Title: | Bounded Time Series Regression |
---|---|
Description: | Simulate, estimate and forecast a wide range of regression based dynamic models for bounded time series, covering the most commonly applied models in the literature. The main calculations are done in 'FORTRAN', which translates into very fast algorithms. The main references are Bayer et al. (2017) <doi:10.1016/j.jhydrol.2017.10.006>, Pumi et al. (2019) <doi:10.1016/j.jspi.2018.10.001>, Pumi et al. (2021) <doi:10.1111/sjos.12439> and Pumi et al. (2022) <arXiv:2211.02097>. |
Authors: | Taiane Schaedler Prass [aut, cre, com] , Guilherme Pumi [ctb, aut] , Fábio Mariano Bayer [ctb] , Jack Joseph Dongarra [ctb], Cleve Moler [ctb], Gilbert Wright Stewart [ctb], Ciyou Zhu [ctb], Richard H. Byrd [ctb], Jorge Nocedal [ctb], Jose Luis Morales [ctb], Peihuang Lu-Chen [ctb], John Burkardt [ctb], Alan Miller [ctb], B.E. Schneider [ctb], Alfred H. Morris [ctb], D.E. Shaw [ctb], Robert W.M. Wedderburn [ctb], Jason Blevins [ctb], Brian Wichman [ctb], David Hill [ctb], Hiroshi Takano [ctb], George Marsaglia [ctb], Jean-Michel Brankart [ctb], Steve Kifowit [ctb], Donald E. Knuth [ctb], Catherine Loader [ctb] |
Maintainer: | Taiane Schaedler Prass <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.1.5 |
Built: | 2024-12-17 06:37:40 UTC |
Source: | CRAN |
These functions can be used to simulate, extract components
and fit any model of the class barc
. A model with
class barc
is a special case of a model with class btsr
.
See ‘The BTSR structure’ in BARC.functions
for
more details on the general structure. See ‘Details’.
BARC.sim(n = 1, burn = 0, xreg = NULL, map = 4, coefs = list(alpha = 0, beta = NULL, phi = NULL, theta = 0.5, nu = 20, u0 = pi/4), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 0, complete = FALSE, linkg = c("linear", "linear"), linkh = "linear", ctt.h = 1, seed = NULL, rngtype = 2, debug = FALSE) BARC.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, r, coefs = list(), lags = list(), fixed.values = list(), fixed.lags = list(), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 0, map = 4, linkg = c("linear", "linear"), linkh = "linear", ctt.h = 1, llk = TRUE, sco = FALSE, info = FALSE, debug = FALSE) BARC.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, r = 1, start = list(), lags = list(), fixed.values = list(), ignore.start = FALSE, fixed.lags = list(), lower = list(nu = 0, u0 = 0), upper = list(nu = Inf, u0 = 1), map = 4, linkg = c("linear", "linear"), linkh = "linear", ctt.h = 1, sco = FALSE, info = FALSE, xregar = TRUE, y.start = NULL, xreg.start = NULL, error.scale = 0, control = list(), report = TRUE, debug = FALSE, ...)
BARC.sim(n = 1, burn = 0, xreg = NULL, map = 4, coefs = list(alpha = 0, beta = NULL, phi = NULL, theta = 0.5, nu = 20, u0 = pi/4), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 0, complete = FALSE, linkg = c("linear", "linear"), linkh = "linear", ctt.h = 1, seed = NULL, rngtype = 2, debug = FALSE) BARC.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, r, coefs = list(), lags = list(), fixed.values = list(), fixed.lags = list(), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 0, map = 4, linkg = c("linear", "linear"), linkh = "linear", ctt.h = 1, llk = TRUE, sco = FALSE, info = FALSE, debug = FALSE) BARC.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, r = 1, start = list(), lags = list(), fixed.values = list(), ignore.start = FALSE, fixed.lags = list(), lower = list(nu = 0, u0 = 0), upper = list(nu = Inf, u0 = 1), map = 4, linkg = c("linear", "linear"), linkh = "linear", ctt.h = 1, sco = FALSE, info = FALSE, xregar = TRUE, y.start = NULL, xreg.start = NULL, error.scale = 0, control = list(), report = TRUE, debug = FALSE, ...)
n |
a strictly positive integer. The sample size of yt (after burn-in). Default is 1. |
burn |
a non-negative integer. length of "burn-in" period. Default is 0. |
xreg |
optionally, a vector or matrix of external regressors.
For simulation purposes, the length of xreg must be |
map |
a non-negative integer from 1 to 5 corresponding to the map function. Default is 4. See ‘The map function’. |
coefs |
a list with the coefficients of the model. An empty list will result in an error. The arguments that can be passed through this list are:
|
y.start |
optionally, a initial value for yt (to be used
in the recursions). Default is |
xreg.start |
optionally, a vector of initial value for xreg
(to be used in the recursions). Default is |
xregar |
logical; indicates if xreg is to be included in the
AR part of the model. See ‘The BTSR structure’. Default is |
error.scale |
the scale for the error term. See ‘The BTSR structure’
in |
complete |
logical; if |
linkg |
character or a two character vector indicating which
links must be used in the model. See ‘The BTSR structure’
in |
linkh |
a character indicating which link must be associated to the
the chaotic process. See ‘The BTSR structure’
in |
ctt.h |
numeric; the constant to be associated to the link |
seed |
optionally, an integer which gives the value of the fixed seed to be used by the random number generator. If missing, a random integer is chosen uniformly from 1,000 to 10,000. |
rngtype |
optionally, an integer indicating which random number generator
is to be used. Default is 2. See ‘Common Arguments’
in |
debug |
logical, if |
yt |
a numeric vector with the observed time series. If missing, an error message is issued. |
nnew |
optionally, the number of out-of sample predicted values required. Default is 0. |
xnew |
a vector or matrix, with |
p |
a non-negative integer. The order of AR polynomial.
If missing, the value of |
r |
a non-negative integer. The size of the vector theta.
If missing, the value of |
lags |
optionally, a list with the lags that the values in |
fixed.values |
optionally, a list with the values of the coefficients
that are fixed. By default, if a given vector (such as the vector of AR coefficients)
has fixed values and the corresponding entry in this list is empty, the fixed values
are set as zero. The names of the entries in this list must match the ones
in |
fixed.lags |
optionally, a list with the lags that the fixed values
in |
llk |
logical, if |
sco |
logical, if |
info |
logical, if |
start |
a list with the starting values for the non-fixed coefficients
of the model. If an empty list is provided, the function |
ignore.start |
logical, if starting values are not provided, the
function uses the default values and |
lower |
optionally, list with the lower bounds for the
parameters. The names of the entries in these lists must match the ones
in |
upper |
optionally, list with the upper bounds for the
parameters. The names of the entries in these lists must match the ones
in |
control |
a list with configurations to be passed to the optimization subroutines. Missing arguments will receive default values. See fit.control. |
report |
logical, if |
... |
further arguments passed to the internal functions. |
Neither the beta regression or an i.i.d. sample
from a beta distribution can be obtained as special cases of the
ARC model since the term
is always present
The model from Pumi et al. (2021) is obtained by setting
xregar = TRUE
(so that the regressors are included in the AR
part of the model) and using the same link for and
.
The function BARC.sim
generates a random sample from a
ARC(p) model.
The function BARC.extract
allows the user to extract the
components ,
,
,
,
, the log-likelihood, and the vectors and matrices used to
calculate the score vector and the information matrix associated to a given
set of parameters.
This function can be used by any user to create an objective function that can be passed to optimization functions not available in BTSR Package. At this point, there is no other use for which this function was intended.
The function BARC.fit
fits a BARC model to a given univariate time
series. For now, available optimization algorithms are "L-BFGS-B"
and
"Nelder-Mead"
. Both methods accept bounds for the parameters. For
"Nelder-Mead"
, bounds are set via parameter transformation.
The function BARC.sim
returns the simulated time series yt by default.
If complete = TRUE
, a list with the following components
is returned instead:
model
: string with the text "BARC"
yt
: the simulated time series
mut
: the conditional mean
etat
: the linear predictor
error
: the error term
xreg
: the regressors (if included in the model).
debug
: the output from FORTRAN (if requested).
The function BARC.extract
returns a list with the following components.
model
: string with the text "BARC"
.
coefs
: the coefficients of the model passed through the
coefs
argument.
yt
: the observed time series.
gyt
: the transformed time series .
mut
: the conditional mean.
etat
: the linear predictor .
error
: the error term .
xreg
: the regressors (if included in the model).
TS
: the chaotic process .
sll
: the sum of the conditional log-likelihood (if requested).
sco
: the score vector (if requested).
info
: the information matrix (if requested).
Drho
, T
, E
, h
: additional matrices and vectors
used to calculate the score vector and the information matrix. (if requested).
yt.new
: the out-of-sample forecast (if requested).
Ts.new
: the out-of-sample forecast for the chaotic
process (if requested).
out.Fortran
: FORTRAN output (if requested).
The function btsr.fit
returns a list with the following components.
Each particular model can have additional components in this list.
model
: string with the text "BARC"
convergence
: An integer code. 0 indicates successful completion.
The error codes depend on the algorithm used.
message
: A character string giving any additional information
returned by the optimizer, or NULL.
counts
: an integer giving the number of function evaluations.
control
: a list of control parameters.
start
: the starting values used by the algorithm.
coefficients
: The best set of parameters found.
n
: the sample size used for estimation.
series
: the observed time series
gyt
: the transformed time series
fitted.values
: the conditional mean, which corresponds to
the in-sample forecast, also denoted fitted values
etat
: the linear predictor
error.scale
: the scale for the error term.
error
: the error term
residual
: the observed minus the fitted values. The same as
the error
term if error.scale = 0
.
forecast
: the out-of-sample forecast for (if requested).
Ts.forecas
: the out-of-sample forecast for
(if requested).
xnew
: the observations of the regressors observed/predicted
values corresponding to the period of out-of-sample forecast.
Only inlcudes if xreg
is not NULL
and nnew > 0
.
sll
: the sum of the conditional log-likelihood (if requested)
info.Matrix
: the information matrix (if requested)
configs
: a list with the configurations adopted to fit the model.
This information is used by the prediction function.
out.Fortran
: FORTRAN output (if requested)
call
: a string with the description of the fitted model.
The map function is a dynamical system, i.e.,
a function, potentially depending on a
-dimensional vector of
parameters
. Available choices are
map = 1
, , for
integer greater
or equal to 2.
map = 2
,
map = 3
(logistic map), ,
map = 4
(Manneville-Pomeau map),
map = 5
(Lasota-Mackey's map),
Pumi, G.; Prass, T.S. and Souza, R.R. (2021). A dynamic model for double bounded time series with chaotic driven conditional averages. Scandinavian Journal of Statistics. Vol 48 (1), 68-86.
btsr.sim
, btsr.extract
, btsr.fit
m1 <- BARC.sim(linkg = "linear", linkh = "linear", n = 100, seed = 2021, complete = TRUE, ctt.h = 0.6, coefs = list(nu = 15, theta = 0.85, u0 = pi/4)) plot.ts(m1$yt) lines(m1$mut, col = "red") #------------------------------------------------------------ # Generating a sample from a BARC model #------------------------------------------------------------ m1 <- BARC.sim(linkg = "linear", linkh = "linear", n = 100, seed = 2021, complete = TRUE, ctt.h = 0.6, coefs = list(nu = 15, theta = 0.85, u0 = pi/4)) #------------------------------------------------------------ # Extracting the conditional time series given yt and # a set of parameters #------------------------------------------------------------ e1 = BARC.extract(yt = m1$yt, map = 4, ctt.h = 0.6, coefs = list(nu = 15, theta = 0.85), fixed.values = list(u0 = pi/4), linkg = "linear", linkh = "linear", llk = TRUE, sco = TRUE, info = TRUE) #---------------------------------------------------- # comparing the simulated and the extracted values #---------------------------------------------------- cbind(head(m1$mut), head(e1$mut)) #--------------------------------------------------------- # the log-likelihood, score vector and information matrix # score vector and information matrix are obtained # numerically. #--------------------------------------------------------- e1$sll e1$score e1$info.Matrix #------------------------------------------------------------ # Generating a sample from a BARC model #------------------------------------------------------------ m1 <- BARC.sim(linkg = "linear", linkh = "linear", n = 100, seed = 2021, complete = TRUE, ctt.h = 0.6, coefs = list(nu = 15, theta = 0.85, u0 = pi/4)) #------------------------------------------------------------ # Fitting a BARC model. Assuming only alpha fixed. #------------------------------------------------------------ f1 = BARC.fit(yt = m1$yt, map = 4, ctt.h = 0.6, start = list(nu = 10, theta = 0.6, u0 = 0.5), lower = list(nu = 0, theta = 0, u0 = 0), upper = list(theta = 1, u0 = 1), fixed.values = list(alpha = 0), control = list(iprint = -1, method = "Nelder-Mead")) coefficients(f1) plot.ts(m1$yt) lines(f1$fitted.values, col = "red") #------------------------------------------------------------ # Out-of-sample forecast #------------------------------------------------------------ pred = predict(f1, nnew = 5) pred$forecast pred$Ts.forecast
m1 <- BARC.sim(linkg = "linear", linkh = "linear", n = 100, seed = 2021, complete = TRUE, ctt.h = 0.6, coefs = list(nu = 15, theta = 0.85, u0 = pi/4)) plot.ts(m1$yt) lines(m1$mut, col = "red") #------------------------------------------------------------ # Generating a sample from a BARC model #------------------------------------------------------------ m1 <- BARC.sim(linkg = "linear", linkh = "linear", n = 100, seed = 2021, complete = TRUE, ctt.h = 0.6, coefs = list(nu = 15, theta = 0.85, u0 = pi/4)) #------------------------------------------------------------ # Extracting the conditional time series given yt and # a set of parameters #------------------------------------------------------------ e1 = BARC.extract(yt = m1$yt, map = 4, ctt.h = 0.6, coefs = list(nu = 15, theta = 0.85), fixed.values = list(u0 = pi/4), linkg = "linear", linkh = "linear", llk = TRUE, sco = TRUE, info = TRUE) #---------------------------------------------------- # comparing the simulated and the extracted values #---------------------------------------------------- cbind(head(m1$mut), head(e1$mut)) #--------------------------------------------------------- # the log-likelihood, score vector and information matrix # score vector and information matrix are obtained # numerically. #--------------------------------------------------------- e1$sll e1$score e1$info.Matrix #------------------------------------------------------------ # Generating a sample from a BARC model #------------------------------------------------------------ m1 <- BARC.sim(linkg = "linear", linkh = "linear", n = 100, seed = 2021, complete = TRUE, ctt.h = 0.6, coefs = list(nu = 15, theta = 0.85, u0 = pi/4)) #------------------------------------------------------------ # Fitting a BARC model. Assuming only alpha fixed. #------------------------------------------------------------ f1 = BARC.fit(yt = m1$yt, map = 4, ctt.h = 0.6, start = list(nu = 10, theta = 0.6, u0 = 0.5), lower = list(nu = 0, theta = 0, u0 = 0), upper = list(theta = 1, u0 = 1), fixed.values = list(alpha = 0), control = list(iprint = -1, method = "Nelder-Mead")) coefficients(f1) plot.ts(m1$yt) lines(f1$fitted.values, col = "red") #------------------------------------------------------------ # Out-of-sample forecast #------------------------------------------------------------ pred = predict(f1, nnew = 5) pred$forecast pred$Ts.forecast
These functions can be used to simulate, extract components
and fit any model of the class barfima
. A model with
class barfima
is a special case of a model with class btsr
.
See ‘The BTSR structure’ in btsr.functions
for
more details on the general structure.
The ARMA model, the beta regression and a i.i.d. sample
from a beta distribution can be obtained as special cases.
See ‘Details’.
BARFIMA.sim(n = 1, burn = 0, xreg = NULL, coefs = list(alpha = 0, beta = NULL, phi = NULL, theta = NULL, d = 0, nu = 20), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 1, complete = FALSE, inf = 1000, linkg = c("logit", "logit"), seed = NULL, rngtype = 2, debug = FALSE) BARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, q, coefs = list(), lags = list(), fixed.values = list(), fixed.lags = list(), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 1, inf = 1000, m = 0, linkg = c("logit", "logit"), llk = TRUE, sco = FALSE, info = FALSE, extra = FALSE, debug = FALSE) BARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, d = TRUE, q = 0, m = 0, inf = 1000, start = list(), ignore.start = FALSE, lags = list(), fixed.values = list(), fixed.lags = list(), lower = list(nu = 0), upper = list(nu = Inf), linkg = c("logit", "logit"), sco = FALSE, info = FALSE, extra = FALSE, xregar = TRUE, y.start = NULL, xreg.start = NULL, error.scale = 1, control = list(), report = TRUE, debug = FALSE, ...)
BARFIMA.sim(n = 1, burn = 0, xreg = NULL, coefs = list(alpha = 0, beta = NULL, phi = NULL, theta = NULL, d = 0, nu = 20), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 1, complete = FALSE, inf = 1000, linkg = c("logit", "logit"), seed = NULL, rngtype = 2, debug = FALSE) BARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, q, coefs = list(), lags = list(), fixed.values = list(), fixed.lags = list(), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 1, inf = 1000, m = 0, linkg = c("logit", "logit"), llk = TRUE, sco = FALSE, info = FALSE, extra = FALSE, debug = FALSE) BARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, d = TRUE, q = 0, m = 0, inf = 1000, start = list(), ignore.start = FALSE, lags = list(), fixed.values = list(), fixed.lags = list(), lower = list(nu = 0), upper = list(nu = Inf), linkg = c("logit", "logit"), sco = FALSE, info = FALSE, extra = FALSE, xregar = TRUE, y.start = NULL, xreg.start = NULL, error.scale = 1, control = list(), report = TRUE, debug = FALSE, ...)
n |
a strictly positive integer. The sample size of yt (after burn-in). Default is 1. |
burn |
a non-negative integer. The length of the "burn-in" period. Default is 0. |
xreg |
optionally, a vector or matrix of external regressors.
For simulation purposes, the length of xreg must be |
coefs |
a list with the coefficients of the model. An empty list will result in an error. The arguments that can be passed through this list are:
|
y.start |
optionally, an initial value for yt (to be used
in the recursions). Default is |
xreg.start |
optionally, a vector of initial value for xreg
(to be used in the recursions). Default is |
xregar |
logical; indicates if xreg is to be included in the
AR part of the model. See ‘The BTSR structure’. Default is |
error.scale |
the scale for the error term. See ‘The BTSR structure’
in |
complete |
logical; if |
inf |
the truncation point for infinite sums. Default is 1,000.
In practice, the Fortran subroutine uses |
linkg |
character or a two character vector indicating which
links must be used in the model. See ‘The BTSR structure’
in |
seed |
optionally, an integer which gives the value of the fixed seed to be used by the random number generator. If missing, a random integer is chosen uniformly from 1,000 to 10,000. |
rngtype |
optionally, an integer indicating which random number generator
is to be used. Default is 2: the Mersenne Twister algorithm. See ‘Common Arguments’
in |
debug |
logical, if |
yt |
a numeric vector with the observed time series. If missing, an error message is issued. |
nnew |
optionally, the number of out-of sample predicted values required. Default is 0. |
xnew |
a vector or matrix, with |
p |
a non-negative integer. The order of AR polynomial.
If missing, the value of |
q |
a non-negative integer. The order of the MA polynomial.
If missing, the value of |
lags |
optionally, a list with the lags that the values in |
fixed.values |
optionally, a list with the values of the coefficients
that are fixed. By default, if a given vector (such as the vector of AR coefficients)
has fixed values and the corresponding entry in this list is empty, the fixed values
are set as zero. The names of the entries in this list must match the ones
in |
fixed.lags |
optionally, a list with the lags that the fixed values
in |
m |
a non-negative integer indicating the starting time for the sum of the
partial log-likelihoods, that is |
llk |
logical, if |
sco |
logical, if |
info |
logical, if |
extra |
logical, if |
d |
logical, if |
start |
a list with the starting values for the non-fixed coefficients
of the model. If an empty list is provided, the function |
ignore.start |
logical, if starting values are not provided, the
function uses the default values and |
lower |
optionally, list with the lower bounds for the
parameters. The names of the entries in these lists must match the ones
in |
upper |
optionally, list with the upper bounds for the
parameters. The names of the entries in these lists must match the ones
in |
control |
a list with configurations to be passed to the optimization subroutines. Missing arguments will receive default values. See fit.control. |
report |
logical, if |
... |
further arguments passed to the internal functions. |
The ARMA model and the beta regression can be
obtained as special cases of the
ARFIMA model.
ARFIMA: the model from Pumi et al. (2019) is obtained by setting
error.scale = 1
(predictive scale) and xregar = TRUE
(so that the
regressors are included in the AR part of the model). Variations of this model are
obtained by changing error.scale
, xregar
and/or by using different
links for (in the AR part of the model) and
.
ARMA: the model from Rocha and Cribari-Neto (2009, 2017) is
obtained by setting
coefs$d = 0
and d = FALSE
and error.scale = 1
(predictive scale). Variations of this model are obtained by changing the error scale
and/or by using a different link for in the AR part of the model.
beta regression: the model from Ferrari and Cribari-Neto (2004) is
obtained by setting p = 0
, q = 0
and coefs$d = 0
and d = FALSE
.
The error.scale
is irrelevant. The second argument in linkg
is irrelevant.
an i.i.d. sample from a Beta distribution with parameters
shape1
and shape2
(compatible with the one from rbeta
)
is obtained by setting linkg = "linear"
, p = 0
, q = 0
,
d = FALSE
and, in the coefficient list, alpha = shape1/(shape1+shape2)
and nu = shape1+shape2
. (error.scale
and xregar
are
irrelevant)
The function BARFIMA.sim
generates a random sample from a ARFIMA(p,d,q)
model.
The function BARFIMA.extract
allows the user to extract the
components ,
,
,
,
the log-likelihood, and the vectors and matrices used to calculate the
score vector and the information matrix associated to a given set of parameters.
This function can be used by any user to create an objective function that can be passed to optimization algorithms not available in the BTSR Package.
The function BARFIMA.fit
fits a BARFIMA model to a given univariate time
series. For now, available optimization algorithms are "L-BFGS-B"
and
"Nelder-Mead"
. Both methods accept bounds for the parameters. For
"Nelder-Mead"
, bounds are set via parameter transformation.
The function BARFIMA.sim
returns the simulated time series yt by default.
If complete = TRUE
, a list with the following components
is returned instead:
model
: string with the text "BARFIMA"
yt
: the simulated time series
mut
: the conditional mean
etat
: the linear predictor
error
: the error term
xreg
: the regressors (if included in the model).
debug
: the output from FORTRAN (if requested).
The function BARFIMA.extract
returns a list with the following components.
model
: string with the text "BARFIMA"
coefs
: the coefficients of the model passed through the
coefs
argument
yt
: the observed time series
gyt
: the transformed time series
mut
: the conditional mean
etat
: the linear predictor
error
: the error term
xreg
: the regressors (if included in the model).
sll
: the sum of the conditional log-likelihood (if requested)
sco
: the score vector (if requested)
info
: the information matrix (if requested)
Drho
, T
, E
, h
: additional matrices and vectors
used to calculate the score vector and the information matrix. (if requested)
yt.new
: the out-of-sample forecast (if requested)
out.Fortran
: FORTRAN output (if requested)
The function btsr.fit
returns a list with the following components.
Each particular model can have additional components in this list.
model
: string with the text "BARFIMA"
convergence
: An integer code. 0 indicates successful completion.
The error codes depend on the algorithm used.
message
: A character string giving any additional information
returned by the optimizer, or NULL.
counts
: an integer giving the number of function evaluations.
control
: a list of control parameters.
start
: the starting values used by the algorithm.
coefficients
: The best set of parameters found.
n
: the sample size used for estimation.
series
: the observed time series
gyt
: the transformed time series
fitted.values
: the conditional mean, which corresponds to
the in-sample forecast, also denoted fitted values
etat
: the linear predictor
error.scale
: the scale for the error term.
error
: the error term
residual
: the observed minus the fitted values. The same as
the error
term if error.scale = 0
.
forecast
: the out-of-sample forecast (if requested).
xnew
: the observations of the regressors observed/predicted
values corresponding to the period of out-of-sample forecast.
Only inlcudes if xreg
is not NULL
and nnew > 0
.
sll
: the sum of the conditional log-likelihood (if requested)
info.Matrix
: the information matrix (if requested)
configs
: a list with the configurations adopted to fit the model.
This information is used by the prediction function.
out.Fortran
: FORTRAN output (if requested)
call
: a string with the description of the fitted model.
Ferrari, S.L.P. and Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. J. Appl. Stat. 31 (7), 799-815.
Pumi, G.; Valk, M.; Bisognin, C.; Bayer, F.M. and Prass, T.S. (2019). Beta autoregressive fractionally integrated moving average models. Journal of Statistical Planning and Inference (200), 196-212.
Rocha, A.V. and Cribari-Neto, F. (2009). Beta autoregressive moving average models. Test 18 (3), 529–545.
Rocha, A.V. and Cribari-Neto, F. (2017). Erratum to: Beta autoregressive moving average models. Test 26 (2), 451-459.
# Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu y <- BARFIMA.sim(linkg = "linear", n = 1000, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) hist(y) #------------------------------------------------------------ # Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu #------------------------------------------------------------ m1 <- BARFIMA.sim(linkg = "linear",n = 100, complete = TRUE, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) #------------------------------------------------------------ # Extracting the conditional time series given yt and # a set of parameters #------------------------------------------------------------ # Assuming that all coefficients are non-fixed e1 = BARFIMA.extract(yt = m1$yt, coefs = list(alpha = 0.2, nu = 20), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) #---------------------------------------------------- # comparing the simulated and the extracted values #---------------------------------------------------- cbind(head(m1$mut), head(e1$mut)) #--------------------------------------------------------- # the log-likelihood, score vector and information matrix #--------------------------------------------------------- e1$sll e1$score e1$info.Matrix # Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu y <- BARFIMA.sim(linkg = "linear", n = 100, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) # fitting the model f <- BARFIMA.fit(yt = y, report = TRUE, start = list(alpha = 0.5, nu = 10), linkg = "linear", d = FALSE)
# Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu y <- BARFIMA.sim(linkg = "linear", n = 1000, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) hist(y) #------------------------------------------------------------ # Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu #------------------------------------------------------------ m1 <- BARFIMA.sim(linkg = "linear",n = 100, complete = TRUE, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) #------------------------------------------------------------ # Extracting the conditional time series given yt and # a set of parameters #------------------------------------------------------------ # Assuming that all coefficients are non-fixed e1 = BARFIMA.extract(yt = m1$yt, coefs = list(alpha = 0.2, nu = 20), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) #---------------------------------------------------- # comparing the simulated and the extracted values #---------------------------------------------------- cbind(head(m1$mut), head(e1$mut)) #--------------------------------------------------------- # the log-likelihood, score vector and information matrix #--------------------------------------------------------- e1$sll e1$score e1$info.Matrix # Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu y <- BARFIMA.sim(linkg = "linear", n = 100, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) # fitting the model f <- BARFIMA.fit(yt = y, report = TRUE, start = list(alpha = 0.5, nu = 10), linkg = "linear", d = FALSE)
These generic functions can be used to simulate, extract components
and fit any model of the class btsr
. All functions are wrappers
for the corresponding function associated to the chosen model.
See ‘The BTSR structure’ and ‘Common Arguments’.
btsr.sim(model, complete = FALSE, ...) btsr.extract(model, ...) btsr.fit(model, ...)
btsr.sim(model, complete = FALSE, ...) btsr.extract(model, ...) btsr.fit(model, ...)
model |
character; one of |
complete |
logical; if |
... |
further arguments passed to the functions, according to
the model selected in the argument |
The function btsr.sim
is used to generate random samples
from BTSR models. See ‘The BTSR structure’.
The function btsr.extract
allows the user to extract the
components ,
,
,
,
the log-likelihood, and the vectors and matrices used to calculate the
score vector and the information matrix associated to a given set of parameters.
This function can be used by any user to create an objective function that can be passed to optimization functions not available in BTSR Package. At this point, there is no other use for which this function was intended.
The function btsr.fit
fits a BTSR model to a given univariate time
series. For now, available optimization algorithms are "L-BFGS-B"
and
"Nelder-Mead"
. Both methods accept bounds for the parameters. For
"Nelder-Mead"
, bounds are set via parameter transformation.
The function btsr.sim
returns the simulated time series yt by default.
If complete = TRUE
, a list with the following components
is returned instead:
model
: character; one of "BARFIMA"
, "GARFIMA"
,
"KARFIMA"
, "BARC"
. (same as the input argument)
yt
: the simulated time series
gyt
: the transformed time series
mut
: the conditional mean
etat
: the linear predictor
error
: the error term
xreg
: the regressors (if included in the model).
debug
: the output from FORTRAN (if requested).
The function btsr.extract
returns a list with the following components.
Each particular model can have additional components in this list.
model
: character; one of "BARFIMA"
, "GARFIMA"
,
"KARFIMA"
, "BARC"
. (same as the input argument)
coefs
: the coefficients of the model passed through the
coefs
argument
yt
: the observed time series
gyt
: the transformed time series
mut
: the conditional mean
etat
: the linear predictor
error
: the error term
xreg
: the regressors (if included in the model).
forecast
: the out-of-sample forecast (if requested).
xnew
: the observations of the regressors observed/predicted
values corresponding to the period of out-of-sample forecast.
Only inlcudes if xreg
is not NULL
and nnew > 0
.
sll
: the sum of the conditional log-likelihood (if requested)
sco
: the score vector (if requested)
info
: the information matrix (if requested)
Drho
, T
, E
, h
: additional matrices and vectors
used to calculate the score vector and the information matrix. (if requested)
yt.new
: the out-of-sample forecast (if requested)
out.Fortran
: FORTRAN output (if requested)
The function btsr.fit
returns a list with the following components.
Each particular model can have additional components in this list.
model
: character; one of "BARFIMA"
, "GARFIMA"
,
"KARFIMA"
, "BARC"
. (same as the input argument)
convergence
: An integer code. 0 indicates successful completion.
The error codes depend on the algorithm used.
message
: A character string giving any additional information
returned by the optimizer, or NULL.
counts
: an integer giving the number of function evaluations.
control
: a list of control parameters.
start
: the starting values used by the algorithm.
coefficients
: The best set of parameters found.
n
: the sample size used for estimation.
series
: the observed time series
gyt
: the transformed time series
fitted.values
: the conditional mean, which corresponds to
the in-sample forecast, also denoted fitted values
etat
: the linear predictor
error.scale
: the scale for the error term.
error
: the error term
residuals
: the observed minus the fitted values. The same as
the error
term if error.scale = 0
.
sll
: the sum of the conditional log-likelihood (if requested)
info.Matrix
: the information matrix (if requested)
configs
: a list with the configurations adopted to fit the model.
This information is used by the prediction function.
out.Fortran
: FORTRAN output (if requested)
call
: a string with the description of the fitted model.
The general structure of the deterministic part of a BTSR model is
where
is 0, if
xreg
is not included in the AR part of the model and 1,
otherwise
the term depends on the argument
model
:
for BARC models:
otherwise:
and
are the links defined in
linkg
.
Notice that is only used in the AR part of the model and, typically,
.
depends on the
error.scale
adopted:
if error.scale = 0
: (data scale)
if error.scale = 1
:
(predictive scale)
are the coefficients of
.
In particular, if
, then
, for
.
In what follows we describe some of the arguments that are commom to all BTSR models. For more details on extra arguments, see the corresponding function associated to the selected model.
Common arguments passed through "..."
in btsr.sim
are:
n
a strictly positive integer. The sample size of yt (after burn-in).
Default for all models is 1.
burn
a non-negative integer. length of "burn-in" period.
Default for all models is 0.
xreg
optionally, a vector or matrix of external regressors.
For simulation purposes, the length of xreg must be n+burn
.
Default for all models is NULL
coefs
a list with the coefficients of the model. Each model has
its default. An empty list will result in an error. The arguments in this list
are:
alpha
optionally, A numeric value corresponding to the intercept.
If the argument is missing, it will be treated as zero.
beta
optionally, a vector of coefficients corresponding to the
regressors in xreg
. If xreg
is provided but beta
is
missing in the coefs
list, an error message is issued.
phi
optionally, a vector of size , corresponding to the
autoregressive coefficients (including the ones that are zero), where
is the AR order.
nu
the dispersion parameter. If missing, an error message is issued.
rho, y.lower, y.upper, theta, d, u0
model specif arguments.
See the documentation corresponding to each model.
y.start
optionally, a initial value for yt (to be used
in the recursions). Default is NULL
, in which case, the recursion assumes
that , for
.
xreg.start
optionally, a vector of initial value for xreg
(to be used in the recursions). Default is NULL
, in which case, the recursion assumes
that , for
. If
xregar = FALSE
this argument
is ignored.
xregar
logical; indicates if xreg is to be included in the
AR part of the model. See ‘The BTSR structure’. Default is TRUE
.
error.scale
the scale for the error term. See also ‘The BTSR structure’.
Each model has its default.
inf
the truncation point for infinite sums. Default is 1000.
In practice, the Fortran subroutine uses , if
.
BARC models do not have this argument.
linkg
character or a two character vector indicating which
links must be used in the model. See ‘The BTSR structure’.
If only one value is provided, the same link is used for and
for
in the AR part of the model. Each model has its default.
seed
optionally, an integer which gives the value of the fixed
seed to be used by the random number generator. If missing, a random integer
is chosen uniformly from 1,000 to 10,000.
rngtype
optionally, an integer indicating which random number generator
is to be used. Default is 2. The current options are:
0
: Jason Blevins algorithm. Available at https://jblevins.org/log/openmp
1
: Wichmann-Hill algorithm (Wichmann and Hill, 1982).
2
: Mersenne Twister algorithm (Matsumoto and Nishimura, 1998).
FORTRAN code adapted from https://jblevins.org/mirror/amiller/mt19937.f90 and
https://jblevins.org/mirror/amiller/mt19937a.f90
3
: Marsaglia-MultiCarry algorithm - kiss 32. Random number generator suggested
by George Marsaglia in "Random numbers for C: The END?" posted on sci.crypt.random-numbers
in 1999.
4
: Marsaglia-MultiCarry algorithm - kiss 64. Based on the
64-bit KISS (Keep It Simple Stupid) random number generator distributed by
George Marsaglia in https://groups.google.com/d/topic/comp.lang.fortran/qFv18ql_WlU
5
: Knuth's 2002 algorithm (Knuth, 202). FORTRAN code adapted
from https://www-cs-faculty.stanford.edu/~knuth/programs/frng.f
6
: L'Ecuyer's 1999 algorithm - 64-bits (L'Ecuyer, 1999).
FORTRAN code adapted from https://jblevins.org/mirror/amiller/lfsr258.f90
For more details on these algorithms see Random
and references
therein.
debug
logical, if TRUE
the output from FORTRAN is return (for
debuggin purposes). Default is FALSE
for all models.
Common arguments passed through "..."
in btsr.extract
are:
yt
a numeric vector with the observed time series. If missing, an error
message is issued.
xreg
optionally, a vector or matrix with the regressor's values.
Default is NULL
for all models.
nnew
optionally, the number of out-of sample predicted values required.
Default is 0 for all models.
xnew
a vector or matrix, with nnew
observations of the
regressors observed/predicted values corresponding to the period of
out-of-sample forecast. If xreg = NULL
, xnew
is ignored.
p
a non-negative integer. The order of AR polynomial.
If missing, the value of p
is calculated from length(coefs$phi)
and length(fixed.values$phi).
q,r
a non-negative integer. The order of the MA polynomial and
the size of the vector of parameters for the map function (BARC only).
If missing, the argument is calcualted based on length(coefs$theta)
and length(fixed.values$theta).
coefs
a list with the coefficients of the model. Each model has
its default. Passing both, coefs
and fixed.values
empty
will result in an error. The arguments in this list are
alpha
a numeric value corresponding to the intercept.
If missing, will be set as zero.
beta
a vector of coefficients corresponding to the
regressors in xreg
. If xreg
is provided but beta
is
missing in the coefs
list, an error message is issued.
phi
a vector with the non-fixed values in the vector of
AR coefficients.
nu
the dispersion parameter. If missing, an error message is issued.
theta, d, u0
model specific arguments. See the documentation
corresponding to each model.
lags
optionally, a list with the lags that the values in coefs
correspond to.
The names of the entries in this list must match the ones in coefs
.
For one dimensional coefficients, the lag
is obviously always 1 and can
be suppressed. An empty list indicates that either the argument fixed.lags
is provided or all lags must be used.
fixed.values
optionally, a list with the values of the coefficients
that are fixed. By default, if a given vector (such as the vector of AR coefficients)
has fixed values and the corresponding entry in this list is empty, the fixed values
are set as zero. The names of the entries in this list must match the ones
in coefs
.
fixed.lags
optionally, a list with the lags that the fixed values
in fixed.values
correspond to. The names of the entries in this list must
match the ones in fixed.values
. ##' For one dimensional coefficients, the
lag
is obviously always 1 and can be suppressed. If an empty list is provided
and the model has fixed lags, the argument lags
is used as reference.
y.start
optionally, a initial value for yt (to be used
in the recursions). Default is NULL
, in which case, the recursion assumes
that , for
.
xreg.start
optionally, a vector of initial value for xreg
(to be used in the recursions). Default is NULL
, in which case, the recursion assumes
that , for
. If
xregar = FALSE
this argument
is ignored.
xregar
logical; indicates if xreg is to be included in the
AR part of the model. See ‘The BTSR structure’. Default is TRUE
.
error.scale
the scale for the error term. See also ‘The BTSR structure’.
Each model has its default.
inf
the truncation point for infinite sums. Default is 1.
BARC models do not have this argument.
m
a non-negative integer indicating the starting time for the sum of the
partial log-likelihoods, that is . Default is
0.
linkg
character or a two character vector indicating which
links must be used in the model. See ‘The BTSR structure’.
If only one value is provided, the same link is used for and
for
in the AR part of the model. Each model has its default.
llk
logical, if TRUE
the value of the log-likelihood function
is returned. Default is TRUE
for all models.
sco
logical, if TRUE
the score vector is returned.
Default is FALSE
for all models.
info
logical, if TRUE
the information matrix is returned.
Default is FALSE
for all models.
extra
logical, if TRUE
the matrices and vectors used to
calculate the score vector and the information matrix are returned.
Default is FALSE
for all models.
debug
logical, if TRUE
the output from FORTRAN is return (for
debuggin purposes). Default is FALSE
for all models.
Common arguments passed through "..."
in btsr.fit
are the same as
in btsr.extract
plus the following:
d
logical, if TRUE
, the parameter d
is included
in the model either as fixed or non-fixed. If d = FALSE
the value is
fixed as 0. The default is TRUE
for all models, except BARC that does
not have this parameter.
start
a list with the starting values for the non-fixed coefficients
of the model. If an empty list is provided, the function coefs.start
is used to obtain starting values for the parameters.
ignore.start
logical, if starting values are not provided, the
function uses the default values and ignore.start
is ignored.
In case starting values are provided and ignore.start = TRUE
, those
starting values are ignored and recalculated. The default is FALSE
.
lower, upper
optionally, list with the lower and upper bounds for the
parameters. The names of the entries in these lists must match the ones
in start
. The default is to assume that the parameters are unbounded.
Only the bounds for bounded parameters need to be specified.
control
a list with configurations to be passed to the
optimization subroutines. Missing arguments will receive default values. See
fit.control.
report
logical, if TRUE
the summary from model estimation is
printed and info
is automatically set to TRUE
. Default is TRUE
.
Knuth, D. E. (2002). The Art of Computer Programming. Volume 2, third edition, ninth printing.
L'Ecuyer, P. (1999). Good parameters and implementations for combined multiple recursive random number generators. Operations Research, 47, 159-164. doi:10.1287/opre.47.1.159.
Matsumoto, M. and Nishimura, T. (1998). Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Simulation, 8, 3-30.
Wichmann, B. A. and Hill, I. D. (1982). Algorithm AS 183: An Efficient and Portable Pseudo-random Number Generator. Applied Statistics, 31, 188-190; Remarks: 34, 198 and 35, 89. doi:10.2307/2347988.
BARFIMA.sim
, GARFIMA.sim
,
KARFIMA.sim
, BARC.sim
BARFIMA.extract
, GARFIMA.extract
,
KARFIMA.extract
, BARC.extract
BARFIMA.fit
, GARFIMA.fit
,
KARFIMA.fit
, BARC.fit
# Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu y <- btsr.sim(model= "BARFIMA", linkg = "linear", n = 1000, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) hist(y) #------------------------------------------------------------ # Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu #------------------------------------------------------------ m1 <- btsr.sim(model= "BARFIMA", linkg = "linear", n = 100, seed = 2021, complete = TRUE, coefs = list(alpha = 0.2, nu = 20)) #------------------------------------------------------------ # Extracting the conditional time series given yt and # a set of parameters #------------------------------------------------------------ # Assuming that all coefficients are non-fixed e1 = btsr.extract(model = "BARFIMA", yt = m1$yt, coefs = list(alpha = 0.2, nu = 20), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) # Assuming that all coefficients are fixed e2 = btsr.extract(model = "BARFIMA", yt = m1$yt, fixed.values = list(alpha = 0.2, nu = 20), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) # Assuming at least one fixed coefficient and one non-fixed e3 = btsr.extract(model = "BARFIMA", yt = m1$yt, fixed.values = list(alpha = 0.2, nu = 20), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) e4 = btsr.extract(model = "BARFIMA", yt = m1$yt, fixed.values = list(alpha = 0.2, nu = 20), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) #---------------------------------------------------- # comparing the simulated and the extracted values #---------------------------------------------------- cbind(head(m1$mut), head(e1$mut), head(e2$mut), head(e3$mut), head(e4$mut)) #---------------------------------------------------- # comparing the log-likelihood values obtained (must be the all equal) #---------------------------------------------------- c(e1$sll, e2$sll, e3$sll, e4$sll) #---------------------------------------------------- # comparing the score vectors: #---------------------------------------------------- # - e1 must have 2 values: dl/dmu and dl/dnu # - e2 must be empty # - e3 and e4 must have one value corresponding # to the non-fixed coefficient #---------------------------------------------------- e1$score e2$score e3$score e4$score #---------------------------------------------------- # comparing the information matrices. #---------------------------------------------------- # - e1 must be a 2x2 matrix # - e2 must be empty # - e3 and e4 must have one value corresponding # to the non-fixed coefficient #---------------------------------------------------- e1$info.Matrix e2$info.Matrix e3$info.Matrix e4$info.Matrix # Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu y <- btsr.sim(model= "BARFIMA", linkg = "linear", n = 100, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) # fitting the model f <- btsr.fit(model = "BARFIMA", yt = y, report = TRUE, start = list(alpha = 0.5, nu = 10), linkg = "linear", d = FALSE)
# Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu y <- btsr.sim(model= "BARFIMA", linkg = "linear", n = 1000, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) hist(y) #------------------------------------------------------------ # Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu #------------------------------------------------------------ m1 <- btsr.sim(model= "BARFIMA", linkg = "linear", n = 100, seed = 2021, complete = TRUE, coefs = list(alpha = 0.2, nu = 20)) #------------------------------------------------------------ # Extracting the conditional time series given yt and # a set of parameters #------------------------------------------------------------ # Assuming that all coefficients are non-fixed e1 = btsr.extract(model = "BARFIMA", yt = m1$yt, coefs = list(alpha = 0.2, nu = 20), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) # Assuming that all coefficients are fixed e2 = btsr.extract(model = "BARFIMA", yt = m1$yt, fixed.values = list(alpha = 0.2, nu = 20), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) # Assuming at least one fixed coefficient and one non-fixed e3 = btsr.extract(model = "BARFIMA", yt = m1$yt, fixed.values = list(alpha = 0.2, nu = 20), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) e4 = btsr.extract(model = "BARFIMA", yt = m1$yt, fixed.values = list(alpha = 0.2, nu = 20), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) #---------------------------------------------------- # comparing the simulated and the extracted values #---------------------------------------------------- cbind(head(m1$mut), head(e1$mut), head(e2$mut), head(e3$mut), head(e4$mut)) #---------------------------------------------------- # comparing the log-likelihood values obtained (must be the all equal) #---------------------------------------------------- c(e1$sll, e2$sll, e3$sll, e4$sll) #---------------------------------------------------- # comparing the score vectors: #---------------------------------------------------- # - e1 must have 2 values: dl/dmu and dl/dnu # - e2 must be empty # - e3 and e4 must have one value corresponding # to the non-fixed coefficient #---------------------------------------------------- e1$score e2$score e3$score e4$score #---------------------------------------------------- # comparing the information matrices. #---------------------------------------------------- # - e1 must be a 2x2 matrix # - e2 must be empty # - e3 and e4 must have one value corresponding # to the non-fixed coefficient #---------------------------------------------------- e1$info.Matrix e2$info.Matrix e3$info.Matrix e4$info.Matrix # Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu y <- btsr.sim(model= "BARFIMA", linkg = "linear", n = 100, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) # fitting the model f <- btsr.fit(model = "BARFIMA", yt = y, report = TRUE, start = list(alpha = 0.5, nu = 10), linkg = "linear", d = FALSE)
This function calculates initial values for the parameter vector, to pass to the optimization function.
coefs.start(model = "Generic", yt, linkg = c("linear", "linear"), xreg = NULL, p = 0, q = 0, d = TRUE, y.start = NULL, y.lower = -Inf, y.upper = Inf, lags = list(), fixed.values = list(), fixed.lags = list())
coefs.start(model = "Generic", yt, linkg = c("linear", "linear"), xreg = NULL, p = 0, q = 0, d = TRUE, y.start = NULL, y.lower = -Inf, y.upper = Inf, lags = list(), fixed.values = list(), fixed.lags = list())
model |
character; The model to be fitted to the data. One of
|
yt |
a univariate time series. Missing values (NA's) are not allowed. |
linkg |
character; one of |
xreg |
optional; a vector or matrix of external regressors, which must have the same number of rows as x. |
p |
an integer; the AR order. Default is zero. |
q |
an integer; for |
d |
logical; if FALSE, |
y.start |
optional; an initialization value for |
y.lower |
lower limit for the distribution support.
Default is |
y.upper |
upper limit for the distribution support.
Default is |
lags |
optional; a list with the components |
fixed.values |
optional; a list with the fixed values for
each component, if any. If fixed values are provided, either |
fixed.lags |
optional; a list with the components |
a list with starting values for the parameters of the selected model. Possible outputs are:
alpha |
the intercept |
beta |
the coefficients for the regressors |
phi |
the AR coefficients |
theta |
for BARC models, the map parameter. For any other model, the MA coefficients |
d |
the long memory parameter |
nu |
the precison parameter |
mu = 0.5 nu = 20 yt = rbeta(100, shape1 = mu*nu, shape2 = (1-mu)*nu) coefs.start(model = "BARFIMA", yt = yt, linkg = "linear", d = FALSE, y.lower = 0, y.upper = 1) yt = rgamma(100, shape = nu, rate = mu*nu) coefs.start(model = "GARFIMA", yt = yt, linkg = "linear", d = FALSE, y.lower = 0, y.upper = Inf)
mu = 0.5 nu = 20 yt = rbeta(100, shape1 = mu*nu, shape2 = (1-mu)*nu) coefs.start(model = "BARFIMA", yt = yt, linkg = "linear", d = FALSE, y.lower = 0, y.upper = 1) yt = rgamma(100, shape = nu, rate = mu*nu) coefs.start(model = "GARFIMA", yt = yt, linkg = "linear", d = FALSE, y.lower = 0, y.upper = Inf)
Sets default values for constants used by the optimization functions in FORTRAN
fit.control(control = list())
fit.control(control = list())
control |
a list with configurations to be passed to the optimization subroutines. Missing arguments will receive default values. See ‘Details’. |
The control
argument is a list that can supply any of the
following components:
method
The optimization method. Current available options
are "L-BFGS-B"
and "Nelder-Mead"
. Default is "L-BFGS-B"
.
maxit
The maximum number of iterations. Defaults to 1000
.
iprint
The frequency of reports if control$trace
is positive. Defaults is -1 (no report).
For "L-BFGS-B"
method:
iprint<0 no output is generated;
iprint=0 print only one line at the last iteration;
0<iprint<99 print also f and |proj g| every iprint iterations;
iprint=99 print details of every iteration except n-vectors;
iprint=100 print also the changes of active set and final x;
iprint>100 print details of every iteration including x and g;
For "Nelder-Mead"
method:
iprint<0 No printing
iprint=0 Printing of parameter values and the function Value after initial evidence of convergence.
iprint>0 As for iprint = 0 plus progress reports after every Iprint evaluations, plus printing for the initial simplex.
factr
controls the convergence of the "L-BFGS-B"
method. Convergence occurs when the reduction in the objective is
within this factor of the machine tolerance. The iteration will stop when
where epsmch is the machine precision, which is automatically
generated by the code. Typical values
for factr
: 1.e+12 for low accuracy; 1.e+7 for moderate accuracy;
1.e+1 for extremely high accuracy. Default is 1e7
, that is a
tolerance of about 1e-8
.
pgtol
helps control the convergence of the "L-BFGS-B"
method. It is a tolerance on the projected gradient in the current
search direction. the iteration will stop when
where is the ith component of the projected gradient.
Default is
1e-12
.
stopcr
The criterion applied to the standard deviation of the values of objective function at the points of the simplex, for "Nelder-Mead" method.
a list with all arguments in ‘Details’.
BTSR::fit.control()
BTSR::fit.control()
These functions can be used to simulate, extract components
and fit any model of the class garfima
. A model with
class garfima
is a special case of a model with class btsr
.
See ‘The BTSR structure’ in btsr.functions
for
more details on the general structure.
The ARMA model, the gamma regression and a i.i.d. sample
from a gamma distribution can be obtained as special cases.
See ‘Details’.
GARFIMA.sim(n = 1, burn = 0, xreg = NULL, coefs = list(alpha = 0, beta = NULL, phi = NULL, theta = NULL, d = 0, nu = 20), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 0, complete = FALSE, inf = 1000, linkg = c("log", "log"), seed = NULL, rngtype = 2, debug = FALSE) GARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, q, coefs = list(), lags = list(), fixed.values = list(), fixed.lags = list(), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 0, inf = 1000, m = 0, linkg = c("log", "log"), llk = TRUE, sco = FALSE, info = FALSE, extra = FALSE, debug = FALSE) GARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, d = TRUE, q = 0, m = 0, inf = 1000, start = list(), ignore.start = FALSE, lags = list(), fixed.values = list(), fixed.lags = list(), lower = list(nu = 0), upper = list(nu = Inf), linkg = c("log", "log"), sco = TRUE, info = FALSE, extra = FALSE, xregar = TRUE, y.start = NULL, xreg.start = NULL, error.scale = 0, control = list(), report = TRUE, debug = FALSE, ...)
GARFIMA.sim(n = 1, burn = 0, xreg = NULL, coefs = list(alpha = 0, beta = NULL, phi = NULL, theta = NULL, d = 0, nu = 20), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 0, complete = FALSE, inf = 1000, linkg = c("log", "log"), seed = NULL, rngtype = 2, debug = FALSE) GARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, q, coefs = list(), lags = list(), fixed.values = list(), fixed.lags = list(), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 0, inf = 1000, m = 0, linkg = c("log", "log"), llk = TRUE, sco = FALSE, info = FALSE, extra = FALSE, debug = FALSE) GARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, d = TRUE, q = 0, m = 0, inf = 1000, start = list(), ignore.start = FALSE, lags = list(), fixed.values = list(), fixed.lags = list(), lower = list(nu = 0), upper = list(nu = Inf), linkg = c("log", "log"), sco = TRUE, info = FALSE, extra = FALSE, xregar = TRUE, y.start = NULL, xreg.start = NULL, error.scale = 0, control = list(), report = TRUE, debug = FALSE, ...)
n |
a strictly positive integer. The sample size of yt (after burn-in). Default is 1. |
burn |
a non-negative integer. The length of the "burn-in" period. Default is 0. |
xreg |
optionally, a vector or matrix of external regressors.
For simulation purposes, the length of xreg must be |
coefs |
a list with the coefficients of the model. An empty list will result in an error. The arguments that can be passed through this list are:
|
y.start |
optionally, an initial value for yt (to be used
in the recursions). Default is |
xreg.start |
optionally, a vector of initial value for xreg
(to be used in the recursions). Default is |
xregar |
logical; indicates if xreg is to be included in the
AR part of the model. See ‘The BTSR structure’. Default is |
error.scale |
the scale for the error term. See ‘The BTSR structure’
in |
complete |
logical; if |
inf |
the truncation point for infinite sums. Default is 1,000.
In practice, the Fortran subroutine uses |
linkg |
character or a two character vector indicating which
links must be used in the model. See ‘The BTSR structure’
in |
seed |
optionally, an integer which gives the value of the fixed seed to be used by the random number generator. If missing, a random integer is chosen uniformly from 1,000 to 10,000. |
rngtype |
optionally, an integer indicating which random number generator
is to be used. Default is 2: the Mersenne Twister algorithm. See ‘Common Arguments’
in |
debug |
logical, if |
yt |
a numeric vector with the observed time series. If missing, an error message is issued. |
nnew |
optionally, the number of out-of sample predicted values required. Default is 0. |
xnew |
a vector or matrix, with |
p |
a non-negative integer. The order of AR polynomial.
If missing, the value of |
q |
a non-negative integer. The order of the MA polynomial.
If missing, the value of |
lags |
optionally, a list with the lags that the values in |
fixed.values |
optionally, a list with the values of the coefficients
that are fixed. By default, if a given vector (such as the vector of AR coefficients)
has fixed values and the corresponding entry in this list is empty, the fixed values
are set as zero. The names of the entries in this list must match the ones
in |
fixed.lags |
optionally, a list with the lags that the fixed values
in |
m |
a non-negative integer indicating the starting time for the sum of the
partial log-likelihoods, that is |
llk |
logical, if |
sco |
logical, if |
info |
logical, if |
extra |
logical, if |
d |
logical, if |
start |
a list with the starting values for the non-fixed coefficients
of the model. If an empty list is provided, the function |
ignore.start |
logical, if starting values are not provided, the
function uses the default values and |
lower |
optionally, list with the lower bounds for the
parameters. The names of the entries in these lists must match the ones
in |
upper |
optionally, list with the upper bounds for the
parameters. The names of the entries in these lists must match the ones
in |
control |
a list with configurations to be passed to the optimization subroutines. Missing arguments will receive default values. See fit.control. |
report |
logical, if |
... |
further arguments passed to the internal functions. |
The ARMA model and the gamma regression can be
obtained as special cases of the
ARFIMA model.
ARFIMA: is obtained by default.
ARMA: is obtained by setting
d = 0
.
gamma regression: is obtained by setting p = 0
, q = 0
and d = FALSE
. The error.scale
is irrelevant.
The second argument in linkg
is irrelevant.
an i.i.d. sample from a Gamma distribution with parameters
shape
and scale
(compatible with the one from rgamma
)
is obtained by setting linkg = "linear"
, p = 0
, q = 0
,
coefs$d = 0
, d = FALSE
and, in the coefficient list,
alpha = shape*scale
and nu = shape
. (error.scale
and
xregar
are irrelevant)
The function GARFIMA.sim
generates a random sample from a ARFIMA(p,d,q)
model.
The function GARFIMA.extract
allows the user to extract the
components ,
,
,
,
the log-likelihood, and the vectors and matrices used to calculate the
score vector and the information matrix associated to a given set of parameters.
This function can be used by any user to create an objective function that can be passed to optimization algorithms not available in the BTSR Package.
The function GARFIMA.fit
fits a GARFIMA model to a given univariate time
series. For now, available optimization algorithms are "L-BFGS-B"
and
"Nelder-Mead"
. Both methods accept bounds for the parameters. For
"Nelder-Mead"
, bounds are set via parameter transformation.
The function GARFIMA.sim
returns the simulated time series yt by default.
If complete = TRUE
, a list with the following components
is returned instead:
model
: string with the text "GARFIMA"
yt
: the simulated time series
mut
: the conditional mean
etat
: the linear predictor
error
: the error term
xreg
: the regressors (if included in the model).
debug
: the output from FORTRAN (if requested).
The function GARFIMA.extract
returns a list with the following components.
model
: string with the text "GARFIMA"
coefs
: the coefficients of the model passed through the
coefs
argument
yt
: the observed time series
gyt
: the transformed time series
mut
: the conditional mean
etat
: the linear predictor
error
: the error term
xreg
: the regressors (if included in the model).
sll
: the sum of the conditional log-likelihood (if requested)
sco
: the score vector (if requested)
info
: the information matrix (if requested)
Drho
, T
, E
, h
: additional matrices and vectors
used to calculate the score vector and the information matrix. (if requested)
yt.new
: the out-of-sample forecast (if requested)
out.Fortran
: FORTRAN output (if requested)
The function btsr.fit
returns a list with the following components.
Each particular model can have additional components in this list.
model
: string with the text "GARFIMA"
convergence
: An integer code. 0 indicates successful completion.
The error codes depend on the algorithm used.
message
: A character string giving any additional information
returned by the optimizer, or NULL.
counts
: an integer giving the number of function evaluations.
control
: a list of control parameters.
start
: the starting values used by the algorithm.
coefficients
: The best set of parameters found.
n
: the sample size used for estimation.
series
: the observed time series
gyt
: the transformed time series
fitted.values
: the conditional mean, which corresponds to
the in-sample forecast, also denoted fitted values
etat
: the linear predictor
error.scale
: the scale for the error term.
error
: the error term
residual
: the observed minus the fitted values. The same as
the error
term if error.scale = 0
.
forecast
: the out-of-sample forecast (if requested).
xnew
: the observations of the regressors observed/predicted
values corresponding to the period of out-of-sample forecast.
Only inlcudes if xreg
is not NULL
and nnew > 0
.
sll
: the sum of the conditional log-likelihood (if requested)
info.Matrix
: the information matrix (if requested)
configs
: a list with the configurations adopted to fit the model.
This information is used by the prediction function.
out.Fortran
: FORTRAN output (if requested)
call
: a string with the description of the fitted model.
# Generating a Gamma model were mut does not vary with time # yt ~ Gamma(a,b), a = nu (shape), b = mu/nu (scale) y <- GARFIMA.sim(linkg = "linear", n = 1000, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) hist(y) #------------------------------------------------------------ # Generating a Gamma model were mut does not vary with time # yt ~ Gamma(a,b), a = nu (shape), b = mu/nu (scale) #------------------------------------------------------------ m1 <- GARFIMA.sim(linkg = "linear",n = 100, complete = TRUE, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) #------------------------------------------------------------ # Extracting the conditional time series given yt and # a set of parameters #------------------------------------------------------------ # Assuming that all coefficients are non-fixed e1 = GARFIMA.extract(yt = m1$yt, coefs = list(alpha = 0.2, nu = 20), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) #---------------------------------------------------- # comparing the simulated and the extracted values #---------------------------------------------------- cbind(head(m1$mut), head(e1$mut)) #--------------------------------------------------------- # the log-likelihood, score vector and information matrix #--------------------------------------------------------- e1$sll e1$score e1$info.Matrix # Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu y <- GARFIMA.sim(linkg = "linear", n = 100, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) # fitting the model f <- GARFIMA.fit(yt = y, report = TRUE, start = list(alpha = 0.5, nu = 10), linkg = "linear", d = FALSE)
# Generating a Gamma model were mut does not vary with time # yt ~ Gamma(a,b), a = nu (shape), b = mu/nu (scale) y <- GARFIMA.sim(linkg = "linear", n = 1000, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) hist(y) #------------------------------------------------------------ # Generating a Gamma model were mut does not vary with time # yt ~ Gamma(a,b), a = nu (shape), b = mu/nu (scale) #------------------------------------------------------------ m1 <- GARFIMA.sim(linkg = "linear",n = 100, complete = TRUE, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) #------------------------------------------------------------ # Extracting the conditional time series given yt and # a set of parameters #------------------------------------------------------------ # Assuming that all coefficients are non-fixed e1 = GARFIMA.extract(yt = m1$yt, coefs = list(alpha = 0.2, nu = 20), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) #---------------------------------------------------- # comparing the simulated and the extracted values #---------------------------------------------------- cbind(head(m1$mut), head(e1$mut)) #--------------------------------------------------------- # the log-likelihood, score vector and information matrix #--------------------------------------------------------- e1$sll e1$score e1$info.Matrix # Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu y <- GARFIMA.sim(linkg = "linear", n = 100, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) # fitting the model f <- GARFIMA.fit(yt = y, report = TRUE, start = list(alpha = 0.5, nu = 10), linkg = "linear", d = FALSE)
These functions can be used to simulate, extract components
and fit any model of the class karfima
. A model with
class karfima
is a special case of a model with class btsr
.
See ‘The BTSR structure’ in btsr.functions
for
more details on the general structure.
The KARMA model, the Kumaraswamy regression and a i.i.d. sample from a Kumaraswamy distribution can be obtained as special cases. See ‘Details’.
KARFIMA.sim(n = 1, burn = 0, xreg = NULL, rho = 0.5, y.lower = 0, y.upper = 1, coefs = list(alpha = 0, beta = NULL, phi = NULL, theta = NULL, d = 0, nu = 20), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 1, complete = FALSE, inf = 1000, linkg = c("logit", "logit"), seed = NULL, rngtype = 2, debug = FALSE) KARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, q, rho = 0.5, y.lower = 0, y.upper = 1, coefs = list(), lags = list(), fixed.values = list(), fixed.lags = list(), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 1, inf = 1000, m = 0, linkg = c("logit", "logit"), llk = TRUE, sco = FALSE, info = FALSE, extra = FALSE, debug = FALSE) KARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, d = TRUE, q = 0, m = 0, inf = 1000, rho = 0.5, y.lower = 0, y.upper = 1, start = list(), ignore.start = FALSE, lags = list(), fixed.values = list(), fixed.lags = list(), lower = list(nu = 0), upper = list(nu = Inf), linkg = c("logit", "logit"), sco = FALSE, info = FALSE, extra = FALSE, xregar = TRUE, y.start = NULL, xreg.start = NULL, error.scale = 1, control = list(), report = TRUE, debug = FALSE, ...)
KARFIMA.sim(n = 1, burn = 0, xreg = NULL, rho = 0.5, y.lower = 0, y.upper = 1, coefs = list(alpha = 0, beta = NULL, phi = NULL, theta = NULL, d = 0, nu = 20), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 1, complete = FALSE, inf = 1000, linkg = c("logit", "logit"), seed = NULL, rngtype = 2, debug = FALSE) KARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, q, rho = 0.5, y.lower = 0, y.upper = 1, coefs = list(), lags = list(), fixed.values = list(), fixed.lags = list(), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 1, inf = 1000, m = 0, linkg = c("logit", "logit"), llk = TRUE, sco = FALSE, info = FALSE, extra = FALSE, debug = FALSE) KARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, d = TRUE, q = 0, m = 0, inf = 1000, rho = 0.5, y.lower = 0, y.upper = 1, start = list(), ignore.start = FALSE, lags = list(), fixed.values = list(), fixed.lags = list(), lower = list(nu = 0), upper = list(nu = Inf), linkg = c("logit", "logit"), sco = FALSE, info = FALSE, extra = FALSE, xregar = TRUE, y.start = NULL, xreg.start = NULL, error.scale = 1, control = list(), report = TRUE, debug = FALSE, ...)
n |
a strictly positive integer. The sample size of yt (after burn-in). Default is 1. |
burn |
a non-negative integer. The length of the "burn-in" period. Default is 0. |
xreg |
optionally, a vector or matrix of external regressors.
For simulation purposes, the length of xreg must be |
rho |
a positive number, between 0 and 1, indicating the quantile
to be modeled so that |
y.lower |
the lower limit for the density support. Default is 0. |
y.upper |
the upper limit for the density support. Default is 1. |
coefs |
a list with the coefficients of the model. An empty list will result in an error. The arguments that can be passed through this list are:
|
y.start |
optionally, an initial value for yt (to be used
in the recursions). Default is |
xreg.start |
optionally, a vector of initial value for xreg
(to be used in the recursions). Default is |
xregar |
logical; indicates if xreg is to be included in the
AR part of the model. See ‘The BTSR structure’. Default is |
error.scale |
the scale for the error term. See ‘The BTSR structure’
in |
complete |
logical; if |
inf |
the truncation point for infinite sums. Default is 1,000.
In practice, the Fortran subroutine uses |
linkg |
character or a two character vector indicating which
links must be used in the model. See ‘The BTSR structure’
in |
seed |
optionally, an integer which gives the value of the fixed seed to be used by the random number generator. If missing, a random integer is chosen uniformly from 1,000 to 10,000. |
rngtype |
optionally, an integer indicating which random number generator
is to be used. Default is 2: the Mersenne Twister algorithm. See ‘Common Arguments’
in |
debug |
logical, if |
yt |
a numeric vector with the observed time series. If missing, an error message is issued. |
nnew |
optionally, the number of out-of sample predicted values required. Default is 0. |
xnew |
a vector or matrix, with |
p |
a non-negative integer. The order of AR polynomial.
If missing, the value of |
q |
a non-negative integer. The order of the MA polynomial.
If missing, the value of |
lags |
optionally, a list with the lags that the values in |
fixed.values |
optionally, a list with the values of the coefficients
that are fixed. By default, if a given vector (such as the vector of AR coefficients)
has fixed values and the corresponding entry in this list is empty, the fixed values
are set as zero. The names of the entries in this list must match the ones
in |
fixed.lags |
optionally, a list with the lags that the fixed values
in |
m |
a non-negative integer indicating the starting time for the sum of the
partial log-likelihoods, that is |
llk |
logical, if |
sco |
logical, if |
info |
logical, if |
extra |
logical, if |
d |
logical, if |
start |
a list with the starting values for the non-fixed coefficients
of the model. If an empty list is provided, the function |
ignore.start |
logical, if starting values are not provided, the
function uses the default values and |
lower |
optionally, list with the lower bounds for the
parameters. The names of the entries in these lists must match the ones
in |
upper |
optionally, list with the upper bounds for the
parameters. The names of the entries in these lists must match the ones
in |
control |
a list with configurations to be passed to the optimization subroutines. Missing arguments will receive default values. See fit.control. |
report |
logical, if |
... |
further arguments passed to the internal functions. |
The KARMA model and the Kumaraswamy regression can be obtained as special cases of the KARFIMA model.
KARFIMA: is obtained by default.
KARMA: is obtained by setting d = 0
.
Kumaraswamy regression: is obtained by setting p = 0
,
q = 0
and d = FALSE
. The error.scale
is irrelevant.
The second argument in linkg
is irrelevant.
an i.i.d. sample from a Kumaraswamy distribution
is obtained by setting linkg = "linear"
, p = 0
, q = 0
,
coefs$d = 0
, d = FALSE
. (error.scale
and
xregar
are irrelevant)
The function KARFIMA.sim
generates a random sample from a KARFIMA(p,d,q)
model.
The function KARFIMA.extract
allows the user to extract the
components ,
,
,
,
the log-likelihood, and the vectors and matrices used to calculate the
score vector and the information matrix associated to a given set of parameters.
This function can be used by any user to create an objective function that can be passed to optimization algorithms not available in the BTSR Package.
The function KARFIMA.fit
fits a KARFIMA model to a given univariate time
series. For now, available optimization algorithms are "L-BFGS-B"
and
"Nelder-Mead"
. Both methods accept bounds for the parameters. For
"Nelder-Mead"
, bounds are set via parameter transformation.
The function KARFIMA.sim
returns the simulated time series yt by default.
If complete = TRUE
, a list with the following components
is returned instead:
model
: string with the text "KARFIMA"
yt
: the simulated time series
mut
: the conditional mean
etat
: the linear predictor
error
: the error term
xreg
: the regressors (if included in the model).
debug
: the output from FORTRAN (if requested).
The function KARFIMA.extract
returns a list with the following components.
model
: string with the text "KARFIMA"
coefs
: the coefficients of the model passed through the
coefs
argument
yt
: the observed time series
gyt
: the transformed time series
mut
: the conditional mean
etat
: the linear predictor
error
: the error term
xreg
: the regressors (if included in the model).
sll
: the sum of the conditional log-likelihood (if requested)
sco
: the score vector (if requested)
info
: the information matrix (if requested)
Drho
, T
, E
, h
: additional matrices and vectors
used to calculate the score vector and the information matrix. (if requested)
yt.new
: the out-of-sample forecast (if requested)
out.Fortran
: FORTRAN output (if requested)
The function btsr.fit
returns a list with the following components.
Each particular model can have additional components in this list.
model
: string with the text "KARFIMA"
convergence
: An integer code. 0 indicates successful completion.
The error codes depend on the algorithm used.
message
: A character string giving any additional information
returned by the optimizer, or NULL.
counts
: an integer giving the number of function evaluations.
control
: a list of control parameters.
start
: the starting values used by the algorithm.
coefficients
: The best set of parameters found.
n
: the sample size used for estimation.
series
: the observed time series
gyt
: the transformed time series
fitted.values
: the conditional mean, which corresponds to
the in-sample forecast, also denoted fitted values
etat
: the linear predictor
error.scale
: the scale for the error term.
error
: the error term
residual
: the observed minus the fitted values. The same as
the error
term if error.scale = 0
.
forecast
: the out-of-sample forecast (if requested).
xnew
: the observations of the regressors observed/predicted
values corresponding to the period of out-of-sample forecast.
Only inlcudes if xreg
is not NULL
and nnew > 0
.
sll
: the sum of the conditional log-likelihood (if requested)
info.Matrix
: the information matrix (if requested)
configs
: a list with the configurations adopted to fit the model.
This information is used by the prediction function.
out.Fortran
: FORTRAN output (if requested)
call
: a string with the description of the fitted model.
# Generating a Kumaraswamy model were mut does not vary with time # For linear link, alpha = mu # # Warning: # |log(1-rho)| >> |log(1 - mu^nu)| # may cause numerical instability. y <- KARFIMA.sim(linkg = "linear", n = 1000, seed = 2021, coefs = list(alpha = 0.7, nu = 2)) hist(y) #------------------------------------------------------------ # Generating a Kumaraswamy model were mut does not vary with time # For linear link, alpha = mu # # Warning: # |log(1-rho)| >> |log(1 - mu^nu)| # may cause numerical instability. #------------------------------------------------------------ m1 <- KARFIMA.sim(linkg = "linear",n = 100, complete = TRUE, seed = 2021, coefs = list(alpha = 0.7, nu = 2)) #------------------------------------------------------------ # Extracting the conditional time series given yt and # a set of parameters #------------------------------------------------------------ # Assuming that all coefficients are non-fixed e1 = KARFIMA.extract(yt = m1$yt, coefs = list(alpha = 0.7, nu = 2), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) #---------------------------------------------------- # comparing the simulated and the extracted values #---------------------------------------------------- cbind(head(m1$mut), head(e1$mut)) #--------------------------------------------------------- # the log-likelihood, score vector and information matrix #--------------------------------------------------------- e1$sll e1$score e1$info.Matrix # Generating a Kumaraswamy model were mut does not vary with time # For linear link, alpha = mu # # Warning: # |log(1-rho)| >> |log(1 - mu^nu)| # may cause numerical instability. y <- KARFIMA.sim(linkg = "logit", n = 100, seed = 2021, coefs = list(alpha = 0.7, nu = 2)) # fitting the model f <- KARFIMA.fit(yt = y, report = TRUE, start = list(alpha = 0.5, nu = 1), linkg = "logit", d = FALSE)
# Generating a Kumaraswamy model were mut does not vary with time # For linear link, alpha = mu # # Warning: # |log(1-rho)| >> |log(1 - mu^nu)| # may cause numerical instability. y <- KARFIMA.sim(linkg = "linear", n = 1000, seed = 2021, coefs = list(alpha = 0.7, nu = 2)) hist(y) #------------------------------------------------------------ # Generating a Kumaraswamy model were mut does not vary with time # For linear link, alpha = mu # # Warning: # |log(1-rho)| >> |log(1 - mu^nu)| # may cause numerical instability. #------------------------------------------------------------ m1 <- KARFIMA.sim(linkg = "linear",n = 100, complete = TRUE, seed = 2021, coefs = list(alpha = 0.7, nu = 2)) #------------------------------------------------------------ # Extracting the conditional time series given yt and # a set of parameters #------------------------------------------------------------ # Assuming that all coefficients are non-fixed e1 = KARFIMA.extract(yt = m1$yt, coefs = list(alpha = 0.7, nu = 2), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) #---------------------------------------------------- # comparing the simulated and the extracted values #---------------------------------------------------- cbind(head(m1$mut), head(e1$mut)) #--------------------------------------------------------- # the log-likelihood, score vector and information matrix #--------------------------------------------------------- e1$sll e1$score e1$info.Matrix # Generating a Kumaraswamy model were mut does not vary with time # For linear link, alpha = mu # # Warning: # |log(1-rho)| >> |log(1 - mu^nu)| # may cause numerical instability. y <- KARFIMA.sim(linkg = "logit", n = 100, seed = 2021, coefs = list(alpha = 0.7, nu = 2)) # fitting the model f <- KARFIMA.fit(yt = y, report = TRUE, start = list(alpha = 0.5, nu = 1), linkg = "logit", d = FALSE)
Given the name of a link, this function returns a link function,
an inverse link function, the derivative
and the derivative
.
link.btsr(link)
link.btsr(link)
link |
character; one of |
The available links are:
linear: , for
real. The parameter is set using the
argument
ctt.ll
, when invoking the functions created by link.btsr
logit:
log:
loglog:
cloglog:
An object of class "link-btsr"
, a list with components
linkfun |
Link function |
linkinv |
Inverse link function |
linkdif |
Derivative |
mu.eta |
Derivative |
name |
a name to be used for the link |
mylink <- BTSR::link.btsr("linear") y = 0.8 a = 3.4 gy = a*y mylink$linkfun(mu = y, ctt.ll = a); gy mylink$linkinv(eta = gy, ctt.ll = a); y mylink$diflink(mu = y, ctt.ll = a); a mylink$mu.eta(eta = gy, ctt.ll = a); 1/a
mylink <- BTSR::link.btsr("linear") y = 0.8 a = 3.4 gy = a*y mylink$linkfun(mu = y, ctt.ll = a); gy mylink$linkinv(eta = gy, ctt.ll = a); y mylink$diflink(mu = y, ctt.ll = a); a mylink$mu.eta(eta = gy, ctt.ll = a); 1/a
Predicted values based on btsr object.
## S3 method for class 'btsr' predict(object, newdata, nnew = 0, ...)
## S3 method for class 'btsr' predict(object, newdata, nnew = 0, ...)
object |
Object of class inheriting from |
newdata |
A matrix with new values for the regressors. If omitted
and |
nnew |
number of out-of-sample forecasts required. If |
... |
further arguments passed to or from other methods. |
predict.btsr
produces predicted values, obtained by evaluating
the regression function in the frame newdata
.
If newdata
is omitted the predictions are based on the data
used for the fit.
For now, prediction intervals are not provided.
A list with the following arguments
series |
The original time series yt. |
xreg |
The original regressors (if any). |
fitted.values |
The in-sample forecast given by |
etat |
In-sample values of |
error |
The error term (depends on the argument |
residuals |
The (in-sample) residuals, that is, the observed minus the predicted values.
Same as error when |
forecast |
The predicted values for yt. |
TS |
only for |
Ts.forecast |
only for |
#------------------------------------------------------------ # Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu #------------------------------------------------------------ y <- btsr.sim(model= "BARFIMA", linkg = "linear", n = 100, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) # fitting the model f <- btsr.fit(model = "BARFIMA", yt = y, report = TRUE, start = list(alpha = 0.5, nu = 10), linkg = "linear", d = FALSE) pred = predict(f, nnew = 5) pred$forecast
#------------------------------------------------------------ # Generating a Beta model were mut does not vary with time # yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu #------------------------------------------------------------ y <- btsr.sim(model= "BARFIMA", linkg = "linear", n = 100, seed = 2021, coefs = list(alpha = 0.2, nu = 20)) # fitting the model f <- btsr.fit(model = "BARFIMA", yt = y, report = TRUE, start = list(alpha = 0.5, nu = 10), linkg = "linear", d = FALSE) pred = predict(f, nnew = 5) pred$forecast
Print method for objects of class btsr
.
## S3 method for class 'btsr' print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'btsr' print(x, digits = max(3L, getOption("digits") - 3L), ...)
x |
object of class |
digits |
minimal number of significant digits, see
|
... |
further arguments to be passed to or from other methods. They are ignored in this function |
Users are not encouraged to call these internal functions directly. Internal functions for package BTSR.
Invisibly returns its argument, x
.
summary
method for class "btsr"
.
## S3 method for class 'btsr' summary(object, ...) ## S3 method for class 'summary.btsr' print(x, digits = max(3L, getOption("digits") - 3L), signif.stars = getOption("show.signif.stars"), ...)
## S3 method for class 'btsr' summary(object, ...) ## S3 method for class 'summary.btsr' print(x, digits = max(3L, getOption("digits") - 3L), signif.stars = getOption("show.signif.stars"), ...)
object |
object of class |
... |
further arguments passed to or from other methods. |
x |
an object of class |
digits |
minimal number of significant digits, see
|
signif.stars |
logical. If |
print.summary.btsr
tries to be smart about formatting the
coefficients, standard errors, etc. and additionally provides
‘significance stars’.
The function summary.btsr
computes and returns a list
of summary statistics of the fitted model given in object
.
Returns a list of class summary.btsr
, which contains the
following components:
model |
the corresponding model. |
call |
the matched call. |
residuals |
the residuals of the model. Depends on the definition
of |
coefficients |
a |
aliased |
named logical vector showing if the original coefficients are aliased. |
sigma.res |
the square root of the estimated variance of the random error
where |
df |
degrees of freedom, a 3-vector |
vcov |
a |
loglik |
the sum of the log-likelihood values |
aic |
the AIC value. |
bic |
the BIC value. |
hqc |
the HQC value. |
These functions can be used to simulate, extract components
and fit any model of the class uwarfima
. A model with
class uwarfima
is a special case of a model with class btsr
.
See ‘The BTSR structure’ in btsr.functions
for
more details on the general structure.
The UWARMA model, the Unit-Weibull regression and a i.i.d. sample from a Unit-Weibull distribution can be obtained as special cases. See ‘Details’.
UWARFIMA.sim(n = 1, burn = 0, xreg = NULL, rho = 0.5, coefs = list(alpha = 0, beta = NULL, phi = NULL, theta = NULL, d = 0, nu = 20), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 1, complete = FALSE, inf = 1000, linkg = c("logit", "logit"), seed = NULL, rngtype = 2, debug = FALSE) UWARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, q, rho = 0.5, coefs = list(), lags = list(), fixed.values = list(), fixed.lags = list(), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 1, inf = 1000, m = 0, linkg = c("logit", "logit"), llk = TRUE, sco = FALSE, info = FALSE, extra = FALSE, debug = FALSE) UWARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, d = TRUE, q = 0, m = 0, inf = 1000, rho = 0.5, start = list(), ignore.start = FALSE, lags = list(), fixed.values = list(), fixed.lags = list(), lower = list(nu = 0), upper = list(nu = Inf), linkg = c("logit", "logit"), sco = FALSE, info = FALSE, extra = FALSE, xregar = TRUE, y.start = NULL, xreg.start = NULL, error.scale = 1, control = list(), report = TRUE, debug = FALSE, ...)
UWARFIMA.sim(n = 1, burn = 0, xreg = NULL, rho = 0.5, coefs = list(alpha = 0, beta = NULL, phi = NULL, theta = NULL, d = 0, nu = 20), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 1, complete = FALSE, inf = 1000, linkg = c("logit", "logit"), seed = NULL, rngtype = 2, debug = FALSE) UWARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, q, rho = 0.5, coefs = list(), lags = list(), fixed.values = list(), fixed.lags = list(), y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 1, inf = 1000, m = 0, linkg = c("logit", "logit"), llk = TRUE, sco = FALSE, info = FALSE, extra = FALSE, debug = FALSE) UWARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, d = TRUE, q = 0, m = 0, inf = 1000, rho = 0.5, start = list(), ignore.start = FALSE, lags = list(), fixed.values = list(), fixed.lags = list(), lower = list(nu = 0), upper = list(nu = Inf), linkg = c("logit", "logit"), sco = FALSE, info = FALSE, extra = FALSE, xregar = TRUE, y.start = NULL, xreg.start = NULL, error.scale = 1, control = list(), report = TRUE, debug = FALSE, ...)
n |
a strictly positive integer. The sample size of yt (after burn-in). Default is 1. |
burn |
a non-negative integer. Length of the "burn-in" period. Default is 0. |
xreg |
optionally, a vector or matrix of external regressors.
For simulation purposes, the length of xreg must be |
rho |
a positive number, between 0 and 1, indicating the quantile
to be modeled. In this case, |
coefs |
a list with the coefficients of the model. An empty list will result in an error. The arguments that can be passed through this list are:
|
y.start |
optionally, an initial value for yt (to be used
in the recursions). Default is |
xreg.start |
optionally, a vector of initial value for xreg
(to be used in the recursions). Default is |
xregar |
logical; indicates if xreg is to be included in the
AR part of the model. See ‘The BTSR structure’. Default is |
error.scale |
the scale for the error term. See ‘The BTSR structure’
in |
complete |
logical; if |
inf |
the truncation point for infinite sums. Default is 1,000.
In practice, the Fortran subroutine uses |
linkg |
character or a two character vector indicating which
links must be used in the model. See ‘The BTSR structure’
in |
seed |
optionally, an integer which gives the value of the fixed seed to be used by the random number generator. If missing, a random integer is chosen uniformly from 1,000 to 10,000. |
rngtype |
optionally, an integer indicating which random number generator
is to be used. Default is 2: the Mersenne Twister algorithm. See ‘Common Arguments’
in |
debug |
logical, if |
yt |
a numeric vector with the observed time series. If missing, an error message is issued. |
nnew |
optionally, the number of out-of sample predicted values required. Default is 0. |
xnew |
a vector or matrix, with |
p |
a non-negative integer. The order of AR polynomial.
If missing, the value of |
q |
a non-negative integer. The order of the MA polynomial.
If missing, the value of |
lags |
optionally, a list with the lags that the values in |
fixed.values |
optionally, a list with the values of the coefficients
that are fixed. By default, if a given vector (such as the vector of AR coefficients)
has fixed values and the corresponding entry in this list is empty, the fixed values
are set as zero. The names of the entries in this list must match the ones
in |
fixed.lags |
optionally, a list with the lags that the fixed values
in |
m |
a non-negative integer indicating the starting time for the sum of the
partial log-likelihoods, that is |
llk |
logical, if |
sco |
logical, if |
info |
logical, if |
extra |
logical, if |
d |
logical, if |
start |
a list with the starting values for the non-fixed coefficients
of the model. If an empty list is provided, the function |
ignore.start |
logical, if starting values are not provided, the
function uses the default values and |
lower |
optionally, list with the lower bounds for the
parameters. The names of the entries in these lists must match the ones
in |
upper |
optionally, list with the upper bounds for the
parameters. The names of the entries in these lists must match the ones
in |
control |
a list with configurations to be passed to the optimization subroutines. Missing arguments will receive default values. See fit.control. |
report |
logical, if |
... |
further arguments passed to the internal functions. |
The UWARMA model and the Unit-Weibull regression can be obtained as special cases of the UWARFIMA model.
UWARFIMA: is obtained by default.
UWARMA: is obtained by setting d = 0
.
Unit-Weibull regression: is obtained by setting p = 0
,
q = 0
and d = FALSE
. The error.scale
is irrelevant.
The second argument in linkg
is irrelevant.
an i.i.d. sample from a Unit-Weibull distribution
is obtained by setting linkg = "linear"
, p = 0
, q = 0
,
coefs$d = 0
, d = FALSE
. (error.scale
and
xregar
are irrelevant)
The function UWARFIMA.sim
generates a random sample from a UWARFIMA(p,d,q)
model.
The function UWARFIMA.extract
allows the user to extract the
components ,
,
,
,
the log-likelihood, and the vectors and matrices used to calculate the
score vector and the information matrix associated to a given set of parameters.
This function can be used by any user to create an objective function that can be passed to optimization algorithms not available in the BTSR Package.
The function UWARFIMA.fit
fits a UWARFIMA model to a given univariate time
series. For now, available optimization algorithms are "L-BFGS-B"
and
"Nelder-Mead"
. Both methods accept bounds for the parameters. For
"Nelder-Mead"
, bounds are set via parameter transformation.
The function UWARFIMA.sim
returns the simulated time series yt by default.
If complete = TRUE
, a list with the following components
is returned instead:
model
: string with the text "UWARFIMA"
yt
: the simulated time series
mut
: the conditional mean
etat
: the linear predictor
error
: the error term
xreg
: the regressors (if included in the model).
debug
: the output from FORTRAN (if requested).
The function UWARFIMA.extract
returns a list with the following components.
model
: string with the text "UWARFIMA"
coefs
: the coefficients of the model passed through the
coefs
argument
yt
: the observed time series
gyt
: the transformed time series
mut
: the conditional mean
etat
: the linear predictor
error
: the error term
xreg
: the regressors (if included in the model).
sll
: the sum of the conditional log-likelihood (if requested)
sco
: the score vector (if requested)
info
: the information matrix (if requested)
Drho
, T
, E
, h
: additional matrices and vectors
used to calculate the score vector and the information matrix. (if requested)
yt.new
: the out-of-sample forecast (if requested)
out.Fortran
: FORTRAN output (if requested)
The function btsr.fit
returns a list with the following components.
Each particular model can have additional components in this list.
model
: string with the text "UWARFIMA"
convergence
: An integer code. 0 indicates successful completion.
The error codes depend on the algorithm used.
message
: A character string giving any additional information
returned by the optimizer, or NULL.
counts
: an integer giving the number of function evaluations.
control
: a list of control parameters.
start
: the starting values used by the algorithm.
coefficients
: The best set of parameters found.
n
: the sample size used for estimation.
series
: the observed time series
gyt
: the transformed time series
fitted.values
: the conditional mean, which corresponds to
the in-sample forecast, also denoted fitted values
etat
: the linear predictor
error.scale
: the scale for the error term.
error
: the error term
residual
: the observed minus the fitted values. The same as
the error
term if error.scale = 0
.
forecast
: the out-of-sample forecast (if requested).
xnew
: the observations of the regressors observed/predicted
values corresponding to the period of out-of-sample forecast.
Only inlcudes if xreg
is not NULL
and nnew > 0
.
sll
: the sum of the conditional log-likelihood (if requested)
info.Matrix
: the information matrix (if requested)
configs
: a list with the configurations adopted to fit the model.
This information is used by the prediction function.
out.Fortran
: FORTRAN output (if requested)
call
: a string with the description of the fitted model.
# Generating a Unit-Weibull model were mut does not vary with time # For linear link, alpha = mu y <- UWARFIMA.sim(linkg = "linear", n = 1000, seed = 2021, coefs = list(alpha = 0.7, nu = 2)) hist(y) #------------------------------------------------------------ # Generating a Unit-Weibull model were mut does not vary with time # For linear link, alpha = mu #------------------------------------------------------------ m1 <- UWARFIMA.sim(linkg = "linear",n = 100, complete = TRUE, seed = 2021, coefs = list(alpha = 0.7, nu = 2)) #------------------------------------------------------------ # Extracting the conditional time series given yt and # a set of parameters #------------------------------------------------------------ # Assuming that all coefficients are non-fixed e1 = UWARFIMA.extract(yt = m1$yt, coefs = list(alpha = 0.7, nu = 2), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) #---------------------------------------------------- # comparing the simulated and the extracted values #---------------------------------------------------- cbind(head(m1$mut), head(e1$mut)) #--------------------------------------------------------- # the log-likelihood, score vector and information matrix #--------------------------------------------------------- e1$sll e1$score e1$info.Matrix # Generating a Unit-Weibull model were mut does not vary with time # For linear link, alpha = mu y <- UWARFIMA.sim(linkg = "logit", n = 100, seed = 2021, coefs = list(alpha = 0.7, nu = 2)) # fitting the model f <- UWARFIMA.fit(yt = y, report = TRUE, start = list(alpha = 0.5, nu = 1), linkg = "logit", d = FALSE)
# Generating a Unit-Weibull model were mut does not vary with time # For linear link, alpha = mu y <- UWARFIMA.sim(linkg = "linear", n = 1000, seed = 2021, coefs = list(alpha = 0.7, nu = 2)) hist(y) #------------------------------------------------------------ # Generating a Unit-Weibull model were mut does not vary with time # For linear link, alpha = mu #------------------------------------------------------------ m1 <- UWARFIMA.sim(linkg = "linear",n = 100, complete = TRUE, seed = 2021, coefs = list(alpha = 0.7, nu = 2)) #------------------------------------------------------------ # Extracting the conditional time series given yt and # a set of parameters #------------------------------------------------------------ # Assuming that all coefficients are non-fixed e1 = UWARFIMA.extract(yt = m1$yt, coefs = list(alpha = 0.7, nu = 2), link = "linear", llk = TRUE, sco = TRUE, info = TRUE) #---------------------------------------------------- # comparing the simulated and the extracted values #---------------------------------------------------- cbind(head(m1$mut), head(e1$mut)) #--------------------------------------------------------- # the log-likelihood, score vector and information matrix #--------------------------------------------------------- e1$sll e1$score e1$info.Matrix # Generating a Unit-Weibull model were mut does not vary with time # For linear link, alpha = mu y <- UWARFIMA.sim(linkg = "logit", n = 100, seed = 2021, coefs = list(alpha = 0.7, nu = 2)) # fitting the model f <- UWARFIMA.fit(yt = y, report = TRUE, start = list(alpha = 0.5, nu = 1), linkg = "logit", d = FALSE)