1),
data = data,
method = "Accuracy",
yvar.display = "Binary Outcome",
xvar.display = "Biomarker Level",
vert.x = TRUE

)

fixcut_con Fixed Cutoff Analysis for Individual Biomarker Associated with Con-
tinuous Outcome

fixcut_con 11

Description

This function conducts fixed cutoff analysis for individual biomarker associated with continuous
outcome variables.

Usage

fixcut_con(
yvar,
xvar,
dir,
cutoffs,
data,
method = "t.test",
yvar.display = yvar,
xvar.display = xvar,
vert.x = FALSE

)

Arguments

yvar Continuous response variable name.

xvar Biomarker name.

dir Cutoff direction for the desired subgroup. Options are ">", ">=", "<", or "<=".

cutoffs A vector of candidate cutoffs.

data The dataset containing the variables.

method Method for cutoff selection. Currently only supports "t.test". - "t.test": Mini-
mizes the t-test p-value.

yvar.display Display name of the response variable.

xvar.display Display name of the predictor variable.

vert.x Whether to display the cutoff in a 90-degree angle when plotting (saves space).

Value

A list containing statistical summaries, selected cutoff statistics, selected cutoff value, group statis-
tics, and a ggplot object for visualization.

Examples

Load a sample dataset
data <- data.frame(

outcome = rnorm(100, mean = 10, sd = 5),
biomarker = rnorm(100, mean = 0, sd = 1)

)

Perform fixed cutoff analysis using the "t.test" method with '>' direction
fixcut_con(

yvar = "outcome",

12 fixcut_sur

xvar = "biomarker",
dir = ">",
cutoffs = seq(-2, 2, by = 0.5),
data = data,
method = "t.test",
yvar.display = "Continuous Outcome",
xvar.display = "Biomarker Level",
vert.x = TRUE

)

Perform fixed cutoff analysis with '<=' direction
fixcut_con(

yvar = "outcome",
xvar = "biomarker",
dir = "<=",
cutoffs = c(-1, 0, 1),
data = data,
method = "t.test",
yvar.display = "Continuous Outcome",
xvar.display = "Biomarker Level",
vert.x = FALSE

)

fixcut_sur Fixed Cutoff Analysis for Individual Biomarker Associated with Sur-
vival Outcome

Description

This function conducts fixed cutoff analysis for Individual Biomarker Associated with survival out-
come variables.

Usage

fixcut_sur(
yvar,
censorvar,
xvar,
dir,
cutoffs,
data,
method = "logrank",
yvar.display = yvar,
xvar.display = xvar,
vert.x = FALSE

)

fixcut_sur 13

Arguments

yvar Survival response variable name.

censorvar Censoring variable. 0 indicates censored, 1 indicates an event.

xvar Biomarker name.

dir Cutoff direction for the desired subgroup. Options are ">", ">=", "<", or "<=".

cutoffs A vector of candidate cutoffs.

data The dataset containing the variables.

method Method for cutoff selection. Currently only supports "logrank". - "logrank":
Minimizes the logrank test p-value.

yvar.display Display name of the response variable.

xvar.display Display name of the predictor variable.

vert.x Whether to display the cutoff in a 90-degree angle when plotting (saves space).

Value

A list containing statistical summaries, selected cutoff statistics, selected cutoff value, group statis-
tics, and a ggplot object for visualization.

Examples

Load a sample dataset
data <- data.frame(

time = rexp(100, rate = 0.1), # survival time
status = sample(c(0, 1), 100, replace = TRUE), # censoring status
biomarker = rnorm(100, mean = 0, sd = 1) # biomarker levels

)

fixcut_sur(
yvar = "time",
censorvar = "status",
xvar = "biomarker",
dir = "<=",
cutoffs = c(-1, 0, 1),
data = data,
method = "logrank",
yvar.display = "Survival Time",
xvar.display = "Biomarker Level",
vert.x = FALSE

)

14 gam_ctr_plot

gam_ctr_plot GAM Contrast Plot

Description

Computes and plots the contrasts between treatment and control group based on a GAM for explor-
ing the relationship be-tween treatment benefit and biomarker.

Usage

gam_ctr_plot(
yvar,
censorvar = NULL,
xvar,
xvars.adj = NULL,
sxvars.adj = NULL,
trtvar = NULL,
type,
data,
k,
title = "Group Contrast",
ybreaks = NULL,
xbreaks = NULL,
rugcol.var = NULL,
link.scale = TRUE,
prt.sum = TRUE,
prt.chk = FALSE,
outlier.rm = FALSE

)

Arguments

yvar Response variable name.

censorvar Censoring variable name (0-censored, 1-event). Required if type is "s" (sur-
vival).

xvar Biomarker name.

xvars.adj Potential confounding variables to adjust for using linear terms.

sxvars.adj Potential confounding variables to adjust for using curves.

trtvar Treatment variable that the contrast will build upon (treatment-control).

type Type of response variable. Options are "c" for continuous, "s" for survival, and
"b" for binary response.

data The dataset containing the variables.

k Upper limit on the degrees of freedom associated with an s smooth.When this k
is too large, program will report error saying

gam_ctr_plot 15

title Title of the plot.

ybreaks Breaks on the y-axis.

xbreaks Breaks on the x-axis.

rugcol.var Variable name that defines the color of the rug.

link.scale Whether to show the plot (y-axis) in the scale of the link function (linear predic-
tor).

prt.sum Whether to print summary or not.

prt.chk Whether to print model diagnosis.

outlier.rm Whether to remove outliers based on 1.5IQR.

Value

A list containing the p-value table, summarized p-value table, s-value table, summarized s-value
table, and the plot.

Examples

Load a sample dataset
data <- data.frame(

response = rnorm(100),
biomarker = rnorm(100, mean = 50, sd = 10),
censor = sample(c(0, 1), 100, replace = TRUE),
treatment = sample(c(0, 1), 100, replace = TRUE),
age = rnorm(100, mean = 60, sd = 10),
group = sample(c("Group A", "Group B"), 100, replace = TRUE)

)

Generate a GAM contrast plot for a continuous response variable
gam_ctr_plot(

yvar = "response",
xvar = "biomarker",
trtvar = "treatment",
type = "c",
data = data,
xvars.adj = "age",
k = 5,
title = "GAM Contrast Plot for Treatment vs. Control"

)

Generate a GAM contrast plot for survival analysis
gam_ctr_plot(

yvar = "response",
censorvar = "censor",
xvar = "biomarker",
trtvar = "treatment",
type = "s",
data = data,
k = 5,
title = "GAM Contrast Plot for Survival Data"

)

16 gam_plot

Generate a GAM contrast plot for a binary response variable
data$binary_response <- as.numeric(data$response > 0)
gam_ctr_plot(

yvar = "binary_response",
xvar = "biomarker",
trtvar = "treatment",
type = "b",
data = data,
k = 5,
title = "GAM Contrast Plot for Binary Outcome"

)

gam_plot GAM Plot

Description

Generates a generalized additive model (GAM) plot for exploring the relationship between a re-
sponse variable and a biomarker.

Usage

gam_plot(
yvar,
censorvar = NULL,
xvar,
xvars.adj = NULL,
sxvars.adj = NULL,
type,
data,
k,
pred.type = "iterms",
link.scale = TRUE,
title = "Trend Plot",
ybreaks = NULL,
xbreaks = NULL,
rugcol.var = NULL,
add.points = FALSE,
prt.sum = TRUE,
prt.chk = FALSE,
outlier.rm = FALSE,
newdat = NULL

)

Arguments

yvar Response variable name.

gam_plot 17

censorvar Censoring variable name for survival analysis (0-censored, 1-event).

xvar Biomarker name.

xvars.adj Potential confounding variables to adjust for using linear terms.

sxvars.adj Potential confounding variables to adjust for using curve terms.

type "c" for continuous, "s" for survival, and "b" for binary response.

data The dataset containing the variables.

k Upper limit on the degrees of freedom associated with an s smooth.

pred.type "iterms" for trend of xvar, "response" for Y at the original scale.

link.scale Whether to show the plot in the scale of the link function.

title Title of the plot.

ybreaks Breaks on the y-axis.

xbreaks Breaks on the x-axis.

rugcol.var Variable name defining the color of the rug and points.

add.points Whether to add data points to the plot.

prt.sum Whether to print summary or not.

prt.chk Whether to print model diagnosis.

outlier.rm Whether to remove outliers based on 1.5IQR.

newdat User-supplied customized data for prediction and plotting.

Value

A list containing p-table, s-table, GAM summary, GAM check, and the plot.

Examples

Load a sample dataset
data <- data.frame(

response = rnorm(100),
biomarker = rnorm(100, mean = 50, sd = 10),
censor = sample(c(0, 1), 100, replace = TRUE),
age = rnorm(100, mean = 60, sd = 10),
group = sample(c("Group A", "Group B"), 100, replace = TRUE)

)

Generate a GAM plot for a continuous response variable
gam_plot(

yvar = "response",
xvar = "biomarker",
type = "c",
data = data,
xvars.adj = "age",
sxvars.adj = NULL,
k = 5,
pred.type = "iterms",
title = "GAM Plot of Biomarker and Response"

18 get_subgroup_results

)

Generate a GAM plot for survival analysis
gam_plot(

yvar = "response",
censorvar = "censor",
xvar = "biomarker",
type = "s",
data = data,
k = 5,
title = "GAM Survival Plot for Biomarker"

)

Generate a GAM plot for a binary response variable
data$binary_response <- as.numeric(data$response > 0)
gam_plot(

yvar = "binary_response",
xvar = "biomarker",
type = "b",
data = data,
k = 5,
pred.type = "response",
title = "GAM Plot for Binary Response"

)

get_subgroup_results Get Subgroup Results

Description

This function predicts the treatment assignment for each patient based on a cutoff value.

Usage

get_subgroup_results(model, X_feature, subgroup_label = NULL, cutoff = 0.5)

Arguments

model The trained XGBoost-based subgroup model.

X_feature The data matrix containing patient features.

subgroup_label (Optional) The subgroup labels. In real-world data, this information is typically
unknown and only available in simulated data. If provided, the prediction accu-
racy will also be returned.

cutoff The cutoff value for treatment assignment, defaulted to 0.5.

Value

A data frame containing each subject and assigned treatment (1 for treatment, 0 for control). If
subgroup labels are provided, it also returns the prediction accuracy of the subgroup labels.

predictive_biomarker_imp 19

Examples

X_data <- matrix(rnorm(100 * 10), ncol = 10) # 100 samples with 10 features
y_data <- rnorm(100) # continuous outcome variable
trt <- sample(c(1, -1), 100, replace = TRUE) # treatment indicator (1 or -1)
pi <- runif(100, min = 0.3, max = 0.7) # propensity scores between 0 and 1

Define XGBoost parameters
params <- list(

max_depth = 3,
eta = 0.1,
subsample = 0.8,
colsample_bytree = 0.8

)

Train the model using A-learning loss
model_A <- XGBoostSub_con(

X_data = X_data,
y_data = y_data,
trt = trt,
pi = pi,
Loss_type = "A_learning",
params = params,
nrounds = 5,
disable_default_eval_metric = 1,
verbose = TRUE

)
subgroup_results=get_subgroup_results(model_A, X_data, subgroup_label=NULL, cutoff = 0.5)

predictive_biomarker_imp

Plot Predictive Biomarker Importance based on XGBoost-based Sub-
group Model

Description

This function calculates and plots the importance of biomarkers in a trained XGBoostSub_con,
XGBoostSub_bin or XGBoostSub_sur model.

Usage

predictive_biomarker_imp(model)

Arguments

model The trained XGBoost-based model.

Value

A barplot showing the biomarker importance.

20 roc_bin

Examples

X_data <- matrix(rnorm(100 * 10), ncol = 10) # 100 samples with 10 features
y_data <- rnorm(100) # continuous outcome variable
trt <- sample(c(1, -1), 100, replace = TRUE) # treatment indicator (1 or -1)
pi <- runif(100, min = 0.3, max = 0.7) # propensity scores between 0 and 1

Define XGBoost parameters
params <- list(

max_depth = 3,
eta = 0.1,
subsample = 0.8,
colsample_bytree = 0.8

)

Train the model using A-learning loss
model_A <- XGBoostSub_con(

X_data = X_data,
y_data = y_data,
trt = trt,
pi = pi,
Loss_type = "A_learning",
params = params,
nrounds = 5,
disable_default_eval_metric = 1,
verbose = TRUE

)
biomarker_imp=predictive_biomarker_imp(model_A)

roc_bin AUC ROC Table for Biomarkers Associated with Binary Outcomes

Description

Computes the area under the receiver operating characteristic (ROC) curve for Biomarkers Associ-
ated with Binary Outcomes, and returns the results as a table.

Usage

roc_bin(yvar, xvars, dirs, data, yvar.display = yvar, xvars.display = xvars)

Arguments

yvar Binary response variable name, where 0 represents controls and 1 represents
cases.

xvars A vector of biomarker names.

dirs A vector of directions for the biomarkers. Options are "auto", ">", or "<". -
"auto" (default): automatically determines in which group the median is higher
and takes the direction accordingly. - ">": indicates that the biomarkers for the

roc_bin_plot 21

control group are higher than those for the case group (controls > t >= cases).
- "<": indicates that the biomarkers for the control group are lower or equal to
those for the case group (controls < t <= cases).

data The dataset containing the variables.

yvar.display Display name for the binary response variable.

xvars.display Display names for the biomarkers.

Value

A table containing the AUC values for each biomarker.

Examples

Load a sample dataset
data <- data.frame(

outcome = sample(c(0, 1), 100, replace = TRUE),
biomarker1 = rnorm(100, mean = 0, sd = 1),
biomarker2 = rnorm(100, mean = 5, sd = 2)

)

Compute AUC for a single biomarker with auto direction
roc_bin(

yvar = "outcome",
xvars = "biomarker1",
dirs = "auto",
data = data,
yvar.display = "Binary Outcome",
xvars.display = "Biomarker 1"

)

Compute AUC for multiple biomarkers with specified directions
roc_bin(

yvar = "outcome",
xvars = c("biomarker1", "biomarker2"),
dirs = c("auto", "<"),
data = data,
yvar.display = "Binary Outcome",
xvars.display = c("Biomarker 1", "Biomarker 2")

)

roc_bin_plot ROC Plot Biomarkers Associated with Binary Outcomes

Description

Generates ROC plots for different biomarkers associated with binary outcomes.

22 roc_bin_plot

Usage

roc_bin_plot(
yvar,
xvars,
dirs,
data,
yvar.display = yvar,
xvars.display = xvars

)

Arguments

yvar Binary response variable name, where 0 represents controls and 1 represents
cases.

xvars A vector of biomarker names.

dirs A vector of directions for the biomarkers. Options are "auto", ">", or "<". -
"auto" (default): automatically determines in which group the median is higher
and takes the direction accordingly. - ">" indicates that the biomarkers for the
control group are higher than those for the case group (controls > t >= cases).
- "<" indicates that the biomarkers for the control group are lower or equal to
those for the case group (controls < t <= cases).

data The dataset containing the variables.

yvar.display Display name for the binary response variable.

xvars.display Display names for the biomarkers.

Value

ROC plots for different biomarkers associated with binary outcomes.

Examples

Load a sample dataset
data <- data.frame(

outcome = sample(c(0, 1), 100, replace = TRUE),
biomarker1 = rnorm(100, mean = 0, sd = 1),
biomarker2 = rnorm(100, mean = 5, sd = 2)

)

Generate ROC plot for a single biomarker with auto direction
roc_bin_plot(

yvar = "outcome",
xvars = "biomarker1",
dirs = "auto",
data = data,
yvar.display = "Binary Outcome",
xvars.display = "Biomarker 1"

)

Generate ROC plots for multiple biomarkers with specified directions

scat_cont_plot 23

roc_bin_plot(
yvar = "outcome",
xvars = c("biomarker1", "biomarker2"),
dirs = c("auto", "<"),
data = data,
yvar.display = "Binary Outcome",
xvars.display = c("Biomarker 1", "Biomarker 2")

)

scat_cont_plot Scatter Plot for a Biomarker Associated with Continuous Outcome

Description

Generates a scatter plot for exploring the relationship between a continuous response variable and
a biomarker variable.

Usage

scat_cont_plot(
yvar,
xvar,
data,
ybreaks = NULL,
xbreaks = NULL,
yvar.display = yvar,
xvar.display = xvar

)

Arguments

yvar Continuous response variable name.

xvar biomarker name.

data The dataset containing the variables.

ybreaks Breaks on the y-axis.

xbreaks Breaks on the x-axis.

yvar.display Display name for the response variable.

xvar.display Display name for the biomarker variable.

Value

A list containing correlation coefficients, scatter plot, slope, and intercept.

24 subgrp_perf

Examples

data <- data.frame(
outcome = rnorm(100, mean = 10, sd = 2),
biomarker = rnorm(100, mean = 0, sd = 1)

)

Generate a scatter plot with default axis breaks
scat_cont_plot(

yvar = "outcome",
xvar = "biomarker",
data = data,
yvar.display = "Continuous Outcome",
xvar.display = "Biomarker Level"

)

Generate a scatter plot with specified axis breaks
scat_cont_plot(

yvar = "outcome",
xvar = "biomarker",
data = data,
ybreaks = seq(5, 15, by = 1),
xbreaks = seq(-2, 2, by = 0.5),
yvar.display = "Continuous Outcome",
xvar.display = "Biomarker Level"

)

subgrp_perf Subgroup Performance Evaluation for Prognostic Cases

Description

This function evaluates subgroup performance based on different types of response variables.

Usage

subgrp_perf(
yvar,
censorvar = NULL,
grpvar,
grpname,
xvars.adj = NULL,
data,
type,
yvar.display = yvar,
grpvar.display = grpvar

)

subgrp_perf 25

Arguments

yvar The response variable name.

censorvar (Optional) The censoring variable name (0-censored, 1-event).

grpvar The subgroup variable name.

grpname A vector of ordered subgroup names (values in the column of grpvar).

xvars.adj (Optional) Other covariates to adjust when evaluating the performance.

data The dataset containing the variables.

type The type of response variable: "c" for continuous, "s" for survival, and "b" for
binary.

yvar.display Display name of the response variable.

grpvar.display Display name of the group variable.

Value

A list containing subgroup performance results including logrank p-value, median and mean sur-
vival, Cox model p-value, ANOVA p-value, and more based on the specified response variable
type.

Examples

Load a sample dataset
data <- data.frame(

survival_time = rexp(100, rate = 0.1), # survival time
status = sample(c(0, 1), 100, replace = TRUE), # censoring status
group = sample(c("Low", "Medium", "High"), 100, replace = TRUE), # subgroup variable
covariate = rnorm(100, mean = 50, sd = 10) # an additional covariate

)

Perform subgroup performance evaluation for survival analysis
subgrp_perf(

yvar = "survival_time",
censorvar = "status",
grpvar = "group",
grpname = c("Low", "Medium", "High"),
data = data,
type = "s",
yvar.display = "Survival Time",
grpvar.display = "Risk Group"

)

Perform subgroup performance evaluation for continuous outcome
data$continuous_outcome <- rnorm(100, mean = 10, sd = 5)
subgrp_perf(

yvar = "continuous_outcome",
grpvar = "group",
grpname = c("Low", "Medium", "High"),
data = data,
type = "c",

26 subgrp_perf_pred

yvar.display = "Continuous Outcome",
grpvar.display = "Risk Group"

)

Perform subgroup performance evaluation for binary outcome
data$binary_outcome <- sample(c(0, 1), 100, replace = TRUE)
subgrp_perf(

yvar = "binary_outcome",
grpvar = "group",
grpname = c("Low", "Medium", "High"),
data = data,
type = "b",
yvar.display = "Binary Outcome",
grpvar.display = "Risk Group"

)

subgrp_perf_pred Subgroup Performance Evaluation for Predictive Cases

Description

This function evaluates the performance of subgroups based on different types of response variables
in predictive cases.

Usage

subgrp_perf_pred(
yvar,
censorvar = NULL,
grpvar,
grpname,
trtvar,
trtname,
xvars.adj = NULL,
data,
type,
yvar.display = yvar,
grpvar.display = grpvar,
trtvar.display = trtvar

)

Arguments

yvar Response variable name.

censorvar Censoring variable name (0-censored, 1-event).

grpvar Subgroup variable name.

grpname A vector of ordered subgroup names (values in the column of grpvar).

subgrp_perf_pred 27

trtvar Treatment variable name.

trtname A vector of ordered treatment names (values in the column of trtvar).

xvars.adj Other covariates to adjust when evaluating the performance.

data The dataset.

type "c" for continuous; "s" for "survival", and "b" for binary.

yvar.display Display name of the response variable.

grpvar.display Display name of the group variable.

trtvar.display Display name of the treatment variable.

Value

A list containing the comparison results, group results, and possibly a plot.

Examples

Load a sample dataset
data <- data.frame(

response = rnorm(100, mean = 10, sd = 5), # continuous response
survival_time = rexp(100, rate = 0.1), # survival time
status = sample(c(0, 1), 100, replace = TRUE), # censoring status
group = sample(c("Low", "Medium", "High"), 100, replace = TRUE), # subgroup variable
treatment = sample(c("A", "B"), 100, replace = TRUE) # treatment variable

)

Subgroup performance evaluation for predictive cases - survival analysis
subgrp_perf_pred(

yvar = "survival_time",
censorvar = "status",
grpvar = "group",
grpname = c("Low", "Medium", "High"),
trtvar = "treatment",
trtname = c("A", "B"),
data = data,
type = "s",
yvar.display = "Survival Time",
grpvar.display = "Risk Group",
trtvar.display = "Treatment"

)

Subgroup performance evaluation for predictive cases - continuous outcome
subgrp_perf_pred(

yvar = "response",
grpvar = "group",
grpname = c("Low", "Medium", "High"),
trtvar = "treatment",
trtname = c("A", "B"),
data = data,
type = "c",
yvar.display = "Response",
grpvar.display = "Risk Group",

28 tutorial_data

trtvar.display = "Treatment"
)

Subgroup performance evaluation for predictive cases - binary outcome
data$binary_response <- sample(c(0, 1), 100, replace = TRUE)
subgrp_perf_pred(

yvar = "binary_response",
grpvar = "group",
grpname = c("Low", "Medium", "High"),
trtvar = "treatment",
trtname = c("A", "B"),
data = data,
type = "b",
yvar.display = "Binary Response",
grpvar.display = "Risk Group",
trtvar.display = "Treatment"

)

tutorial_data Tutorial Data

Description

A dataset containing sample data for demonstrating the functionalities of the BioPred package.

Usage

data(tutorial_data)

Format

A data frame with the following columns:

x1 Numeric. A biomarker variable.

x2 Numeric. A biomarker variable.

x3 Numeric. A biomarker variable.

x4 Numeric. A biomarker variable.

x5 Numeric. A biomarker variable.

x6 Numeric. A biomarker variable.

x7 Numeric. A biomarker variable.

x8 Numeric. A biomarker variable.

x9 Numeric. A biomarker variable.

x10 Numeric. A biomarker variable.

y.con Numeric. A continuous outcome variable.

y.bin Binary. A binary outcome variable, where 0 represents one class and 1 represents another
class.

XGBoostSub_bin 29

y.time Numeric. The time in months, used for survival analysis.

y.event Binary. Event indicator variable, where 0 indicates censoring and 1 indicates the event of
interest occurred.

subgroup_label Binary. Ground truth of subgroup label. In real-world scenarios, this information
is typically unavailable.

treatment Binary. Treatment indicator variable, where 0 represents control and 1 represents treat-
ment.

treatment_categorical Factor. A categorical version of the treatment variable, with levels "Placebo"
and "Treatment".

risk_category Factor.

Details

This dataset is used to illustrate various functions within the BioPred package, including predictive
modeling and subgroup analysis. The columns represent different types of data typically encoun-
tered in clinical studies.

Examples

data(tutorial_data)
head(tutorial_data)

XGBoostSub_bin XGBoost Model with Modified Loss Function for Subgroup Identifica-
tion with Binary Outcomes

Description

Function for training XGBoost model with customized loss function for binary outcomes

Usage

XGBoostSub_bin(
X_data,
y_data,
trt,
pi,
Loss_type = "A_learning",
params = list(),
nrounds = 50,
disable_default_eval_metric = 1,
verbose = TRUE

)

30 XGBoostSub_bin

Arguments

X_data The input features matrix.

y_data The input y matrix.

trt The treatment indicator vector. Should take values of 1 or -1, where 1 represents
the treatment group and -1 represents the control group.

pi The propensity scores vector, which should range from 0 to 1, representing the
probability of assignment to treatment.

Loss_type Type of loss function to use: "A_learning" or "Weight_learning".

params A list of additional parameters for the xgb.train function.

nrounds Number of boosting rounds. Default is 50.
disable_default_eval_metric

If 1, default evaluation metric will be disabled.

verbose Logical. If TRUE, training progress will be printed; if FALSE, no progress will
be printed.

Details

XGBoostSub_bin: Function for Training XGBoost Model with Customized Loss Function for bi-
nary outcomes

This function trains an XGBoost model using a customized loss function based on the A-learning
and weight-learning.

This function requires the ’xgboost’ library. Make sure to install and load the ’xgboost’ library
before using this function.

After running this function, the returned model can be used like a regular xgboost model.

Value

Trained XGBoostSub_bin model.

Examples

X_data <- matrix(rnorm(100 * 10), ncol = 10) # 100 samples with 10 features
y_data <- rbinom(100, 1, 0.5) # binary outcomes (0 or 1)
trt <- sample(c(1, -1), 100, replace = TRUE) # treatment indicator (1 or -1)
pi <- runif(100, min = 0.3, max = 0.7) # propensity scores between 0 and 1

Define XGBoost parameters
params <- list(

max_depth = 3,
eta = 0.1,
subsample = 0.8,
colsample_bytree = 0.8

)

Train the model using A-learning loss
model_A <- XGBoostSub_bin(

X_data = X_data,

XGBoostSub_con 31

y_data = y_data,
trt = trt,
pi = pi,
Loss_type = "A_learning",
params = params,
nrounds = 5,
disable_default_eval_metric = 1,
verbose = TRUE

)

Train the model using Weight-learning loss
model_W <- XGBoostSub_bin(

X_data = X_data,
y_data = y_data,
trt = trt,
pi = pi,
Loss_type = "Weight_learning",
params = params,
nrounds = 5,
disable_default_eval_metric = 1,
verbose = TRUE

)

XGBoostSub_con XGBoost Model with Modified Loss Function for Subgroup Identifica-
tion with Continuous Outcomes

Description

Function for training XGBoost model with customized loss function for continuous outcomes

Usage

XGBoostSub_con(
X_data,
y_data,
trt,
pi,
Loss_type = "A_learning",
params = list(),
nrounds = 50,
disable_default_eval_metric = 1,
verbose = TRUE

)

Arguments

X_data The input features matrix.

32 XGBoostSub_con

y_data The input y matrix.

trt The treatment indicator vector. Should take values of 1 or -1, where 1 represents
the treatment group and -1 represents the control group.

pi The propensity scores vector, which should range from 0 to 1, representing the
probability of assignment to treatment.

Loss_type Type of loss function to use: "A_learning" or "Weight_learning".

params A list of additional parameters for the xgb.train function.

nrounds Number of boosting rounds. Default is 50.
disable_default_eval_metric

If 1, default evaluation metric will be disabled.

verbose Logical. If TRUE, training progress will be printed; if FALSE, no progress will
be printed.

Details

XGBoostSub_con: Function for Training XGBoost Model with Customized Loss Function for con-
tinuous outcomes

This function trains an XGBoost model using a customized loss function based on the A-learning
and weight-learning.

This function requires the ’xgboost’ library. Make sure to install and load the ’xgboost’ library
before using this function.

After running this function, the returned model can be used like a regular xgboost model.

Value

Trained XGBoostSub_con model.

Examples

X_data <- matrix(rnorm(100 * 10), ncol = 10) # 100 samples with 10 features
y_data <- rnorm(100) # continuous outcome variable
trt <- sample(c(1, -1), 100, replace = TRUE) # treatment indicator (1 or -1)
pi <- runif(100, min = 0.3, max = 0.7) # propensity scores between 0 and 1

Define XGBoost parameters
params <- list(

max_depth = 3,
eta = 0.1,
subsample = 0.8,
colsample_bytree = 0.8

)

Train the model using A-learning loss
model_A <- XGBoostSub_con(

X_data = X_data,
y_data = y_data,
trt = trt,
pi = pi,

XGBoostSub_sur 33

Loss_type = "A_learning",
params = params,
nrounds = 5,
disable_default_eval_metric = 1,
verbose = TRUE

)

Train the model using Weight-learning loss
model_W <- XGBoostSub_con(

X_data = X_data,
y_data = y_data,
trt = trt,
pi = pi,
Loss_type = "Weight_learning",
params = params,
nrounds = 5,
disable_default_eval_metric = 1,
verbose = TRUE

)

XGBoostSub_sur XGBoost Model with Modified Loss Function for Subgroup Identifica-
tion with Survival Outcomes

Description

Function for training XGBoost model with customized loss function for survival outcomes

Usage

XGBoostSub_sur(
X_data,
y_data,
trt,
pi,
censor,
Loss_type = "Weight_learning",
params = list(),
nrounds = 50,
disable_default_eval_metric = 1,
verbose = TRUE

)

Arguments

X_data The input features matrix.

y_data The input y matrix.

34 XGBoostSub_sur

trt The treatment indicator vector. Should take values of 1 or -1, where 1 represents
the treatment group and -1 represents the control group.

pi The propensity scores vector, which should range from 0 to 1, representing the
probability of assignment to treatment.

censor The censor status vector. Should take values of 1 or 0, where 1 represents cen-
soring and 0 represents an observed event.

Loss_type Type of loss function to use: "A_learning" or "Weight_learning".

params A list of additional parameters for the xgb.train function.

nrounds Number of boosting rounds. Default is 50.
disable_default_eval_metric

If 1, default evaluation metric will be disabled.

verbose Logical. If TRUE, training progress will be printed; if FALSE, no progress will
be printed.

Details

XGBoostSub_sur: Function for Training XGBoost Model with Customized Loss Function for sur-
vival outcomes

This function trains an XGBoost model using a customized loss function based on the A-learning
and weight-learning.

This function requires the ’xgboost’ library. Make sure to install and load the ’xgboost’ library
before using this function.

Value

Trained XGBoostSub_sur model.

Examples

X_data <- matrix(rnorm(100 * 10), ncol = 10) # 100 samples with 10 features
y_data <- rexp(100, rate = 0.1) # survival times, simulated as exponential
trt <- sample(c(1, -1), 100, replace = TRUE) # treatment indicator (1 or -1)
pi <- runif(100, min = 0.3, max = 0.7) # propensity scores between 0 and 1
censor <- rbinom(100, 1, 0.7) # censoring indicator (1 = censored, 0 = observed)

Define XGBoost parameters
params <- list(

max_depth = 3,
eta = 0.1,
subsample = 0.8,
colsample_bytree = 0.8

)

Train the model using A-learning loss
model_A <- XGBoostSub_sur(

X_data = X_data,
y_data = y_data,
trt = trt,

XGBoostSub_sur 35

pi = pi,
censor = censor,
Loss_type = "A_learning",
params = params,
nrounds = 5,
disable_default_eval_metric = 1,
verbose = TRUE

)

Train the model using Weight-learning loss
model_W <- XGBoostSub_sur(

X_data = X_data,
y_data = y_data,
trt = trt,
pi = pi,
censor = censor,
Loss_type = "Weight_learning",
params = params,
nrounds = 5,
disable_default_eval_metric = 1,
verbose = TRUE

)

Index

∗ datasets
tutorial_data, 28

cat_summary, 2
cdf_plot, 3
cut_perf, 4

eval_metric_bin, 6
eval_metric_con, 7
eval_metric_sur, 8

fixcut_bin, 9
fixcut_con, 10
fixcut_sur, 12

gam_ctr_plot, 14
gam_plot, 16
get_subgroup_results, 18

predictive_biomarker_imp, 19

roc_bin, 20
roc_bin_plot, 21

scat_cont_plot, 23
subgrp_perf, 24
subgrp_perf_pred, 26

tutorial_data, 28

XGBoostSub_bin, 29
XGBoostSub_con, 31
XGBoostSub_sur, 33

36

	cat_summary
	cdf_plot
	cut_perf
	eval_metric_bin
	eval_metric_con
	eval_metric_sur
	fixcut_bin
	fixcut_con
	fixcut_sur
	gam_ctr_plot
	gam_plot
	get_subgroup_results
	predictive_biomarker_imp
	roc_bin
	roc_bin_plot
	scat_cont_plot
	subgrp_perf
	subgrp_perf_pred
	tutorial_data
	XGBoostSub_bin
	XGBoostSub_con
	XGBoostSub_sur
	Index

