--- title: "Bayesian Cox Models with graph-structure priors" output: rmarkdown::html_vignette vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Bayesian Cox Models with graph-structure priors} \usepackage[utf8]{inputenc} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE, eval = FALSE) options(rmarkdown.html_vignette.check_title = FALSE) ``` This is a R/Rcpp package **BayesSurvive** for Bayesian survival models with graph-structured selection priors for sparse identification of high-dimensional features predictive of survival ([Madjar et al., 2021](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04483-z)) and its extensions with the use of a fixed graph via a Markov Random Field (MRF) prior for capturing known structure of high-dimensional features, e.g. disease-specific pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. ## Installation Install the latest released version from [CRAN](https://CRAN.R-project.org/package=BayesSurvive) ```r install.packages("BayesSurvive") ``` Install the latest development version from [GitHub](https://github.com/ocbe-uio/BayesSurvive) ```r #install.packages("remotes") remotes::install_github("ocbe-uio/BayesSurvive") ``` ## Examples ### Simulate data ```r library("BayesSurvive") # Load the example dataset data("simData", package = "BayesSurvive") dataset = list("X" = simData[[1]]$X, "t" = simData[[1]]$time, "di" = simData[[1]]$status) ``` ### Run a Bayesian Cox model ```r ## Initial value: null model without covariates initial = list("gamma.ini" = rep(0, ncol(dataset$X))) # Prior parameters hyperparPooled = list( "c0" = 2, # prior of baseline hazard "tau" = 0.0375, # sd (spike) for coefficient prior "cb" = 20, # sd (slab) for coefficient prior "pi.ga" = 0.02, # prior variable selection probability for standard Cox models "a" = -4, # hyperparameter in MRF prior "b" = 0.1, # hyperparameter in MRF prior "G" = simData$G # hyperparameter in MRF prior ) ## run Bayesian Cox with graph-structured priors fit <- BayesSurvive(survObj = dataset, model.type = "Pooled", MRF.G = TRUE, hyperpar = hyperparPooled, initial = initial, nIter = 100) ## show posterior mean of coefficients and 95% credible intervals library("GGally") plot(fit) + coord_flip() + theme(axis.text.x = element_text(angle = 90, size = 7)) #plot(fit$output$beta.p[,1], type="l") #fit$output$beta.margin #fit$output$gamma.margin #simData[[1]]$trueB ``` ### Plot time-dependent Brier scores The function `BayesSurvive::plotBrier()` can show the time-dependent Brier scores based on posterior mean of coefficients or Bayesian model averaging. ```r plotBrier(fit, , survObj.new = dataset) ``` The integrated Brier score (IBS) can be obtained by the function `BayesSurvive::predict()`. ```r predict(fit, survObj.new = dataset) ``` ```{ .text .no-copy } ## IBS ## Null model 0.09147208 ## Bayesian Cox model 0.03433363 ``` ### Predict survival probabilities and cumulative hazards The function `BayesSurvive::predict()` can estimate the survival probabilities and cumulative hazards. ```r predict(fit, survObj.new = dataset, type = c("cumhazard", "survival")) ``` ```{ .text .no-copy } ## observation times cumhazard survival ## ## 1: 1 3.3 2.11e-04 1.00e+00 ## 2: 2 3.3 3.29e-01 7.20e-01 ## 3: 3 3.3 2.06e-06 1.00e+00 ## 4: 4 3.3 1.19e-02 9.88e-01 ## 5: 5 3.3 5.36e-04 9.99e-01 ## --- ## 9996: 96 9.5 2.67e+01 2.57e-12 ## 9997: 97 9.5 1.08e+03 0.00e+00 ## 9998: 98 9.5 2.23e+00 1.08e-01 ## 9999: 99 9.5 3.72e+00 2.42e-02 ## 10000: 100 9.5 3.37e+01 2.38e-15 ``` ### Run a 'Pooled' Bayesian Cox model with graphical learning ```r hyperparPooled <- append(hyperparPooled, list("lambda" = 3, "nu0" = 0.05, "nu1" = 5)) fit2 <- BayesSurvive(survObj = list(dataset), model.type = "Pooled", MRF.G = FALSE, hyperpar = hyperparPooled, initial = initial, nIter = 10) ``` ### Run a Bayesian Cox model with subgroups using fixed graph ```r # specify a fixed joint graph between two subgroups hyperparPooled$G <- Matrix::bdiag(simData$G, simData$G) dataset2 <- simData[1:2] dataset2 <- lapply(dataset2, setNames, c("X", "t", "di", "X.unsc", "trueB")) fit3 <- BayesSurvive(survObj = dataset2, hyperpar = hyperparPooled, initial = initial, model.type="CoxBVSSL", MRF.G = TRUE, nIter = 10, burnin = 5) ``` ### Run a Bayesian Cox model with subgroups using graphical learning ```r fit4 <- BayesSurvive(survObj = dataset2, hyperpar = hyperparPooled, initial = initial, model.type="CoxBVSSL", MRF.G = FALSE, nIter = 3, burnin = 0) ``` ## References > Katrin Madjar, Manuela Zucknick, Katja Ickstadt, Jörg Rahnenführer (2021). > Combining heterogeneous subgroups with graph‐structured variable selection priors for Cox regression. > _BMC Bioinformatics_, 22(1):586. DOI: [10.1186/s12859-021-04483-z](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04483-z).