Title: | Bayesian Seemingly Unrelated Regression Models in High-Dimensional Settings |
---|---|
Description: | Bayesian seemingly unrelated regression with general variable selection and dense/sparse covariance matrix. The sparse seemingly unrelated regression is described in Bottolo et al. (2021) <doi:10.1111/rssc.12490>, the software paper is in Zhao et al. (2021) <doi:10.18637/jss.v100.i11>, and the model with random effects is described in Zhao et al. (2024) <doi:10.1093/jrsssc/qlad102>. |
Authors: | Marco Banterle [aut], Zhi Zhao [aut, cre], Leonardo Bottolo [ctb], Sylvia Richardson [ctb], Waldir Leoncio [ctb], Alex Lewin [aut], Manuela Zucknick [aut] |
Maintainer: | Zhi Zhao <[email protected]> |
License: | MIT + file LICENSE |
Version: | 2.2-1 |
Built: | 2024-12-28 06:40:20 UTC |
Source: | CRAN |
Main function of the package. Fits a range of models introduced in the
package vignette BayesSUR.pdf
. Returns an object of S3 class
BayesSUR
. There are three options for the prior on the residual
covariance matrix (i.e., independent inverse-Gamma, inverse-Wishart and
hyper-inverse Wishart) and three options for the prior on the latent
indicator variable (i.e., independent Bernoulli, hotspot and Markov random
field). So there are nine models in total. See details for their combinations.
BayesSUR( data = NULL, Y, X, X_0 = NULL, covariancePrior = "HIW", gammaPrior = "hotspot", betaPrior = "independent", nIter = 10000, burnin = 5000, nChains = 2, outFilePath = "", gammaSampler = "bandit", gammaInit = "R", mrfG = NULL, standardize = TRUE, standardize.response = TRUE, maxThreads = 1, tick = 1000, output_gamma = TRUE, output_beta = TRUE, output_Gy = TRUE, output_sigmaRho = TRUE, output_pi = TRUE, output_tail = TRUE, output_model_size = TRUE, output_model_visit = FALSE, output_CPO = FALSE, output_Y = TRUE, output_X = TRUE, hyperpar = list(), tmpFolder = "tmp/" )
BayesSUR( data = NULL, Y, X, X_0 = NULL, covariancePrior = "HIW", gammaPrior = "hotspot", betaPrior = "independent", nIter = 10000, burnin = 5000, nChains = 2, outFilePath = "", gammaSampler = "bandit", gammaInit = "R", mrfG = NULL, standardize = TRUE, standardize.response = TRUE, maxThreads = 1, tick = 1000, output_gamma = TRUE, output_beta = TRUE, output_Gy = TRUE, output_sigmaRho = TRUE, output_pi = TRUE, output_tail = TRUE, output_model_size = TRUE, output_model_visit = FALSE, output_CPO = FALSE, output_Y = TRUE, output_X = TRUE, hyperpar = list(), tmpFolder = "tmp/" )
data |
a numeric matrix with variables on the columns and observations
on the rows, if arguments |
Y , X
|
vectors of indices (with respect to the data matrix) for the
outcomes ( |
X_0 |
vectors of indices (with respect to the data matrix) for the fixed predictors that are not selected, i.e. always included in the model; if the data argument is not provided, this needs to be a numeric matrix containing the data instead, with variables on the columns and observations on the rows |
covariancePrior |
string indicating the prior for the covariance $C$;
it has to be either |
gammaPrior |
string indicating the gamma prior to use, either
|
betaPrior |
string indicating the prior for regression coefficients; it
has to be either |
nIter |
number of iterations for the MCMC procedure. Default 10000 |
burnin |
number of iterations to discard at the start of the chain. Default is 5000 |
nChains |
number of parallel tempered chains to run (default 2). The temperature is adapted during the burnin phase |
outFilePath |
path to where the output files are to be written |
gammaSampler |
string indicating the type of sampler for gamma, either
|
gammaInit |
gamma initialisation to either all-zeros ( |
mrfG |
either a matrix or a path to the file containing (the edge list of) the G matrix for the MRF prior on gamma (if necessary) |
standardize |
logical flag for X variable standardization. Default is
|
standardize.response |
logical flag for Y standardization. Default is
|
maxThreads |
maximum threads used for parallelization. Default is 1.
Reproducibility of results with |
tick |
an integer used for printing the iteration index and some updated parameters every tick-th iteration. Default is 1000 |
output_gamma |
allow ( |
output_beta |
allow ( |
output_Gy |
allow ( |
output_sigmaRho |
allow ( |
output_pi |
allow ( |
output_tail |
allow ( |
output_model_size |
allow ( |
output_model_visit |
allow ( |
output_CPO |
allow ( |
output_Y |
allow ( |
output_X |
allow ( |
hyperpar |
a list of named hypeparameters to use instead of the default values. Valid names are mrf_d, mrf_e, a_sigma, b_sigma, a_tau, b_tau, nu, a_eta, b_eta, a_o, b_o, a_pi, b_pi, a_w and b_w. Their default values are a_w=2, b_w=5, a_omega=2, b_omega=1, a_o=2, b_o=p-2, a_pi=2, b_pi=1, nu=s+2, a_tau=0.1, b_tau=10, a_eta=0.1, b_eta=1, a_sigma=1, b_sigma=1, mrf_d=-3 and mrf_e=0.03. See the vignette for more information |
tmpFolder |
the path to a temporary folder where intermediate data
files are stored (will be erased at the end of the chain). It is specified
relative to |
The arguments covariancePrior
and gammaPrior
specify
the model HRR, dSUR or SSUR with different gamma prior. Let
be latent indicator variable of each coefficient and
be covariance matrix of response variables. The nine models
specified through the arguments
covariancePrior
and
gammaPrior
are as follows.
~Bernoulli |
~hotspot |
~MRF |
|
~indep |
HRR-B | HRR-H | HRR-M |
~IW |
dSUR-B | dSUR-H | dSUR-M |
~HIW |
SSUR-B | SSUR-H | SSUR-M |
An object of class BayesSUR
is saved as
obj_BayesSUR.RData
in the output file, including the following
components:
status - the running status
input - a list of all input parameters by the user
output - a list of the all output filenames:
"*_logP_out.txt
" - contains each row for the -th iteration's log-likelihoods of parameters, i.e., Tau, Eta, JunctionTree, SigmaRho, O, Pi, Gamma, W, Beta and data conditional log-likelihood depending on the models.
"*_gamma_out.txt
" - posterior mean of the latent indicator matrix.
"*_pi_out.txt
" - posterior mean of the predictor effects (prospensity) by decomposing the probability of the latent indicator.
"*_hotspot_tail_p_out.txt
" - posterior mean of the hotspot tail probability. Only available for the hotspot prior on the gamma.
"*_beta_out.txt
" - posterior mean of the coefficients matrix.
"*_Gy_out.txt
" - posterior mean of the response graph. Only available for the HIW prior on the covariance.
"*_sigmaRho_out.txt
" - posterior mean of the transformed parameters. Not available for the IG prior on the covariance.
"*_model_size_out.txt
" - contains each row for the-th iteration's model sizes of the multiple response variables.
"*_model_visit_gy_out.txt
" - contains each row for the nonzero indices of the vectorized estimated graph matrix for each iteration.
"*_model_visit_gamma_out.txt
" - contains each row for the nonzero indices of the vectorized estimated gamma matrix for each iteration.
"*_CPO_out.txt
" - the (scaled) conditional predictive ordinates (CPO).
"*_CPOsumy_out.txt
" - the (scaled) conditional predictive ordinates (CPO) with joint posterior predictive of the response variables.
"*_WAIC_out.txt
" - the widely applicable information criterion (WAIC).
"*_Y.txt
" - responses dataset.
"*_X.txt
" - predictors dataset.
"*_X0.txt
" - fixed predictors dataset.
call - the matched call.
Russo D, Van Roy B, Kazerouni A, Osband I, Wen Z (2018). A tutorial on Thompson sampling. Foundations and Trends in Machine Learning, 11: 1-96.
Madigan D, York J (1995). Bayesian graphical models for discrete data. International Statistical Review, 63: 215–232.
Bottolo L, Banterle M, Richardson S, Ala-Korpela M, Jarvelin MR, Lewin A (2020). A computationally efficient Bayesian seemingly unrelated regressions model for high-dimensional quantitative trait loci discovery. Journal of Royal Statistical Society: Series C, 70: 886-908.
Zhao Z, Banterle M, Bottolo L, Richardson S, Lewin A, Zucknick M (2021). BayesSUR: An R package for high-dimensional multivariate Bayesian variable and covariance selection in linear regression. Journal of Statistical Software, 100: 1–32.
Zhao Z, Banterle M, Lewin A, Zucknick M (2023). Multivariate Bayesian structured variable selection for pharmacogenomic studies. Journal of the Royal Statistical Society: Series C (Applied Statistics), qlad102.
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 5, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/", output_CPO = TRUE ) ## check output # show the summary information summary(fit) # show the estimated beta, gamma and graph of responses Gy plot(fit, estimator = c("beta", "gamma", "Gy"), type = "heatmap") ## Not run: ## Set up temporary work directory for saving a pdf figure # td <- tempdir() # oldwd <- getwd() # setwd(td) ## Produce authentic math formulas in the graph # plot(fit, estimator = c("beta", "gamma", "Gy"), type = "heatmap", fig.tex = TRUE) # system(paste(getOption("pdfviewer"), "ParamEstimator.pdf")) # setwd(oldwd) ## End(Not run)
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 5, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/", output_CPO = TRUE ) ## check output # show the summary information summary(fit) # show the estimated beta, gamma and graph of responses Gy plot(fit, estimator = c("beta", "gamma", "Gy"), type = "heatmap") ## Not run: ## Set up temporary work directory for saving a pdf figure # td <- tempdir() # oldwd <- getwd() # setwd(td) ## Produce authentic math formulas in the graph # plot(fit, estimator = c("beta", "gamma", "Gy"), type = "heatmap", fig.tex = TRUE) # system(paste(getOption("pdfviewer"), "ParamEstimator.pdf")) # setwd(oldwd) ## End(Not run)
Run a SUR Bayesian sampler – internal function
dataFile |
path to data file |
outFilePath |
path to where the output is to be written |
nIter |
number of iterations |
nChains |
number of parallel chains to run NOTE THAT THIS IS BASICALLY JUST A WRAPPER |
BayesSUR
Extract the posterior mean of the coefficients of a BayesSUR
class object
## S3 method for class 'BayesSUR' coef(object, beta.type = "marginal", Pmax = 0, ...)
## S3 method for class 'BayesSUR' coef(object, beta.type = "marginal", Pmax = 0, ...)
object |
an object of class |
beta.type |
type of output beta. Default is |
Pmax |
If |
... |
other arguments |
Estimated coefficients are from an object of class BayesSUR
.
If the BayesSUR
specified data standardization, the fitted values
are base based on standardized data.
data("exampleQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check prediction beta.hat <- coef(fit)
data("exampleQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check prediction beta.hat <- coef(fit)
Measure the prediction accuracy by the elpd (expected log pointwise predictive density). The out-of-sample predictive fit can either be estimated by Bayesian leave-one-out cross-validation (LOO) or by widely applicable information criterion (WAIC) (Vehtari et al. 2017).
elpd(object, method = "LOO")
elpd(object, method = "LOO")
object |
an object of class |
method |
the name of the prediction accuracy index. Default is the
|
Return the predictiion accuracy measure from an object of class
BayesSUR
. It is elpd.loo if the argumnet method="LOO"
and
elpd.WAIC if method="WAIC"
.
Vehtari, A., Gelman, A., Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5): 1413–1432.
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/", output_CPO = TRUE ) ## check output # print prediction accuracy elpd (expected log pointwise predictive density) # by the Bayesian LOO estimate of out-of-sample predictive fit elpd(fit, method = "LOO")
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/", output_CPO = TRUE ) ## check output # print prediction accuracy elpd (expected log pointwise predictive density) # by the Bayesian LOO estimate of out-of-sample predictive fit elpd(fit, method = "LOO")
Simulated data set to mimic a small expression quantitative trait loci (eQTL) example, with p=150 single nucleotide polymorphisms (SNPs) as explanatory variables, s=10 gene expression features as response variables and data for n=100 observations. Loading the data will load the associated blockList object needed to fit the model with BayesSUR(). The R code for generating the simulated data is given in the Examples paragraph.
#importFrom BDgraph rgwish #importFrom gRbase mcsMAT #importFrom scrime simulateSNPs
exampleEQTL
exampleEQTL
An object of class list
of length 4.
# Load the eQTL sample dataset data("exampleEQTL", package = "BayesSUR") str(exampleEQTL) ## Not run: # =============== # The code below is to show how to generate the dataset "exampleEQTL.rda" above # =============== requireNamespace("BDgraph", quietly = TRUE) requireNamespace("gRbase", quietly = TRUE) requireNamespace("scrime", quietly = TRUE) ########################### Problem Dimensions n <- 100 p <- 150 s <- 10 ############################ Select a set of n x p (SNPs) covariates ## The synthetic data in the paper use a subset of the real SNPs as covariates, # but as the NFBC66 dataset is confidential we'll use scrime to sample similar data x <- scrime::simulateSNPs(c(n, 10), p, c(3, 2), prop.explain = c(0.9, 0.95))$data[1:n, ] x <- cbind(rep(1, n), x) #################################################################### graph_pattern <- 2 snr <- 25 corr_param <- 0.9 ### Create the underlying graph if (graph_pattern == 1) { ### 1) Random but full G <- matrix(1, s, s) Prime <- list(c(1:s)) Res <- Prime Sep <- list() } else if (graph_pattern == 2) { ### 2) Block Diagonal structure Prime <- list( c(1:floor(s * 2 / 3)), c((floor(s * 2 / 3) + 1):(ceiling(s * 4 / 5) - 1)), c(ceiling(s * 4 / 5):s) ) Res <- Prime Sep <- lapply(Res, function(x) which(x == -99)) G <- matrix(0, s, s) for (i in Prime) { G[i, i] <- 1 } } else if (graph_pattern == 3) { ### 3) Decomposable model Prime <- list( c(1:floor(s * 5 / 12), ceiling(s * 9 / 10):s), c(floor(s * 2 / 9):(ceiling(s * 2 / 3) - 1)), c(ceiling(s * 2 / 3):(ceiling(s * 4 / 5) - 1)), c(ceiling(s * 4 / 5):s) ) Sep <- list() H <- list() for (i in 2:length(Prime)) { H <- union(H, Prime[[i - 1]]) Sep[[i - 1]] <- intersect(H, Prime[[i]]) } Res <- list() Res[[1]] <- Prime[[1]] for (i in 2:length(Prime)) { Res[[i]] <- setdiff(Prime[[i]], Sep[[i - 1]]) } G <- matrix(0, s, s) for (i in Prime) { G[i, i] <- 1 } ## decomp check dimnames(G) <- list(1:s, 1:s) length(gRbase::mcsMAT(G - diag(s))) > 0 } else if (graph_pattern == 4) { ### 4) Non-decomposable model nblocks <- 5 nElemPerBlock <- c( floor(s / 4), floor(s / 2) - 1 - floor(s / 4), ceiling(s * 2 / 3) - 1 - floor(s / 2), 7 ) nElemPerBlock <- c(nElemPerBlock, s - sum(nElemPerBlock)) res <- 1:s blockIdx <- list() for (i in 1:nblocks) { # blockIdx[[i]] = sample(res,nElemPerBlock[i]) blockIdx[[i]] <- res[1:nElemPerBlock[i]] res <- setdiff(res, blockIdx[[i]]) } G <- matrix(0, s, s) ## add diagonal for (i in 1:nblocks) { G[blockIdx[[i]], blockIdx[[i]]] <- 1 } ## add cycle G[blockIdx[[1]], blockIdx[[2]]] <- 1 G[blockIdx[[2]], blockIdx[[1]]] <- 1 G[blockIdx[[1]], blockIdx[[5]]] <- 1 G[blockIdx[[5]], blockIdx[[1]]] <- 1 G[blockIdx[[2]], blockIdx[[3]]] <- 1 G[blockIdx[[3]], blockIdx[[2]]] <- 1 G[blockIdx[[3]], blockIdx[[5]]] <- 1 G[blockIdx[[5]], blockIdx[[3]]] <- 1 ## decomp check dimnames(G) <- list(1:s, 1:s) length(gRbase::mcsMAT(G - diag(s))) > 0 # Prime = blockIdx Res <- blockIdx ## this is not correct but not used in the non-decomp case } ### Gamma Pattern gamma <- matrix(0, p + 1, s) gamma[1, ] <- 1 ### 2) Extra Patterns ## outcomes (correlated in the decomp model) have some predictors in common gamma[6:10, 6:9] <- 1 ## outcomes (correlated in the decomp model) have some predictors in common # gamma[16:20,14:15] = 1 ## outcomes (sort-of correlated [pair-wise] in the decomp model) # have predictors in common 6:15 gamma[26:30, 4:8] <- 1 ## outcomes (NOT correlated in the decomp model) have predictors in common 16:17 gamma[36:40, c(3:5, 9:10)] <- 1 ## these predictors are associated with ALL the outcomes gamma[46:50, ] <- 1 combn11 <- combn(rep((6:9 - 1) * p, each = length(6:10 - 1)) + rep(6:10 - 1, times = length(6:9)), 2) combn31 <- combn(rep((4:8 - 1) * p, each = length(26:30 - 1)) + rep(26:30 - 1, times = length(4:8)), 2) combn32 <- combn(rep((4:8 - 1) * p, each = length(46:50 - 1)) + rep(46:50 - 1, times = length(4:8)), 2) combn41 <- combn(rep((3:5 - 1) * p, each = length(36:40 - 1)) + rep(36:40 - 1, times = length(3:5)), 2) combn42 <- combn(rep((3:5 - 1) * p, each = length(46:50 - 1)) + rep(46:50 - 1, times = length(3:5)), 2) combn51 <- combn(rep((9:10 - 1) * p, each = length(36:40 - 1)) + rep(36:40 - 1, times = length(9:10)), 2) combn52 <- combn(rep((9:10 - 1) * p, each = length(46:50 - 1)) + rep(46:50 - 1, times = length(9:10)), 2) Gmrf <- rbind(t(combn11), t(combn31), t(combn32), t(combn41), t(combn42), t(combn51), t(combn52)) ## get for every correlated bunch in the decomposable model, if (graph_pattern < 4) { # a different set of predictors for (i in 1:length(Prime)) { gamma[6:10 + (i + 6) * 10, Prime[[i]]] <- 1 } ## for each Prime component ## for every Residual instead for (i in 1:length(Res)) { gamma[6:10 + (i + 10) * 10, Res[[i]]] <- 1 } } else { for (i in 1:length(Prime)) { gamma[6:10 + (i + 4) * 10, Prime[[i]]] <- 1 } ## for each Prime component ## for every Residual instead for (i in 1:length(Res)) { gamma[6:10 + (i + 9) * 10, Res[[i]]] <- 1 } } #### Sample the betas sd_b <- 1 b <- matrix(rnorm((p + 1) * s, 0, sd_b), p + 1, s) xb <- matrix(NA, n, s) for (i in 1:s) { if (sum(gamma[, i]) > 1) { xb[, i] <- x[, gamma[, i] == 1] %*% b[gamma[, i] == 1, i] } else { xb[, i] <- rep(1, n) * b[1, i] } } ## Sample the variance v_r <- mean(diag(var(xb))) / snr nu <- s + 1 M <- matrix(corr_param, s, s) diag(M) <- rep(1, s) P <- BDgraph::rgwish(n = 1, adj = G, b = 3, D = v_r * M) var <- solve(P) factor <- 10 factor_min <- 0.01 factor_max <- 1000 count <- 0 maxit <- 10000 factor_prev <- 1 repeat{ var <- var / factor * factor_prev ### Sample the errors and the Ys cVar <- chol(as.matrix(var)) # err = matrix(rnorm(n*s),n,s) %*% cVar err <- matrix(rnorm(n * s, sd = 0.5), n, s) %*% cVar y <- xb + err ## Reparametrisation ( assuming PEO is 1:s ) cVar <- t(cVar) # make it lower-tri S <- diag(diag(cVar)) sigma <- S * S L <- cVar %*% solve(S) rho <- diag(s) - solve(L) ### S/N Ratio emp_snr <- mean(diag(var(xb) %*% solve(sigma))) emp_g_snr <- mean(diag(var((err) %*% t(rho)) %*% solve(sigma))) ############## if (abs(emp_snr - snr) < (snr / 10) | count > maxit) { break } else { if (emp_snr < snr) { # increase factor factor_min <- factor } else { # decrease factor factor_max <- factor } factor_prev <- factor factor <- (factor_min + factor_max) / 2 } count <- count + 1 } ################# colnames(y) <- paste("GEX", 1:ncol(y), sep = "") colnames(G) <- colnames(y) Gy <- G gamma <- gamma[-1, ] mrfG <- Gmrf[!duplicated(Gmrf), ] data <- cbind(y, x[, -1]) # leave out the intercept because is coded inside already exampleEQTL <- list(data = data, blockList = list(1:s, s + 1:p)) ## Write data file to the user's directory by save() ## End(Not run)
# Load the eQTL sample dataset data("exampleEQTL", package = "BayesSUR") str(exampleEQTL) ## Not run: # =============== # The code below is to show how to generate the dataset "exampleEQTL.rda" above # =============== requireNamespace("BDgraph", quietly = TRUE) requireNamespace("gRbase", quietly = TRUE) requireNamespace("scrime", quietly = TRUE) ########################### Problem Dimensions n <- 100 p <- 150 s <- 10 ############################ Select a set of n x p (SNPs) covariates ## The synthetic data in the paper use a subset of the real SNPs as covariates, # but as the NFBC66 dataset is confidential we'll use scrime to sample similar data x <- scrime::simulateSNPs(c(n, 10), p, c(3, 2), prop.explain = c(0.9, 0.95))$data[1:n, ] x <- cbind(rep(1, n), x) #################################################################### graph_pattern <- 2 snr <- 25 corr_param <- 0.9 ### Create the underlying graph if (graph_pattern == 1) { ### 1) Random but full G <- matrix(1, s, s) Prime <- list(c(1:s)) Res <- Prime Sep <- list() } else if (graph_pattern == 2) { ### 2) Block Diagonal structure Prime <- list( c(1:floor(s * 2 / 3)), c((floor(s * 2 / 3) + 1):(ceiling(s * 4 / 5) - 1)), c(ceiling(s * 4 / 5):s) ) Res <- Prime Sep <- lapply(Res, function(x) which(x == -99)) G <- matrix(0, s, s) for (i in Prime) { G[i, i] <- 1 } } else if (graph_pattern == 3) { ### 3) Decomposable model Prime <- list( c(1:floor(s * 5 / 12), ceiling(s * 9 / 10):s), c(floor(s * 2 / 9):(ceiling(s * 2 / 3) - 1)), c(ceiling(s * 2 / 3):(ceiling(s * 4 / 5) - 1)), c(ceiling(s * 4 / 5):s) ) Sep <- list() H <- list() for (i in 2:length(Prime)) { H <- union(H, Prime[[i - 1]]) Sep[[i - 1]] <- intersect(H, Prime[[i]]) } Res <- list() Res[[1]] <- Prime[[1]] for (i in 2:length(Prime)) { Res[[i]] <- setdiff(Prime[[i]], Sep[[i - 1]]) } G <- matrix(0, s, s) for (i in Prime) { G[i, i] <- 1 } ## decomp check dimnames(G) <- list(1:s, 1:s) length(gRbase::mcsMAT(G - diag(s))) > 0 } else if (graph_pattern == 4) { ### 4) Non-decomposable model nblocks <- 5 nElemPerBlock <- c( floor(s / 4), floor(s / 2) - 1 - floor(s / 4), ceiling(s * 2 / 3) - 1 - floor(s / 2), 7 ) nElemPerBlock <- c(nElemPerBlock, s - sum(nElemPerBlock)) res <- 1:s blockIdx <- list() for (i in 1:nblocks) { # blockIdx[[i]] = sample(res,nElemPerBlock[i]) blockIdx[[i]] <- res[1:nElemPerBlock[i]] res <- setdiff(res, blockIdx[[i]]) } G <- matrix(0, s, s) ## add diagonal for (i in 1:nblocks) { G[blockIdx[[i]], blockIdx[[i]]] <- 1 } ## add cycle G[blockIdx[[1]], blockIdx[[2]]] <- 1 G[blockIdx[[2]], blockIdx[[1]]] <- 1 G[blockIdx[[1]], blockIdx[[5]]] <- 1 G[blockIdx[[5]], blockIdx[[1]]] <- 1 G[blockIdx[[2]], blockIdx[[3]]] <- 1 G[blockIdx[[3]], blockIdx[[2]]] <- 1 G[blockIdx[[3]], blockIdx[[5]]] <- 1 G[blockIdx[[5]], blockIdx[[3]]] <- 1 ## decomp check dimnames(G) <- list(1:s, 1:s) length(gRbase::mcsMAT(G - diag(s))) > 0 # Prime = blockIdx Res <- blockIdx ## this is not correct but not used in the non-decomp case } ### Gamma Pattern gamma <- matrix(0, p + 1, s) gamma[1, ] <- 1 ### 2) Extra Patterns ## outcomes (correlated in the decomp model) have some predictors in common gamma[6:10, 6:9] <- 1 ## outcomes (correlated in the decomp model) have some predictors in common # gamma[16:20,14:15] = 1 ## outcomes (sort-of correlated [pair-wise] in the decomp model) # have predictors in common 6:15 gamma[26:30, 4:8] <- 1 ## outcomes (NOT correlated in the decomp model) have predictors in common 16:17 gamma[36:40, c(3:5, 9:10)] <- 1 ## these predictors are associated with ALL the outcomes gamma[46:50, ] <- 1 combn11 <- combn(rep((6:9 - 1) * p, each = length(6:10 - 1)) + rep(6:10 - 1, times = length(6:9)), 2) combn31 <- combn(rep((4:8 - 1) * p, each = length(26:30 - 1)) + rep(26:30 - 1, times = length(4:8)), 2) combn32 <- combn(rep((4:8 - 1) * p, each = length(46:50 - 1)) + rep(46:50 - 1, times = length(4:8)), 2) combn41 <- combn(rep((3:5 - 1) * p, each = length(36:40 - 1)) + rep(36:40 - 1, times = length(3:5)), 2) combn42 <- combn(rep((3:5 - 1) * p, each = length(46:50 - 1)) + rep(46:50 - 1, times = length(3:5)), 2) combn51 <- combn(rep((9:10 - 1) * p, each = length(36:40 - 1)) + rep(36:40 - 1, times = length(9:10)), 2) combn52 <- combn(rep((9:10 - 1) * p, each = length(46:50 - 1)) + rep(46:50 - 1, times = length(9:10)), 2) Gmrf <- rbind(t(combn11), t(combn31), t(combn32), t(combn41), t(combn42), t(combn51), t(combn52)) ## get for every correlated bunch in the decomposable model, if (graph_pattern < 4) { # a different set of predictors for (i in 1:length(Prime)) { gamma[6:10 + (i + 6) * 10, Prime[[i]]] <- 1 } ## for each Prime component ## for every Residual instead for (i in 1:length(Res)) { gamma[6:10 + (i + 10) * 10, Res[[i]]] <- 1 } } else { for (i in 1:length(Prime)) { gamma[6:10 + (i + 4) * 10, Prime[[i]]] <- 1 } ## for each Prime component ## for every Residual instead for (i in 1:length(Res)) { gamma[6:10 + (i + 9) * 10, Res[[i]]] <- 1 } } #### Sample the betas sd_b <- 1 b <- matrix(rnorm((p + 1) * s, 0, sd_b), p + 1, s) xb <- matrix(NA, n, s) for (i in 1:s) { if (sum(gamma[, i]) > 1) { xb[, i] <- x[, gamma[, i] == 1] %*% b[gamma[, i] == 1, i] } else { xb[, i] <- rep(1, n) * b[1, i] } } ## Sample the variance v_r <- mean(diag(var(xb))) / snr nu <- s + 1 M <- matrix(corr_param, s, s) diag(M) <- rep(1, s) P <- BDgraph::rgwish(n = 1, adj = G, b = 3, D = v_r * M) var <- solve(P) factor <- 10 factor_min <- 0.01 factor_max <- 1000 count <- 0 maxit <- 10000 factor_prev <- 1 repeat{ var <- var / factor * factor_prev ### Sample the errors and the Ys cVar <- chol(as.matrix(var)) # err = matrix(rnorm(n*s),n,s) %*% cVar err <- matrix(rnorm(n * s, sd = 0.5), n, s) %*% cVar y <- xb + err ## Reparametrisation ( assuming PEO is 1:s ) cVar <- t(cVar) # make it lower-tri S <- diag(diag(cVar)) sigma <- S * S L <- cVar %*% solve(S) rho <- diag(s) - solve(L) ### S/N Ratio emp_snr <- mean(diag(var(xb) %*% solve(sigma))) emp_g_snr <- mean(diag(var((err) %*% t(rho)) %*% solve(sigma))) ############## if (abs(emp_snr - snr) < (snr / 10) | count > maxit) { break } else { if (emp_snr < snr) { # increase factor factor_min <- factor } else { # decrease factor factor_max <- factor } factor_prev <- factor factor <- (factor_min + factor_max) / 2 } count <- count + 1 } ################# colnames(y) <- paste("GEX", 1:ncol(y), sep = "") colnames(G) <- colnames(y) Gy <- G gamma <- gamma[-1, ] mrfG <- Gmrf[!duplicated(Gmrf), ] data <- cbind(y, x[, -1]) # leave out the intercept because is coded inside already exampleEQTL <- list(data = data, blockList = list(1:s, s + 1:p)) ## Write data file to the user's directory by save() ## End(Not run)
Preprocessed data set to mimic a small pharmacogenetic example from the Genomics of Drug Sensitivity in Cancer (GDSC) database, with p=850 gene features as explanatory variables, s=7 drugs sensitivity data as response variables and data for n=498 cell lines. Gene features include p1=343 gene expression features (GEX), p2=426 by copy number variations (CNV) and p3=68 mutated genes (MUT). Loading the data will load the associated blockList (and mrfG) objects needed to fit the model with BayesSUR(). The R code for generating the simulated data is given in the Examples paragraph.
#importFrom plyr mapvalues #importFrom data.table like
exampleGDSC
exampleGDSC
An object of class list
of length 3.
# Load the GDSC sample dataset data("exampleGDSC", package = "BayesSUR") str(exampleGDSC) ## Not run: # =============== # This code below is to do preprocessing of GDSC data and obtain the complete dataset # "exampleGDSC.rda" above. The user needs load the datasets from # https://www.cancerrxgene.org release 5. # But downloading and transforming the three used datasets below to *.csv files first. # =============== requireNamespace("plyr", quietly = TRUE) requireNamespace("data.table", quietly = TRUE) features <- data.frame(read.csv("/gdsc_en_input_w5.csv", head = T)) names.fea <- strsplit(rownames(features), "") features <- t(features) p <- c(13321, 13747 - 13321, 13818 - 13747) Cell.Line <- rownames(features) features <- data.frame(Cell.Line, features) ic50_00 <- data.frame(read.csv("gdsc_drug_sensitivity_fitted_data_w5.csv", head = T)) ic50_0 <- ic50_00[, c(1, 4, 7)] drug.id <- data.frame(read.csv("gdsc_tissue_output_w5.csv", head = T))[, c(1, 3)] drug.id2 <- drug.id[!duplicated(drug.id$drug.id), ] # delete drug.id=1066 since ID1066 and ID156 both correspond drug AZD6482, # and no ID1066 in the "suppl.Data1" by Garnett et al. (2012) drug.id2 <- drug.id2[drug.id2$drug.id != 1066, ] drug.id2$drug.name <- as.character(drug.id2$drug.name) drug.id2$drug.name <- substr(drug.id2$drug.name, 1, nchar(drug.id2$drug.name) - 6) drug.id2$drug.name <- gsub(" ", "-", drug.id2$drug.name) ic50 <- ic50_0 # mapping the drug_id to drug names in drug sensitivity data set ic50$drug_id <- plyr::mapvalues(ic50$drug_id, from = drug.id2[, 2], to = drug.id2[, 1]) colnames(ic50) <- c("Cell.Line", "compound", "IC50") # transform drug sensitivity overall cell lines to a data matrix y0 <- reshape(ic50, v.names = "IC50", timevar = "compound", idvar = "Cell.Line", direction = "wide") y0$Cell.Line <- gsub("-", ".", y0$Cell.Line) # =============== # select nonmissing pharmacological data # =============== y00 <- y0 m0 <- dim(y0)[2] - 1 eps <- 0.05 # r1.na is better to be not smaller than r2.na r1.na <- 0.3 r2.na <- 0.2 k <- 1 while (sum(is.na(y0[, 2:(1 + m0)])) > 0) { r1.na <- r1.na - eps / k r2.na <- r1.na - eps / k k <- k + 1 ## select drugs with <30% (decreasing with k) missing data overall cell lines na.y <- apply(y0[, 2:(1 + m0)], 2, function(xx) sum(is.na(xx)) / length(xx)) while (sum(na.y < r1.na) < m0) { y0 <- y0[, -c(1 + which(na.y >= r1.na))] m0 <- sum(na.y < r1.na) na.y <- apply(y0[, 2:(1 + m0)], 2, function(xx) sum(is.na(xx)) / length(xx)) } ## select cell lines with treatment of at least 80% (increasing with k) drugs na.y0 <- apply(y0[, 2:(1 + m0)], 1, function(xx) sum(is.na(xx)) / length(xx)) while (sum(na.y0 < r2.na) < (dim(y0)[1])) { y0 <- y0[na.y0 < r2.na, ] na.y0 <- apply(y0[, 2:(1 + m0)], 1, function(xx) sum(is.na(xx)) / length(xx)) } num.na <- sum(is.na(y0[, 2:(1 + m0)])) message("#{NA}=", num.na, "\n", "r1.na =", r1.na, ", r2.na =", r2.na, "\n") } # =============== # combine drug sensitivity, tissues and molecular features # =============== yx <- merge(y0, features, by = "Cell.Line") names.cell.line <- yx$Cell.Line names.drug <- colnames(yx)[2:(dim(y0)[2])] names.drug <- substr(names.drug, 6, nchar(names.drug)) # numbers of gene expression features, copy number festures and muatation features p <- c(13321, 13747 - 13321, 13818 - 13747) num.nonpen <- 13 yx <- data.matrix(yx[, -1]) y <- yx[, 1:(dim(y0)[2] - 1)] x <- cbind(yx[, dim(y0)[2] - 1 + sum(p) + 1:num.nonpen], yx[, dim(y0)[2] - 1 + 1:sum(p)]) # delete genes with only one mutated cell line x <- x[, -c(num.nonpen + p[1] + p[2] + which(colSums(x[, num.nonpen + p[1] + p[2] + 1:p[3]]) <= 1))] p[3] <- ncol(x) - num.nonpen - p[1] - p[2] GDSC <- list( y = y, x = x, p = p, num.nonpen = num.nonpen, names.cell.line = names.cell.line, names.drug = names.drug ) ## ================ ## ================ ## select a small set of drugs ## ================ ## ================ name_drugs <- c( "Methotrexate", "RDEA119", "PD-0325901", "CI-1040", "AZD6244", "Nilotinib", "Axitinib" ) # extract the drugs' pharmacological profiling and tissue dummy YX0 <- cbind(GDSC$y[, colnames(GDSC$y) %in% paste("IC50.", name_drugs, sep = "")] [, c(1, 3, 6, 4, 7, 2, 5)], GDSC$x[, 1:GDSC$num.nonpen]) colnames(YX0) <- c(name_drugs, colnames(GDSC$x)[1:GDSC$num.nonpen]) # extract the genetic information of CNV & MUT X23 <- GDSC$x[, GDSC$num.nonpen + GDSC$p[1] + 1:(p[2] + p[3])] colnames(X23)[1:p[2]] <- paste(substr( colnames(X23)[1:p[2]], 1, nchar(colnames(X23)[1:p[2]]) - 3 ), ".CNV", sep = "") # locate all genes with CNV or MUT information name_genes_duplicate <- c( substr(colnames(X23)[1:p[2]], 1, nchar(colnames(X23)[1:p[2]]) - 4), substr(colnames(X23)[p[2] + 1:p[3]], 1, nchar(colnames(X23)[p[2] + 1:p[3]]) - 4) ) name_genes <- name_genes_duplicate[!duplicated(name_genes_duplicate)] # select the GEX which have the common genes with CNV or MUT X1 <- GDSC$x[, GDSC$num.nonpen + which(colnames(GDSC$x)[GDSC$num.nonpen + 1:p[1]] %in% name_genes)] p[1] <- ncol(X1) X1 <- log(X1) # summary the data information exampleGDSC <- list(data = cbind(YX0, X1, X23)) exampleGDSC$blockList <- list( 1:length(name_drugs), length(name_drugs) + 1:GDSC$num.nonpen, ncol(YX0) + 1:sum(p) ) # ======================== # construct the G matrix: edge potentials in the MRF prior # ======================== # edges between drugs: Group1 ("RDEA119","17-AAG","PD-0325901","CI-1040" and "AZD6244") # indexed as (2:5) # http://software.broadinstitute.org/gsea/msigdb/cards/KEGG_MAPK_SIGNALING_PATHWAY pathway_genes <- read.table("MAPK_pathway.txt")[[1]] Idx_Pathway1 <- which(c(colnames(X1), name_genes_duplicate) %in% pathway_genes) Gmrf_Group1Pathway1 <- t(combn(rep(Idx_Pathway1, each = length(2:5)) + rep((2:5 - 1) * sum(p), times = length(Idx_Pathway1)), 2)) # edges between drugs: Group2 ("Nilotinib","Axitinib") indexed as (6:7) # delete gene ABL2 Idx_Pathway2 <- which(c(colnames(X1), name_genes_duplicate) %like% "BCR" | c(colnames(X1), name_genes_duplicate) %like% "ABL")[-c(3, 5)] Gmrf_Group2Pathway2 <- t(combn(rep(Idx_Pathway2, each = length(6:7)) + rep((6:7 - 1) * sum(p), times = length(Idx_Pathway2)), 2)) # edges between the common gene in different data sources Gmrf_CommonGene <- NULL list_CommonGene <- list(0) k <- 1 for (i in 1:length(name_genes)) { Idx_CommonGene <- which(c(colnames(X1), name_genes_duplicate) == name_genes[i]) if (length(Idx_CommonGene) > 1) { Gmrf_CommonGene <- rbind(Gmrf_CommonGene, t(combn(rep(Idx_CommonGene, each = length(name_drugs)) + rep((1:length(name_drugs) - 1) * sum(p), times = length(Idx_CommonGene)), 2))) k <- k + 1 } } Gmrf_duplicate <- rbind(Gmrf_Group1Pathway1, Gmrf_Group2Pathway2, Gmrf_CommonGene) Gmrf <- Gmrf_duplicate[!duplicated(Gmrf_duplicate), ] exampleGDSC$mrfG <- Gmrf # create the target gene names of the two groups of drugs targetGenes1 <- matrix(Idx_Pathway1, nrow = 1) colnames(targetGenes1) <- colnames(exampleGDSC$data)[seq_along(targetGene$group1)] targetGenes2 <- matrix(Idx_Pathway2, nrow = 1) colnames(targetGenes2) <- colnames(exampleGDSC$data)[seq_along(targetGene$group2)] targetGene <- list(group1 = targetGenes1, group2 = targetGenes2) ## Write data file exampleGDSC.rda to the user's directory by save() ## End(Not run)
# Load the GDSC sample dataset data("exampleGDSC", package = "BayesSUR") str(exampleGDSC) ## Not run: # =============== # This code below is to do preprocessing of GDSC data and obtain the complete dataset # "exampleGDSC.rda" above. The user needs load the datasets from # https://www.cancerrxgene.org release 5. # But downloading and transforming the three used datasets below to *.csv files first. # =============== requireNamespace("plyr", quietly = TRUE) requireNamespace("data.table", quietly = TRUE) features <- data.frame(read.csv("/gdsc_en_input_w5.csv", head = T)) names.fea <- strsplit(rownames(features), "") features <- t(features) p <- c(13321, 13747 - 13321, 13818 - 13747) Cell.Line <- rownames(features) features <- data.frame(Cell.Line, features) ic50_00 <- data.frame(read.csv("gdsc_drug_sensitivity_fitted_data_w5.csv", head = T)) ic50_0 <- ic50_00[, c(1, 4, 7)] drug.id <- data.frame(read.csv("gdsc_tissue_output_w5.csv", head = T))[, c(1, 3)] drug.id2 <- drug.id[!duplicated(drug.id$drug.id), ] # delete drug.id=1066 since ID1066 and ID156 both correspond drug AZD6482, # and no ID1066 in the "suppl.Data1" by Garnett et al. (2012) drug.id2 <- drug.id2[drug.id2$drug.id != 1066, ] drug.id2$drug.name <- as.character(drug.id2$drug.name) drug.id2$drug.name <- substr(drug.id2$drug.name, 1, nchar(drug.id2$drug.name) - 6) drug.id2$drug.name <- gsub(" ", "-", drug.id2$drug.name) ic50 <- ic50_0 # mapping the drug_id to drug names in drug sensitivity data set ic50$drug_id <- plyr::mapvalues(ic50$drug_id, from = drug.id2[, 2], to = drug.id2[, 1]) colnames(ic50) <- c("Cell.Line", "compound", "IC50") # transform drug sensitivity overall cell lines to a data matrix y0 <- reshape(ic50, v.names = "IC50", timevar = "compound", idvar = "Cell.Line", direction = "wide") y0$Cell.Line <- gsub("-", ".", y0$Cell.Line) # =============== # select nonmissing pharmacological data # =============== y00 <- y0 m0 <- dim(y0)[2] - 1 eps <- 0.05 # r1.na is better to be not smaller than r2.na r1.na <- 0.3 r2.na <- 0.2 k <- 1 while (sum(is.na(y0[, 2:(1 + m0)])) > 0) { r1.na <- r1.na - eps / k r2.na <- r1.na - eps / k k <- k + 1 ## select drugs with <30% (decreasing with k) missing data overall cell lines na.y <- apply(y0[, 2:(1 + m0)], 2, function(xx) sum(is.na(xx)) / length(xx)) while (sum(na.y < r1.na) < m0) { y0 <- y0[, -c(1 + which(na.y >= r1.na))] m0 <- sum(na.y < r1.na) na.y <- apply(y0[, 2:(1 + m0)], 2, function(xx) sum(is.na(xx)) / length(xx)) } ## select cell lines with treatment of at least 80% (increasing with k) drugs na.y0 <- apply(y0[, 2:(1 + m0)], 1, function(xx) sum(is.na(xx)) / length(xx)) while (sum(na.y0 < r2.na) < (dim(y0)[1])) { y0 <- y0[na.y0 < r2.na, ] na.y0 <- apply(y0[, 2:(1 + m0)], 1, function(xx) sum(is.na(xx)) / length(xx)) } num.na <- sum(is.na(y0[, 2:(1 + m0)])) message("#{NA}=", num.na, "\n", "r1.na =", r1.na, ", r2.na =", r2.na, "\n") } # =============== # combine drug sensitivity, tissues and molecular features # =============== yx <- merge(y0, features, by = "Cell.Line") names.cell.line <- yx$Cell.Line names.drug <- colnames(yx)[2:(dim(y0)[2])] names.drug <- substr(names.drug, 6, nchar(names.drug)) # numbers of gene expression features, copy number festures and muatation features p <- c(13321, 13747 - 13321, 13818 - 13747) num.nonpen <- 13 yx <- data.matrix(yx[, -1]) y <- yx[, 1:(dim(y0)[2] - 1)] x <- cbind(yx[, dim(y0)[2] - 1 + sum(p) + 1:num.nonpen], yx[, dim(y0)[2] - 1 + 1:sum(p)]) # delete genes with only one mutated cell line x <- x[, -c(num.nonpen + p[1] + p[2] + which(colSums(x[, num.nonpen + p[1] + p[2] + 1:p[3]]) <= 1))] p[3] <- ncol(x) - num.nonpen - p[1] - p[2] GDSC <- list( y = y, x = x, p = p, num.nonpen = num.nonpen, names.cell.line = names.cell.line, names.drug = names.drug ) ## ================ ## ================ ## select a small set of drugs ## ================ ## ================ name_drugs <- c( "Methotrexate", "RDEA119", "PD-0325901", "CI-1040", "AZD6244", "Nilotinib", "Axitinib" ) # extract the drugs' pharmacological profiling and tissue dummy YX0 <- cbind(GDSC$y[, colnames(GDSC$y) %in% paste("IC50.", name_drugs, sep = "")] [, c(1, 3, 6, 4, 7, 2, 5)], GDSC$x[, 1:GDSC$num.nonpen]) colnames(YX0) <- c(name_drugs, colnames(GDSC$x)[1:GDSC$num.nonpen]) # extract the genetic information of CNV & MUT X23 <- GDSC$x[, GDSC$num.nonpen + GDSC$p[1] + 1:(p[2] + p[3])] colnames(X23)[1:p[2]] <- paste(substr( colnames(X23)[1:p[2]], 1, nchar(colnames(X23)[1:p[2]]) - 3 ), ".CNV", sep = "") # locate all genes with CNV or MUT information name_genes_duplicate <- c( substr(colnames(X23)[1:p[2]], 1, nchar(colnames(X23)[1:p[2]]) - 4), substr(colnames(X23)[p[2] + 1:p[3]], 1, nchar(colnames(X23)[p[2] + 1:p[3]]) - 4) ) name_genes <- name_genes_duplicate[!duplicated(name_genes_duplicate)] # select the GEX which have the common genes with CNV or MUT X1 <- GDSC$x[, GDSC$num.nonpen + which(colnames(GDSC$x)[GDSC$num.nonpen + 1:p[1]] %in% name_genes)] p[1] <- ncol(X1) X1 <- log(X1) # summary the data information exampleGDSC <- list(data = cbind(YX0, X1, X23)) exampleGDSC$blockList <- list( 1:length(name_drugs), length(name_drugs) + 1:GDSC$num.nonpen, ncol(YX0) + 1:sum(p) ) # ======================== # construct the G matrix: edge potentials in the MRF prior # ======================== # edges between drugs: Group1 ("RDEA119","17-AAG","PD-0325901","CI-1040" and "AZD6244") # indexed as (2:5) # http://software.broadinstitute.org/gsea/msigdb/cards/KEGG_MAPK_SIGNALING_PATHWAY pathway_genes <- read.table("MAPK_pathway.txt")[[1]] Idx_Pathway1 <- which(c(colnames(X1), name_genes_duplicate) %in% pathway_genes) Gmrf_Group1Pathway1 <- t(combn(rep(Idx_Pathway1, each = length(2:5)) + rep((2:5 - 1) * sum(p), times = length(Idx_Pathway1)), 2)) # edges between drugs: Group2 ("Nilotinib","Axitinib") indexed as (6:7) # delete gene ABL2 Idx_Pathway2 <- which(c(colnames(X1), name_genes_duplicate) %like% "BCR" | c(colnames(X1), name_genes_duplicate) %like% "ABL")[-c(3, 5)] Gmrf_Group2Pathway2 <- t(combn(rep(Idx_Pathway2, each = length(6:7)) + rep((6:7 - 1) * sum(p), times = length(Idx_Pathway2)), 2)) # edges between the common gene in different data sources Gmrf_CommonGene <- NULL list_CommonGene <- list(0) k <- 1 for (i in 1:length(name_genes)) { Idx_CommonGene <- which(c(colnames(X1), name_genes_duplicate) == name_genes[i]) if (length(Idx_CommonGene) > 1) { Gmrf_CommonGene <- rbind(Gmrf_CommonGene, t(combn(rep(Idx_CommonGene, each = length(name_drugs)) + rep((1:length(name_drugs) - 1) * sum(p), times = length(Idx_CommonGene)), 2))) k <- k + 1 } } Gmrf_duplicate <- rbind(Gmrf_Group1Pathway1, Gmrf_Group2Pathway2, Gmrf_CommonGene) Gmrf <- Gmrf_duplicate[!duplicated(Gmrf_duplicate), ] exampleGDSC$mrfG <- Gmrf # create the target gene names of the two groups of drugs targetGenes1 <- matrix(Idx_Pathway1, nrow = 1) colnames(targetGenes1) <- colnames(exampleGDSC$data)[seq_along(targetGene$group1)] targetGenes2 <- matrix(Idx_Pathway2, nrow = 1) colnames(targetGenes2) <- colnames(exampleGDSC$data)[seq_along(targetGene$group2)] targetGene <- list(group1 = targetGenes1, group2 = targetGenes2) ## Write data file exampleGDSC.rda to the user's directory by save() ## End(Not run)
Return the fitted response values that correspond to the posterior mean
estimates from a BayesSUR
class object.
## S3 method for class 'BayesSUR' fitted(object, Pmax = 0, beta.type = "marginal", ...)
## S3 method for class 'BayesSUR' fitted(object, Pmax = 0, beta.type = "marginal", ...)
object |
an object of class |
Pmax |
valid if |
beta.type |
type of estimated beta for the fitted model. Default is
|
... |
other arguments |
Fitted values extracted from an object of class BayesSUR
. If
the BayesSUR
specified data standardization, the fitted values are
base based on standardized data.
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check fitted values fitted.val <- fitted(fit)
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check fitted values fitted.val <- fitted(fit)
Extract the posterior mean of the parameters of a BayesSUR
class object.
getEstimator(object, estimator = "gamma", Pmax = 0, beta.type = "marginal")
getEstimator(object, estimator = "gamma", Pmax = 0, beta.type = "marginal")
object |
an object of class |
estimator |
the name of one estimator. Default is the latent indicator
estimator " |
Pmax |
threshold that truncate the estimator " |
beta.type |
the type of output beta. Default is |
Return the estimator from an object of class BayesSUR
. It is
a matrix if the length of argument marginal
is greater than 1.
Otherwise, it is a list
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output # extract the posterior mean of the coefficients matrix beta_hat <- getEstimator(fit, estimator = "beta")
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output # extract the posterior mean of the coefficients matrix beta_hat <- getEstimator(fit, estimator = "beta")
plot method for class BayesSUR
. This is the main plot function to be
called by the user. This function calls one or several of the following
functions: plotEstimator()
, plotGraph()
, plotMCMCdiag()
,
plotManhattan()
, plotNetwork()
, plotCPO()
.
## S3 method for class 'BayesSUR' plot(x, estimator = NULL, type = NULL, ...)
## S3 method for class 'BayesSUR' plot(x, estimator = NULL, type = NULL, ...)
x |
an object of class |
estimator |
It is in
|
type |
It is one of
|
... |
other arguments, see functions |
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 2, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output ## Not run: ## Show the interactive plots. Note that it needs at least 2000*(nbloc+1) iterations ## for the diagnostic plots where nbloc=3 by default # plot(fit) ## End(Not run) ## plot heatmaps of the estimated beta, gamma and Gy plot(fit, estimator = c("beta", "gamma", "Gy"), type = "heatmap") ## plot estimated graph of responses Gy plot(fit, estimator = "Gy", type = "graph") ## plot network between response variables and associated predictors plot(fit, estimator = c("gamma", "Gy"), type = "network") ## print Manhattan-like plots plot(fit, estimator = "gamma", type = "Manhattan") ## print MCMC diagnostic plots #plot(fit, estimator = "logP", type = "diagnostics")
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 2, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output ## Not run: ## Show the interactive plots. Note that it needs at least 2000*(nbloc+1) iterations ## for the diagnostic plots where nbloc=3 by default # plot(fit) ## End(Not run) ## plot heatmaps of the estimated beta, gamma and Gy plot(fit, estimator = c("beta", "gamma", "Gy"), type = "heatmap") ## plot estimated graph of responses Gy plot(fit, estimator = "Gy", type = "graph") ## plot network between response variables and associated predictors plot(fit, estimator = c("gamma", "Gy"), type = "network") ## print Manhattan-like plots plot(fit, estimator = "gamma", type = "Manhattan") ## print MCMC diagnostic plots #plot(fit, estimator = "logP", type = "diagnostics")
Plot the conditional predictive ordinate (CPO) for each individual of a
fitted model generated by BayesSUR
which is a BayesSUR
object.
CPO is a handy posterior predictive check because it may be used to identify
outliers, influential observations, and for hypothesis testing across
different non-nested models (Gelfand 1996).
plotCPO( x, outlier.mark = TRUE, outlier.thresh = 0.01, scale.CPO = TRUE, x.loc = FALSE, axis.label = NULL, las = 0, cex.axis = 1, mark.pos = c(0, -0.01), mark.color = 2, mark.cex = 0.8, xlab = "Observations", ylab = NULL, ... )
plotCPO( x, outlier.mark = TRUE, outlier.thresh = 0.01, scale.CPO = TRUE, x.loc = FALSE, axis.label = NULL, las = 0, cex.axis = 1, mark.pos = c(0, -0.01), mark.color = 2, mark.cex = 0.8, xlab = "Observations", ylab = NULL, ... )
x |
an object of class |
outlier.mark |
mark the outliers with the response names.
The default is |
outlier.thresh |
threshold for the CPOs. The default is 0.01. |
scale.CPO |
scaled CPOs which is divided by their maximum.
The default is |
x.loc |
a vector of features distance |
axis.label |
a vector of predictor names which are shown in CPO plot.
The default is |
las |
graphical parameter of plot.default |
cex.axis |
graphical parameter of plot.default |
mark.pos |
location of the marked text relative to the point |
mark.color |
color of the marked text. The default color is red |
mark.cex |
font size of the marked text. The default font size is 0.8 |
xlab |
a title for the x axis |
ylab |
a title for the y axis |
... |
other arguments |
The default threshold for the CPOs to detect the outliers is 0.01
by Congdon (2005). It can be tuned by the argument outlier.thresh
.
Statisticat, LLC (2013). Bayesian Inference. Farmington, CT: Statisticat, LLC.
Gelfand A. (1996). Model Determination Using Sampling Based Methods. In Gilks W., Richardson S., Spiegelhalter D. (eds.), Markov Chain Monte Carlo in Practice, pp. 145–161. Chapman & Hall, Boca Raton, FL.
Congdon P. (2005). Bayesian Models for Categorical Data. John Wiley & Sons, West Sussex, England.
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/", output_CPO = TRUE ) ## check output # plot the conditional predictive ordinate (CPO) plotCPO(fit)
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/", output_CPO = TRUE ) ## check output # plot the conditional predictive ordinate (CPO) plotCPO(fit)
Plot the posterior mean estimators from a BayesSUR
class object,
including the coefficients beta, latent indicator variable gamma and
graph of responses.
plotEstimator( x, estimator = NULL, colorScale.gamma = grey((100:0)/100), colorScale.beta = c("blue", "white", "red"), legend.cex.axis = 1, name.responses = NA, name.predictors = NA, xlab = "", ylab = "", fig.tex = FALSE, output = "ParamEstimator", header = "", header.cex = 2, tick = FALSE, mgp = c(2.5, 1, 0), cex.main = 1.5, title.beta = NA, title.gamma = NA, title.Gy = NA, beta.type = "marginal", Pmax = 0, ... )
plotEstimator( x, estimator = NULL, colorScale.gamma = grey((100:0)/100), colorScale.beta = c("blue", "white", "red"), legend.cex.axis = 1, name.responses = NA, name.predictors = NA, xlab = "", ylab = "", fig.tex = FALSE, output = "ParamEstimator", header = "", header.cex = 2, tick = FALSE, mgp = c(2.5, 1, 0), cex.main = 1.5, title.beta = NA, title.gamma = NA, title.Gy = NA, beta.type = "marginal", Pmax = 0, ... )
x |
an object of class |
estimator |
print the heatmap of estimators. The value "beta" is for the estimated coefficients matrix, "gamma" for the latent indicator matrix and "Gy" for the graph of responses |
colorScale.gamma |
value palette for gamma |
colorScale.beta |
a vector of three colors for diverging color schemes |
legend.cex.axis |
magnification of axis annotation relative to cex |
name.responses |
a vector of the response names. The default is
|
name.predictors |
a vector of the predictor names. The default is
|
xlab |
a title for the x axis |
ylab |
a title for the y axis |
fig.tex |
print the figure through LaTex. Default is |
output |
the file name of printed figure |
header |
the main title |
header.cex |
size of the main title for all estimators |
tick |
a logical value specifying whether tickmarks and an axis line
should be drawn. Default is |
mgp |
the margin line (in mex units) for the axis title, axis labels and axis line |
cex.main |
size of the title for each estimator |
title.beta |
a title for the printed "beta" |
title.gamma |
a title for the printed "gamma" |
title.Gy |
a title for the printed "Gy" |
beta.type |
the type of output beta. Default is |
Pmax |
threshold that truncate the estimator " |
... |
other arguments |
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output # Plot the estimators from the fitted object plotEstimator(fit, estimator = c("beta", "gamma", "Gy")) ## Not run: ## Set up temporary work directory for saving a pdf figure # td <- tempdir() # oldwd <- getwd() # setwd(td) ## Produce authentic math formulas in the graph # plotEstimator(fit, estimator = c("beta", "gamma", "Gy"), fig.tex = TRUE) # system(paste(getOption("pdfviewer"), "ParamEstimator.pdf")) # setwd(oldwd) ## End(Not run)
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output # Plot the estimators from the fitted object plotEstimator(fit, estimator = c("beta", "gamma", "Gy")) ## Not run: ## Set up temporary work directory for saving a pdf figure # td <- tempdir() # oldwd <- getwd() # setwd(td) ## Produce authentic math formulas in the graph # plotEstimator(fit, estimator = c("beta", "gamma", "Gy"), fig.tex = TRUE) # system(paste(getOption("pdfviewer"), "ParamEstimator.pdf")) # setwd(oldwd) ## End(Not run)
Plot the estimated graph for multiple response variables from a
BayesSUR
class object.
plotGraph( x, Pmax = 0.5, main = "Estimated graph of responses", edge.width = 2, edge.weight = FALSE, vertex.label = NULL, vertex.label.color = "black", vertex.size = 30, vertex.color = "dodgerblue", vertex.frame.color = NA, ... )
plotGraph( x, Pmax = 0.5, main = "Estimated graph of responses", edge.width = 2, edge.weight = FALSE, vertex.label = NULL, vertex.label.color = "black", vertex.size = 30, vertex.color = "dodgerblue", vertex.frame.color = NA, ... )
x |
either an object of class |
Pmax |
a value for thresholding the learning structure matrix of multiple response variables. Default is 0.5 |
main |
an overall title for the plot |
edge.width |
edge width. Default is 2 |
edge.weight |
draw weighted edges after thresholding at 0.5. The
default value |
vertex.label |
character vector used to label the nodes |
vertex.label.color |
label color. Default is |
vertex.size |
node size. Default is 30 |
vertex.color |
node color. Default is |
vertex.frame.color |
node color. Default is |
... |
other arguments |
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output # show the graph relationship between responses plotGraph(fit, estimator = "Gy")
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output # show the graph relationship between responses plotGraph(fit, estimator = "Gy")
Plot Manhattan-like plots for marginal posterior inclusion probabilities
(mPIP) and numbers of responses of association for predictors of a
BayesSUR
class object.
plotManhattan( x, manhattan = c("mPIP", "numResponse"), x.loc = FALSE, axis.label = "auto", mark.responses = NULL, xlab1 = "Predictors", ylab1 = "mPIP", xlab2 = "Predictors", ylab2 = "No. of responses", threshold = 0.5, las = 0, cex.axis = 1, mark.pos = c(0, 0), mark.color = 2, mark.cex = 0.8, header = "", ... )
plotManhattan( x, manhattan = c("mPIP", "numResponse"), x.loc = FALSE, axis.label = "auto", mark.responses = NULL, xlab1 = "Predictors", ylab1 = "mPIP", xlab2 = "Predictors", ylab2 = "No. of responses", threshold = 0.5, las = 0, cex.axis = 1, mark.pos = c(0, 0), mark.color = 2, mark.cex = 0.8, header = "", ... )
x |
an object of class |
manhattan |
value(s) in |
x.loc |
a vector of features distance |
axis.label |
a vector of predictor names which are shown in the
Manhattan-like plot. The value |
mark.responses |
a vector of response names which are shown in the Manhattan-like plot for the mPIP |
xlab1 |
a title for the x axis of Manhattan-like plot for the mPIP |
ylab1 |
a title for the y axis of Manhattan-like plot for the mPIP |
xlab2 |
a title for the x axis of Manhattan-like plot for the numbers of responses |
ylab2 |
a title for the y axis of Manhattan-like plot for the numbers of responses |
threshold |
threshold for showing number of response variables significantly associated with each feature |
las |
graphical parameter of plot.default |
cex.axis |
graphical parameter of plot.default |
mark.pos |
the location of the marked text relative to the point |
mark.color |
the color of the marked text. The default color is red. |
mark.cex |
the fontsize of the marked text. The default fontsize is 0.8 |
header |
the main title |
... |
other arguments |
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output # show the Manhattan-like plots plotManhattan(fit)
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output # show the Manhattan-like plots plotManhattan(fit)
Show trace plots and diagnostic density plots of a fitted model object of class BayesSUR
.
plotMCMCdiag(x, nbloc = 3, HIWg = NULL, header = "", ...)
plotMCMCdiag(x, nbloc = 3, HIWg = NULL, header = "", ...)
x |
an object of class |
nbloc |
number of splits for the last half iterations after substracting burn-in length |
HIWg |
diagnostic plot of the response graph. Default is |
header |
the main title |
... |
other arguments for the plots of the log-likelihood and model size |
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output plotMCMCdiag(fit)
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output plotMCMCdiag(fit)
Plot the network representation of the associations between responses and predictors, based on the estimated gamma matrix and graph of responses from a "BayesSUR" class object.
plotNetwork( x, includeResponse = NULL, excludeResponse = NULL, includePredictor = NULL, excludePredictor = NULL, MatrixGamma = NULL, PmaxPredictor = 0.5, PmaxResponse = 0.5, nodesizePredictor = 2, nodesizeResponse = 15, no.isolates = FALSE, lineup = 1.2, gray.alpha = 0.6, edgewith.response = 5, edgewith.predictor = 2, edge.weight = FALSE, label.predictor = NULL, label.response = NULL, color.predictor = NULL, color.response = NULL, name.predictors = NULL, name.responses = NULL, vertex.frame.color = NA, layoutInCircle = FALSE, header = "", ... )
plotNetwork( x, includeResponse = NULL, excludeResponse = NULL, includePredictor = NULL, excludePredictor = NULL, MatrixGamma = NULL, PmaxPredictor = 0.5, PmaxResponse = 0.5, nodesizePredictor = 2, nodesizeResponse = 15, no.isolates = FALSE, lineup = 1.2, gray.alpha = 0.6, edgewith.response = 5, edgewith.predictor = 2, edge.weight = FALSE, label.predictor = NULL, label.response = NULL, color.predictor = NULL, color.response = NULL, name.predictors = NULL, name.responses = NULL, vertex.frame.color = NA, layoutInCircle = FALSE, header = "", ... )
x |
an object of class |
includeResponse |
A vector of the response names which are shown in the network |
excludeResponse |
A vector of the response names which are not shown in the network |
includePredictor |
A vector of the predictor names which are shown in the network |
excludePredictor |
A vector of the predictor names which are not shown in the network |
MatrixGamma |
A matrix or dataframe of the latent indicator variable.
Default is |
PmaxPredictor |
cutpoint for thresholding the estimated latent indicator variable. Default is 0.5 |
PmaxResponse |
cutpoint for thresholding the learning structure matrix of multiple response variables. Default is 0.5 |
nodesizePredictor |
node size of Predictors in the output graph. Default is 15 |
nodesizeResponse |
node size of response variables in the output graph. Default is 25 |
no.isolates |
remove isolated nodes from responses graph and full graph, may get problem if there are also isolated Predictors |
lineup |
A ratio of the heights between responses' area and predictors' |
gray.alpha |
the opacity. The default is 0.6 |
edgewith.response |
the edge width between response nodes |
edgewith.predictor |
the edge width between the predictor and response node |
edge.weight |
draw weighted edges after thresholding at 0.5. The
default value |
label.predictor |
A vector of the names of predictors |
label.response |
A vector of the names of response variables |
color.predictor |
color of the predictor nodes |
color.response |
color of the response nodes |
name.predictors |
A subtitle for the predictors |
name.responses |
A subtitle for the responses |
vertex.frame.color |
color of the frame of the vertices. If you don't want vertices to have a frame, supply NA as the color name |
layoutInCircle |
place vertices on a circle, in the order of their
vertex ids. The default is |
header |
the main title |
... |
other arguments |
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output # draw network representation of the associations between responses and covariates plotNetwork(fit)
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check output # draw network representation of the associations between responses and covariates plotNetwork(fit)
BayesSUR
Predict responses corresponding to the posterior mean of the coefficients,
return posterior mean of coefficients or indices of nonzero coefficients of
a BayesSUR
class object.
## S3 method for class 'BayesSUR' predict(object, newx, type = "response", beta.type = "marginal", Pmax = 0, ...)
## S3 method for class 'BayesSUR' predict(object, newx, type = "response", beta.type = "marginal", Pmax = 0, ...)
object |
an object of class |
newx |
Matrix of new values for x at which predictions are to be made |
type |
Type of prediction required. |
beta.type |
the type of estimated coefficients beta for prediction.
Default is |
Pmax |
If |
... |
other arguments |
Predicted values extracted from an object of class BayesSUR
.
If the BayesSUR
specified data standardization, the fitted values
are base based on standardized data.
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 20, burnin = 10, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check prediction predict.val <- predict(fit, newx = exampleEQTL[["blockList"]][[2]])
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 20, burnin = 10, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/" ) ## check prediction predict.val <- predict(fit, newx = exampleEQTL[["blockList"]][[2]])
BayesSUR
Print a short summary of a BayesSUR
class object. It includes the
argument matching information, number of selected predictors based on
thresholding the posterior mean of the latent indicator variable at 0.5
by default.
## S3 method for class 'BayesSUR' print(x, Pmax = 0.5, ...)
## S3 method for class 'BayesSUR' print(x, Pmax = 0.5, ...)
x |
an object of class |
Pmax |
threshold that truncates the estimated coefficients based on thresholding the estimated latent indicator variable. Default is 0.5 |
... |
other arguments |
Return a short summary from an object of class BayesSUR
,
including the number of selected predictors with mPIP>Pmax
and the
expected log pointwise predictive density estimates (i.e., elpd.LOO and
elpd.WAIC).
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/", output_CPO = TRUE ) ## check output # show the print information print(fit)
data("exampleEQTL", package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/", output_CPO = TRUE ) ## check output # show the print information print(fit)
BayesSUR
Summary method for class BayesSUR
. It includes the argument matching
information, Top predictors/responses on average mPIP across all
responses/predictors, elpd estimates, MCMC specification, model
specification and hyper-parameters. The summarized number of the selected
variable corresponds to the posterior mean of the latent indicator variable
thresholding at 0.5 by default.
## S3 method for class 'BayesSUR' summary(object, Pmax = 0.5, ...)
## S3 method for class 'BayesSUR' summary(object, Pmax = 0.5, ...)
object |
an object of class |
Pmax |
threshold that truncates the estimated coefficients based on thresholding the estimated latent indicator variable. Default is 0.5 |
... |
other arguments |
Return a result summary from an object of class BayesSUR
,
including the CPOs, number of selected predictors with mPIP>Pmax
,
top 10 predictors on average mPIP across all responses, top 10 responses on
average mPIP across all predictors, Expected log pointwise predictive
density (elpd) estimates, MCMC specification, model specification (i.e.,
covariance prior and gamma prior) and hyper-parameters.
data(exampleEQTL, package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/", output_CPO = TRUE ) ## check output # show the summary information summary(fit)
data(exampleEQTL, package = "BayesSUR") hyperpar <- list(a_w = 2, b_w = 5) set.seed(9173) fit <- BayesSUR( Y = exampleEQTL[["blockList"]][[1]], X = exampleEQTL[["blockList"]][[2]], data = exampleEQTL[["data"]], outFilePath = tempdir(), nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot", hyperpar = hyperpar, tmpFolder = "tmp/", output_CPO = TRUE ) ## check output # show the summary information summary(fit)
Indices list of target genes corresponding the example_GDSC
data set.
It has two components representing the gene indices of the MAPK/ERK pathway and
BCR-ABL gene fusion in the example_GDSC
data set.
targetGene
targetGene
An object of class list
of length 2.
# Load the indices of gene targets from the GDSC sample dataset data("targetGene", package = "BayesSUR") str(targetGene) ## Not run: # =============== # This code below is to do preprocessing of GDSC data and obtain the complete dataset # "targetGene.rda" above. The user needs load the datasets from # https://www.cancerrxgene.org release 5. # But downloading and transforming the three used datasets below to *.csv files first. # =============== requireNamespace("plyr", quietly = TRUE) requireNamespace("data.table", quietly = TRUE) features <- data.frame(read.csv("/gdsc_en_input_w5.csv", head = T)) names.fea <- strsplit(rownames(features), "") features <- t(features) p <- c(13321, 13747 - 13321, 13818 - 13747) Cell.Line <- rownames(features) features <- data.frame(Cell.Line, features) ic50_00 <- data.frame(read.csv("gdsc_drug_sensitivity_fitted_data_w5.csv", head = T)) ic50_0 <- ic50_00[, c(1, 4, 7)] drug.id <- data.frame(read.csv("gdsc_tissue_output_w5.csv", head = T))[, c(1, 3)] drug.id2 <- drug.id[!duplicated(drug.id$drug.id), ] # delete drug.id=1066 since ID1066 and ID156 both correspond drug AZD6482, # and no ID1066 in the "suppl.Data1" by Garnett et al. (2012) drug.id2 <- drug.id2[drug.id2$drug.id != 1066, ] drug.id2$drug.name <- as.character(drug.id2$drug.name) drug.id2$drug.name <- substr(drug.id2$drug.name, 1, nchar(drug.id2$drug.name) - 6) drug.id2$drug.name <- gsub(" ", "-", drug.id2$drug.name) ic50 <- ic50_0 # mapping the drug_id to drug names in drug sensitivity data set ic50$drug_id <- plyr::mapvalues(ic50$drug_id, from = drug.id2[, 2], to = drug.id2[, 1]) colnames(ic50) <- c("Cell.Line", "compound", "IC50") # transform drug sensitivity overall cell lines to a data matrix y0 <- reshape(ic50, v.names = "IC50", timevar = "compound", idvar = "Cell.Line", direction = "wide") y0$Cell.Line <- gsub("-", ".", y0$Cell.Line) # =============== # select nonmissing pharmacological data # =============== y00 <- y0 m0 <- dim(y0)[2] - 1 eps <- 0.05 # r1.na is better to be not smaller than r2.na r1.na <- 0.3 r2.na <- 0.2 k <- 1 while (sum(is.na(y0[, 2:(1 + m0)])) > 0) { r1.na <- r1.na - eps / k r2.na <- r1.na - eps / k k <- k + 1 ## select drugs with <30% (decreasing with k) missing data overall cell lines na.y <- apply(y0[, 2:(1 + m0)], 2, function(xx) sum(is.na(xx)) / length(xx)) while (sum(na.y < r1.na) < m0) { y0 <- y0[, -c(1 + which(na.y >= r1.na))] m0 <- sum(na.y < r1.na) na.y <- apply(y0[, 2:(1 + m0)], 2, function(xx) sum(is.na(xx)) / length(xx)) } ## select cell lines with treatment of at least 80% (increasing with k) drugs na.y0 <- apply(y0[, 2:(1 + m0)], 1, function(xx) sum(is.na(xx)) / length(xx)) while (sum(na.y0 < r2.na) < (dim(y0)[1])) { y0 <- y0[na.y0 < r2.na, ] na.y0 <- apply(y0[, 2:(1 + m0)], 1, function(xx) sum(is.na(xx)) / length(xx)) } num.na <- sum(is.na(y0[, 2:(1 + m0)])) message("#{NA}=", num.na, "\n", "r1.na =", r1.na, ", r2.na =", r2.na, "\n") } # =============== # combine drug sensitivity, tissues and molecular features # =============== yx <- merge(y0, features, by = "Cell.Line") names.cell.line <- yx$Cell.Line names.drug <- colnames(yx)[2:(dim(y0)[2])] names.drug <- substr(names.drug, 6, nchar(names.drug)) # numbers of gene expression features, copy number festures and muatation features p <- c(13321, 13747 - 13321, 13818 - 13747) num.nonpen <- 13 yx <- data.matrix(yx[, -1]) y <- yx[, 1:(dim(y0)[2] - 1)] x <- cbind(yx[, dim(y0)[2] - 1 + sum(p) + 1:num.nonpen], yx[, dim(y0)[2] - 1 + 1:sum(p)]) # delete genes with only one mutated cell line x <- x[, -c(num.nonpen + p[1] + p[2] + which(colSums(x[, num.nonpen + p[1] + p[2] + 1:p[3]]) <= 1))] p[3] <- ncol(x) - num.nonpen - p[1] - p[2] GDSC <- list( y = y, x = x, p = p, num.nonpen = num.nonpen, names.cell.line = names.cell.line, names.drug = names.drug ) ## ================ ## ================ ## select a small set of drugs ## ================ ## ================ name_drugs <- c( "Methotrexate", "RDEA119", "PD-0325901", "CI-1040", "AZD6244", "Nilotinib", "Axitinib" ) # extract the drugs' pharmacological profiling and tissue dummy YX0 <- cbind(GDSC$y[, colnames(GDSC$y) %in% paste("IC50.", name_drugs, sep = "")] [, c(1, 3, 6, 4, 7, 2, 5)], GDSC$x[, 1:GDSC$num.nonpen]) colnames(YX0) <- c(name_drugs, colnames(GDSC$x)[1:GDSC$num.nonpen]) # extract the genetic information of CNV & MUT X23 <- GDSC$x[, GDSC$num.nonpen + GDSC$p[1] + 1:(p[2] + p[3])] colnames(X23)[1:p[2]] <- paste(substr( colnames(X23)[1:p[2]], 1, nchar(colnames(X23)[1:p[2]]) - 3 ), ".CNV", sep = "") # locate all genes with CNV or MUT information name_genes_duplicate <- c( substr(colnames(X23)[1:p[2]], 1, nchar(colnames(X23)[1:p[2]]) - 4), substr(colnames(X23)[p[2] + 1:p[3]], 1, nchar(colnames(X23)[p[2] + 1:p[3]]) - 4) ) name_genes <- name_genes_duplicate[!duplicated(name_genes_duplicate)] # select the GEX which have the common genes with CNV or MUT X1 <- GDSC$x[, GDSC$num.nonpen + which(colnames(GDSC$x)[GDSC$num.nonpen + 1:p[1]] %in% name_genes)] p[1] <- ncol(X1) X1 <- log(X1) # summary the data information example_GDSC <- list(data = cbind(YX0, X1, X23)) example_GDSC$blockList <- list( 1:length(name_drugs), length(name_drugs) + 1:GDSC$num.nonpen, ncol(YX0) + 1:sum(p)) # ======================== # construct the G matrix: edge potentials in the MRF prior # ======================== # edges between drugs: Group1 ("RDEA119","17-AAG","PD-0325901","CI-1040" and "AZD6244") # indexed as (2:5) # http://software.broadinstitute.org/gsea/msigdb/cards/KEGG_MAPK_SIGNALING_PATHWAY pathway_genes <- read.table("MAPK_pathway.txt")[[1]] Idx_Pathway1 <- which(c(colnames(X1), name_genes_duplicate) %in% pathway_genes) Gmrf_Group1Pathway1 <- t(combn(rep(Idx_Pathway1, each = length(2:5)) + rep((2:5 - 1) * sum(p), times = length(Idx_Pathway1)), 2)) # edges between drugs: Group2 ("Nilotinib","Axitinib") indexed as (6:7) # delete gene ABL2 Idx_Pathway2 <- which(c(colnames(X1), name_genes_duplicate) %like% "BCR" | c(colnames(X1), name_genes_duplicate) %like% "ABL")[-c(3, 5)] Gmrf_Group2Pathway2 <- t(combn(rep(Idx_Pathway2, each = length(6:7)) + rep((6:7 - 1) * sum(p), times = length(Idx_Pathway2)), 2)) # edges between the common gene in different data sources Gmrf_CommonGene <- NULL list_CommonGene <- list(0) k <- 1 for (i in 1:length(name_genes)) { Idx_CommonGene <- which(c(colnames(X1), name_genes_duplicate) == name_genes[i]) if (length(Idx_CommonGene) > 1) { Gmrf_CommonGene <- rbind(Gmrf_CommonGene, t(combn(rep(Idx_CommonGene, each = length(name_drugs)) + rep((1:length(name_drugs) - 1) * sum(p), times = length(Idx_CommonGene)), 2))) k <- k + 1 } } Gmrf_duplicate <- rbind(Gmrf_Group1Pathway1, Gmrf_Group2Pathway2, Gmrf_CommonGene) Gmrf <- Gmrf_duplicate[!duplicated(Gmrf_duplicate), ] example_GDSC$mrfG <- Gmrf # create the target gene names of the two groups of drugs targetGenes1 <- matrix(Idx_Pathway1, nrow = 1) colnames(targetGenes1) <- colnames(example_GDSC$data)[seq_along(targetGene$group1)] targetGenes2 <- matrix(Idx_Pathway2, nrow = 1) colnames(targetGenes2) <- colnames(example_GDSC$data)[seq_along(targetGene$group2)] targetGene <- list(group1 = targetGenes1, group2 = targetGenes2) ## Write data file targetGene.rda to the user's directory by save() ## End(Not run)
# Load the indices of gene targets from the GDSC sample dataset data("targetGene", package = "BayesSUR") str(targetGene) ## Not run: # =============== # This code below is to do preprocessing of GDSC data and obtain the complete dataset # "targetGene.rda" above. The user needs load the datasets from # https://www.cancerrxgene.org release 5. # But downloading and transforming the three used datasets below to *.csv files first. # =============== requireNamespace("plyr", quietly = TRUE) requireNamespace("data.table", quietly = TRUE) features <- data.frame(read.csv("/gdsc_en_input_w5.csv", head = T)) names.fea <- strsplit(rownames(features), "") features <- t(features) p <- c(13321, 13747 - 13321, 13818 - 13747) Cell.Line <- rownames(features) features <- data.frame(Cell.Line, features) ic50_00 <- data.frame(read.csv("gdsc_drug_sensitivity_fitted_data_w5.csv", head = T)) ic50_0 <- ic50_00[, c(1, 4, 7)] drug.id <- data.frame(read.csv("gdsc_tissue_output_w5.csv", head = T))[, c(1, 3)] drug.id2 <- drug.id[!duplicated(drug.id$drug.id), ] # delete drug.id=1066 since ID1066 and ID156 both correspond drug AZD6482, # and no ID1066 in the "suppl.Data1" by Garnett et al. (2012) drug.id2 <- drug.id2[drug.id2$drug.id != 1066, ] drug.id2$drug.name <- as.character(drug.id2$drug.name) drug.id2$drug.name <- substr(drug.id2$drug.name, 1, nchar(drug.id2$drug.name) - 6) drug.id2$drug.name <- gsub(" ", "-", drug.id2$drug.name) ic50 <- ic50_0 # mapping the drug_id to drug names in drug sensitivity data set ic50$drug_id <- plyr::mapvalues(ic50$drug_id, from = drug.id2[, 2], to = drug.id2[, 1]) colnames(ic50) <- c("Cell.Line", "compound", "IC50") # transform drug sensitivity overall cell lines to a data matrix y0 <- reshape(ic50, v.names = "IC50", timevar = "compound", idvar = "Cell.Line", direction = "wide") y0$Cell.Line <- gsub("-", ".", y0$Cell.Line) # =============== # select nonmissing pharmacological data # =============== y00 <- y0 m0 <- dim(y0)[2] - 1 eps <- 0.05 # r1.na is better to be not smaller than r2.na r1.na <- 0.3 r2.na <- 0.2 k <- 1 while (sum(is.na(y0[, 2:(1 + m0)])) > 0) { r1.na <- r1.na - eps / k r2.na <- r1.na - eps / k k <- k + 1 ## select drugs with <30% (decreasing with k) missing data overall cell lines na.y <- apply(y0[, 2:(1 + m0)], 2, function(xx) sum(is.na(xx)) / length(xx)) while (sum(na.y < r1.na) < m0) { y0 <- y0[, -c(1 + which(na.y >= r1.na))] m0 <- sum(na.y < r1.na) na.y <- apply(y0[, 2:(1 + m0)], 2, function(xx) sum(is.na(xx)) / length(xx)) } ## select cell lines with treatment of at least 80% (increasing with k) drugs na.y0 <- apply(y0[, 2:(1 + m0)], 1, function(xx) sum(is.na(xx)) / length(xx)) while (sum(na.y0 < r2.na) < (dim(y0)[1])) { y0 <- y0[na.y0 < r2.na, ] na.y0 <- apply(y0[, 2:(1 + m0)], 1, function(xx) sum(is.na(xx)) / length(xx)) } num.na <- sum(is.na(y0[, 2:(1 + m0)])) message("#{NA}=", num.na, "\n", "r1.na =", r1.na, ", r2.na =", r2.na, "\n") } # =============== # combine drug sensitivity, tissues and molecular features # =============== yx <- merge(y0, features, by = "Cell.Line") names.cell.line <- yx$Cell.Line names.drug <- colnames(yx)[2:(dim(y0)[2])] names.drug <- substr(names.drug, 6, nchar(names.drug)) # numbers of gene expression features, copy number festures and muatation features p <- c(13321, 13747 - 13321, 13818 - 13747) num.nonpen <- 13 yx <- data.matrix(yx[, -1]) y <- yx[, 1:(dim(y0)[2] - 1)] x <- cbind(yx[, dim(y0)[2] - 1 + sum(p) + 1:num.nonpen], yx[, dim(y0)[2] - 1 + 1:sum(p)]) # delete genes with only one mutated cell line x <- x[, -c(num.nonpen + p[1] + p[2] + which(colSums(x[, num.nonpen + p[1] + p[2] + 1:p[3]]) <= 1))] p[3] <- ncol(x) - num.nonpen - p[1] - p[2] GDSC <- list( y = y, x = x, p = p, num.nonpen = num.nonpen, names.cell.line = names.cell.line, names.drug = names.drug ) ## ================ ## ================ ## select a small set of drugs ## ================ ## ================ name_drugs <- c( "Methotrexate", "RDEA119", "PD-0325901", "CI-1040", "AZD6244", "Nilotinib", "Axitinib" ) # extract the drugs' pharmacological profiling and tissue dummy YX0 <- cbind(GDSC$y[, colnames(GDSC$y) %in% paste("IC50.", name_drugs, sep = "")] [, c(1, 3, 6, 4, 7, 2, 5)], GDSC$x[, 1:GDSC$num.nonpen]) colnames(YX0) <- c(name_drugs, colnames(GDSC$x)[1:GDSC$num.nonpen]) # extract the genetic information of CNV & MUT X23 <- GDSC$x[, GDSC$num.nonpen + GDSC$p[1] + 1:(p[2] + p[3])] colnames(X23)[1:p[2]] <- paste(substr( colnames(X23)[1:p[2]], 1, nchar(colnames(X23)[1:p[2]]) - 3 ), ".CNV", sep = "") # locate all genes with CNV or MUT information name_genes_duplicate <- c( substr(colnames(X23)[1:p[2]], 1, nchar(colnames(X23)[1:p[2]]) - 4), substr(colnames(X23)[p[2] + 1:p[3]], 1, nchar(colnames(X23)[p[2] + 1:p[3]]) - 4) ) name_genes <- name_genes_duplicate[!duplicated(name_genes_duplicate)] # select the GEX which have the common genes with CNV or MUT X1 <- GDSC$x[, GDSC$num.nonpen + which(colnames(GDSC$x)[GDSC$num.nonpen + 1:p[1]] %in% name_genes)] p[1] <- ncol(X1) X1 <- log(X1) # summary the data information example_GDSC <- list(data = cbind(YX0, X1, X23)) example_GDSC$blockList <- list( 1:length(name_drugs), length(name_drugs) + 1:GDSC$num.nonpen, ncol(YX0) + 1:sum(p)) # ======================== # construct the G matrix: edge potentials in the MRF prior # ======================== # edges between drugs: Group1 ("RDEA119","17-AAG","PD-0325901","CI-1040" and "AZD6244") # indexed as (2:5) # http://software.broadinstitute.org/gsea/msigdb/cards/KEGG_MAPK_SIGNALING_PATHWAY pathway_genes <- read.table("MAPK_pathway.txt")[[1]] Idx_Pathway1 <- which(c(colnames(X1), name_genes_duplicate) %in% pathway_genes) Gmrf_Group1Pathway1 <- t(combn(rep(Idx_Pathway1, each = length(2:5)) + rep((2:5 - 1) * sum(p), times = length(Idx_Pathway1)), 2)) # edges between drugs: Group2 ("Nilotinib","Axitinib") indexed as (6:7) # delete gene ABL2 Idx_Pathway2 <- which(c(colnames(X1), name_genes_duplicate) %like% "BCR" | c(colnames(X1), name_genes_duplicate) %like% "ABL")[-c(3, 5)] Gmrf_Group2Pathway2 <- t(combn(rep(Idx_Pathway2, each = length(6:7)) + rep((6:7 - 1) * sum(p), times = length(Idx_Pathway2)), 2)) # edges between the common gene in different data sources Gmrf_CommonGene <- NULL list_CommonGene <- list(0) k <- 1 for (i in 1:length(name_genes)) { Idx_CommonGene <- which(c(colnames(X1), name_genes_duplicate) == name_genes[i]) if (length(Idx_CommonGene) > 1) { Gmrf_CommonGene <- rbind(Gmrf_CommonGene, t(combn(rep(Idx_CommonGene, each = length(name_drugs)) + rep((1:length(name_drugs) - 1) * sum(p), times = length(Idx_CommonGene)), 2))) k <- k + 1 } } Gmrf_duplicate <- rbind(Gmrf_Group1Pathway1, Gmrf_Group2Pathway2, Gmrf_CommonGene) Gmrf <- Gmrf_duplicate[!duplicated(Gmrf_duplicate), ] example_GDSC$mrfG <- Gmrf # create the target gene names of the two groups of drugs targetGenes1 <- matrix(Idx_Pathway1, nrow = 1) colnames(targetGenes1) <- colnames(example_GDSC$data)[seq_along(targetGene$group1)] targetGenes2 <- matrix(Idx_Pathway2, nrow = 1) colnames(targetGenes2) <- colnames(example_GDSC$data)[seq_along(targetGene$group2)] targetGene <- list(group1 = targetGenes1, group2 = targetGenes2) ## Write data file targetGene.rda to the user's directory by save() ## End(Not run)