Title: | Modelling Heterogeneity in Paired Comparison Data |
---|---|
Description: | Performs 'BTLLasso' as described by Schauberger and Tutz (2019) <doi:10.18637/jss.v088.i09> and Schauberger and Tutz (2017) <doi:10.1177/1471082X17693086>. BTLLasso is a method to include different types of variables in paired comparison models and, therefore, to allow for heterogeneity between subjects. Variables can be subject-specific, object-specific and subject-object-specific and can have an influence on the attractiveness/strength of the objects. Suitable L1 penalty terms are used to cluster certain effects and to reduce the complexity of the models. |
Authors: | Gunther Schauberger |
Maintainer: | Gunther Schauberger <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.1-13 |
Built: | 2024-12-09 06:32:59 UTC |
Source: | CRAN |
Performs BTLLasso, a method to model heterogeneity in paired comparison data. Different types of covariates are allowd to have an influence on the attractivity/strength of the objects. Covariates can be subject-specific, object-specific or subject-object-specific. L1 penalties are used to reduce the complexity of the model by enforcing clusters of equal effects or by elimination of irrelevant covariates. Several additional functions are provided, such as cross-validation, bootstrap intervals, and plot functions.
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, 88(9), 1-29, doi:10.18637/jss.v088.i09
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
Performs bootstrap for BTLLasso to get bootstrap intervals. Main
input argument is a cv.BTLLasso
object. The bootstrap is (recommended to be)
performed on level of the cross-validation. Therefore, within every bootstrap iteration
the complete cross-validation procedure from the cv.BTLLasso
object
is performed. A plot
function can be applied
to the resulting boot.BTLLasso
object to plot bootstrap intervals.
boot.BTLLasso( model, B = 500, lambda = NULL, cores = 1, trace = TRUE, trace.cv = TRUE, with.cv = TRUE )
boot.BTLLasso( model, B = 500, lambda = NULL, cores = 1, trace = TRUE, trace.cv = TRUE, with.cv = TRUE )
model |
A |
B |
Number of bootstrap iterations. |
lambda |
Vector of tuning parameters. If not specified (default),
tuning parameters from |
cores |
Number of cores for (parallelized) computation. |
trace |
Should the trace of the BTLLasso algorithm be printed? |
trace.cv |
Should the trace fo the cross-validation be printed? If parallelized, the trace is not working on Windows machines. |
with.cv |
Should cross-validation be performed separately on every
bootstrap sample? If |
The method can be highly time-consuming, for high numbers of tuning
parameters, high numbers of folds in the cross-validation and high number of
bootstrap iterations B. The number of tuning parameters can be reduced by
specifying lambda
in the boot.BTLLasso
function. You can control if
the range of prespecified tuning parameters was to small by looking at the
output values lambda.max.alert
and lambda.min.alert
. They are
set TRUE
if the smallest or largest of the specifed lambda values was
chosen in at least one bootstrap iteration.
cv.model |
|
estimatesB |
Matrix containing all B estimates for original parameters. For internal use. |
estimatesBrepar |
Matrix containing all B estimates for reparameterized (symmetric side constraints) parameters. |
lambdaB |
vector of used tuning parameters |
lambda.max.alert |
Was the largest value of lambda chosen in at least one bootstrap iteration? |
lambda.min.alert |
Was the smallest value of lambda chosen in at least one bootstrap iteration? |
number.na |
Total number of failed bootstrap iterations. |
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, 88(9), 1-29, doi:10.18637/jss.v088.i09
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
BTLLasso
, cv.BTLLasso
,
plot.boot.BTLLasso
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
Performs BTLLasso, a method to model heterogeneity in paired comparison data. Different types of covariates are allowed to have an influence on the attractivity/strength of the objects. Covariates can be subject-specific, object-specific or subject-object-specific. L1 penalties are used to reduce the complexiy of the model by enforcing clusters of equal effects or by elimination of irrelevant covariates.
BTLLasso( Y, X = NULL, Z1 = NULL, Z2 = NULL, lambda = NULL, control = ctrl.BTLLasso(), trace = TRUE )
BTLLasso( Y, X = NULL, Z1 = NULL, Z2 = NULL, lambda = NULL, control = ctrl.BTLLasso(), trace = TRUE )
Y |
A |
X |
Matrix containing all subject-specific covariates that are to be included with object-specific effects. One row represents one subject, one column represents one covariate. X has to be standardized. |
Z1 |
Matrix containing all object-subject-specific covariates
that are to be included with object-specific effects. One row
represents one subject, one column represents one combination between
covariate and object. Column names have to follow the scheme
'firstvar.object1',...,'firstvar.objectm',...,'lastvar.objectm'. The object
names 'object1',...,'objectm' have to be identical to the object names used
in the |
Z2 |
Matrix containing all object-subject-specific covariates or
object-specific covariates that are to be included with global
effects. One row represents one subject, one column represents one
combination between covariate and object. Column names have to follow the
scheme 'firstvar.object1',...,'firstvar.objectm',...,'lastvar.objectm'. The
object names 'object1',...,'objectm' have to be identical to the object
names used in the |
lambda |
Vector of tuning parameters. If |
control |
Function for control arguments, mostly for internal use. See
also |
trace |
Should the trace of the BTLLasso algorithm be printed? |
coefs |
Matrix containing all (original) coefficients, one row per tuning parameter, one column per coefficient. |
coefs.repar |
Matrix containing all reparameterized (for symmetric side constraint) coefficients, one row per tuning parameter, one column per coefficient. |
logLik |
Vector of log-likelihoods, one value per tuning parameter. |
design |
List containing design matrix and several additional information like, e.g., number and names of covariates. |
Y |
Response object. |
penalty |
List containing all penalty matrices and some further information on penalties. |
response |
Vector containing 0-1 coded response. |
X |
X matrix containing subject-specific covariates. |
Z1 |
Z1 matrix containing subject-object-specific covariates. |
Z2 |
Z2 matrix containing (subject)-object-specific covariates. |
lambda |
Vector of tuning parameters. |
control |
Control argument, specified by |
df |
Vector containing degrees of freedom for all models along the grid of tuning parameters. |
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, to appear
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
cv.BTLLasso
, boot.BTLLasso
, ctrl.BTLLasso
,
plot.BTLLasso
, paths
, print.BTLLasso
,
predict.BTLLasso
, coef
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
Data from the German Bundesliga from the season 2014/15. The data contain all 306 matches of the season treated as paired comparisons with 5 (Y5) or 3 (Y3) different response categories. Additionally, different match-specific covariates are given as, for example, the percentage of ball possession or the total running distance per team and per match.
A list containing data from the German Bundesliga with 306 observations. The list contains both information on the response (paired comparisons) and different covariates.
A response.BTLLasso object with 5 response categories for the Buli1516 data including
response: Ordinal paired comparison response vector
first.object: Vector containing the first-named team per paired comparison (home team)
second.object: Vector containing the second-named team per paired comparison (away team)
subject: Vector containing a match-day identifier per paired comparison
with.order Vector containing information that each match has to be considered including an order effect.
A response.BTLLasso object with 3 response categories for the Buli1516 data including
response: Ordinal paired comparison response vector
first.object: Vector containing the first-named team per paired comparison (home team)
second.object: Vector containing the second-named team per paired comparison (away team)
subject: Vector containing a match-day identifier per paired comparison
with.order Vector containing information that each match has to be considered including an order effect.
Matrix containing all team-match-specific covariates
Distance: Total amount of km run
BallPossession: Percentage of ball possession
TacklingRate: Rate of won tacklings
ShotsonGoal: Total number of shots on goal
CompletionRate: Percentage of passes reaching teammates
FoulsSuffered: Number of fouls suffered
Offside: Number of offsides (in attack)
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, to appear
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: op <- par(no.readonly = TRUE) data(Buli1415) Y <- Buli1415$Y5 Z1 <- scale(Buli1415$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) data(Buli1415) Y <- Buli1415$Y5 Z1 <- scale(Buli1415$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) par(op) ## End(Not run)
Data from the German Bundesliga from the season 2015/16. The data contain all 306 matches of the season treated as paired comparisons with 5 (Y5) or 3 (Y3) different response categories. Additionally, different match-specific covariates are given as, for example, the percentage of ball possession or the total running distance per team and per match.
A list containing data from the German Bundesliga with 306 observations. The list contains both information on the response (paired comparisons) and different covariates.
A response.BTLLasso object with 5 response categories for the Buli1516 data including
response: Ordinal paired comparison response vector
first.object: Vector containing the first-named team per paired comparison (home team)
second.object: Vector containing the second-named team per paired comparison (away team)
subject: Vector containing a match-day identifier per paired comparison
with.order Vector containing information that each match has to be considered including an order effect.
A response.BTLLasso object with 3 response categories for the Buli1516 data including
response: Ordinal paired comparison response vector
first.object: Vector containing the first-named team per paired comparison (home team)
second.object: Vector containing the second-named team per paired comparison (away team)
subject: Vector containing a match-day identifier per paired comparison
with.order Vector containing information that each match has to be considered including an order effect.
Matrix containing all team-match-specific covariates
Distance: Total amount of km run
BallPossession: Percentage of ball possession
TacklingRate: Rate of won tacklings
ShotsonGoal: Total number of shots on goal
CompletionRate: Percentage of passes reaching teammates
FoulsSuffered: Number of fouls suffered
Offside: Number of offsides (in attack)
Matrix containing all the average market values of the teams as a team-specific covariate
@references Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, to appear
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: op <- par(no.readonly = TRUE) data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) par(op) ## End(Not run)
Data from the German Bundesliga from the season 2016/17. The data contain all 306 matches of the season treated as paired comparisons with 5 (Y5) or 3 (Y3) different response categories. Additionally, different match-specific covariates are given as, for example, the percentage of ball possession or the total running distance per team and per match.
A list containing data from the German Bundesliga with 306 observations. The list contains both information on the response (paired comparisons) and different covariates.
A response.BTLLasso object with 5 response categories for the Buli1516 data including
response: Ordinal paired comparison response vector
first.object: Vector containing the first-named team per paired comparison (home team)
second.object: Vector containing the second-named team per paired comparison (away team)
subject: Vector containing a match-day identifier per paired comparison
with.order Vector containing information that each match has to be considered including an order effect.
A response.BTLLasso object with 3 response categories for the Buli1516 data including
response: Ordinal paired comparison response vector
first.object: Vector containing the first-named team per paired comparison (home team)
second.object: Vector containing the second-named team per paired comparison (away team)
subject: Vector containing a match-day identifier per paired comparison
with.order Vector containing information that each match has to be considered including an order effect.
Matrix containing all team-match-specific covariates
Distance: Total amount of km run
BallPossession: Percentage of ball possession
TacklingRate: Rate of won tacklings
ShotsonGoal: Total number of shots on goal
CompletionRate: Percentage of passes reaching teammates
FoulsSuffered: Number of fouls suffered
Offside: Number of offsides (in attack)
Corners: Number of corners (in attack)
@references Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, to appear
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: op <- par(no.readonly = TRUE) data(Buli1617) Y <- Buli1617$Y5 Z1 <- scale(Buli1617$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) data(Buli1617) Y <- Buli1617$Y5 Z1 <- scale(Buli1617$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) par(op) ## End(Not run)
Data from the German Bundesliga from the season 2017/18. The data contain all 306 matches of the season treated as paired comparisons with 5 (Y5) or 3 (Y3) different response categories. Additionally, different match-specific covariates are given as, for example, the percentage of ball possession or the total running distance per team and per match.
A list containing data from the German Bundesliga with 306 observations. The list contains both information on the response (paired comparisons) and different covariates.
A response.BTLLasso object with 5 response categories for the Buli1516 data including
response: Ordinal paired comparison response vector
first.object: Vector containing the first-named team per paired comparison (home team)
second.object: Vector containing the second-named team per paired comparison (away team)
subject: Vector containing a match-day identifier per paired comparison
with.order Vector containing information that each match has to be considered including an order effect.
A response.BTLLasso object with 3 response categories for the Buli1516 data including
response: Ordinal paired comparison response vector
first.object: Vector containing the first-named team per paired comparison (home team)
second.object: Vector containing the second-named team per paired comparison (away team)
subject: Vector containing a match-day identifier per paired comparison
with.order Vector containing information that each match has to be considered including an order effect.
Matrix containing all team-match-specific covariates
Distance: Total amount of km run
BallPossession: Percentage of ball possession
TacklingRate: Rate of won tacklings
ShotsonGoal: Total number of shots on goal
CompletionRate: Percentage of passes reaching teammates
FoulsSuffered: Number of fouls suffered
Offside: Number of offsides (in attack)
Corners: Number of corners (in attack)
@references Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, to appear
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: op <- par(no.readonly = TRUE) data(Buli1718) Y <- Buli1718$Y5 Z1 <- scale(Buli1718$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) data(Buli1718) Y <- Buli1718$Y5 Z1 <- scale(Buli1718$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) par(op) ## End(Not run)
Data from the German Bundesliga from the season 2015/16. The data contain all
variables from the 306 matches that are necessary to create the respective
response.BTLLasso
object from the data set Buli1516
. The purpose
of the data set is to provide an example how response.BTLLasso
objects can be created.
A data set containing all information that is necessary to create a response object
for the Bundesliga data link{Buli1516}
Ordinal, 5-categorical results from Bundesliga season 2015/16.
Abbreviation of home team.
Abbreviation of away team.
Matchdays from 1 to 34.
@references Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, to appear
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: data(BuliResponse) Y.Buli <- response.BTLLasso(response = BuliResponse$Result, first.object = BuliResponse$TeamHome, second.object = BuliResponse$TeamAway, subject = BuliResponse$Matchday) ## End(Not run)
## Not run: data(BuliResponse) Y.Buli <- response.BTLLasso(response = BuliResponse$Result, first.object = BuliResponse$TeamHome, second.object = BuliResponse$TeamAway, subject = BuliResponse$Matchday) ## End(Not run)
Control parameters for different penalty terms and for tuning the fitting algorithm.
ctrl.BTLLasso( l.lambda = 30, log.lambda = TRUE, lambda.min = 0.05, adaptive = TRUE, scale = TRUE, norm = c("L1", "L2"), epsilon = 1e-04, lambda2 = 1e-04, c = 1e-09, precision = 3, weight.penalties = TRUE, include.intercepts = TRUE, order.effect = FALSE, object.order.effect = FALSE, order.center = FALSE, name.order = "Order", penalize.intercepts = FALSE, penalize.X = TRUE, penalize.Z2 = FALSE, penalize.Z1.absolute = TRUE, penalize.Z1.diffs = TRUE, penalize.order.effect.absolute = TRUE, penalize.order.effect.diffs = FALSE )
ctrl.BTLLasso( l.lambda = 30, log.lambda = TRUE, lambda.min = 0.05, adaptive = TRUE, scale = TRUE, norm = c("L1", "L2"), epsilon = 1e-04, lambda2 = 1e-04, c = 1e-09, precision = 3, weight.penalties = TRUE, include.intercepts = TRUE, order.effect = FALSE, object.order.effect = FALSE, order.center = FALSE, name.order = "Order", penalize.intercepts = FALSE, penalize.X = TRUE, penalize.Z2 = FALSE, penalize.Z1.absolute = TRUE, penalize.Z1.diffs = TRUE, penalize.order.effect.absolute = TRUE, penalize.order.effect.diffs = FALSE )
l.lambda |
Number of tuning parameters. Applies only if |
log.lambda |
Should the grid of tuning parameters be created on a logarithmic scale
rather than equidistant. Applies only if |
lambda.min |
Minimal value for tuning parameter. Applies only if |
adaptive |
Should adaptive lasso be used? Default is TRUE. |
scale |
Should the covariates be scaled so that they are on comparable scales? Default is TRUE.
Variables will be properly scaled AND centered. Please note that results will refer to scaled covariates.
If |
norm |
Specifies the norm used in the penalty term. Currently, only 'L1' and 'L2' are possible. Default is to 'L1', only 'L1' allows for clustering and variable selection. |
epsilon |
Threshold value for convergence of the algorithm. |
lambda2 |
Tuning parameter for ridge penalty on all coefficients. Should be small, only used to stabilize results. |
c |
Internal parameter for the quadratic approximation of the L1 penalty. Should be sufficiently small. |
precision |
Precision for final parameter estimates, specifies number of decimals. |
weight.penalties |
Should the penalties across the different model components
(i.e. intercepts, order effects, X, Z1, Z2) be weighted according to the number of
penalties included? Default is |
include.intercepts |
Should intercepts be included in the model? |
order.effect |
Should a global order effect (corresponding to home effect in sports applications) be included in the model? |
object.order.effect |
Should object-specific order effects (corresponding to home effects in sports applications) be included in the model? |
order.center |
Should (in case of object-specific order effects) the order effects be centered in the design matrix? Centering is equivalent to the coding scheme of effect coding instead of dummy coding. |
name.order |
How should the order effect(s) be called in plots or prints. |
penalize.intercepts |
Should intercepts be penalized? If |
penalize.X |
Should effects from X matrix be penalized? If |
penalize.Z2 |
Should absolute values of effects from Z2 matrix be penalized? Can also be used with a character vector as input. Then, the character vector contains the names of the variables from Z2 whose parameters should be penalized. |
penalize.Z1.absolute |
Should absolute values of effects from Z1 matrix be penalized? Can also be used with a character vector as input. Then, the character vector contains the names of the variables from Z1 whose parameters should be penalized. |
penalize.Z1.diffs |
Should differences of effects from Z1 matrix be
penalized? If |
penalize.order.effect.absolute |
Should absolute values of order effect(s) be penalized?
Only relevant if either |
penalize.order.effect.diffs |
Should differences of order effects be
penalized? If |
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, 88(9), 1-29, doi:10.18637/jss.v088.i09
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
Performs cross-validation of BTLLasso, including the BTLLasso algorithm for the whole data set.
cv.BTLLasso( Y, X = NULL, Z1 = NULL, Z2 = NULL, folds = 10, lambda = NULL, control = ctrl.BTLLasso(), cores = folds, trace = TRUE, trace.cv = TRUE, cv.crit = c("RPS", "Deviance") )
cv.BTLLasso( Y, X = NULL, Z1 = NULL, Z2 = NULL, folds = 10, lambda = NULL, control = ctrl.BTLLasso(), cores = folds, trace = TRUE, trace.cv = TRUE, cv.crit = c("RPS", "Deviance") )
Y |
A |
X |
Matrix containing all subject-specific covariates that are to be included with object-specific effects. One row represents one subject, one column represents one covariate. X has to be standardized. |
Z1 |
Matrix containing all object-subject-specific covariates
that are to be included with object-specific effects. One row
represents one subject, one column represents one combination between
covariate and object. Column names have to follow the scheme
'firstvar.object1',...,'firstvar.objectm',...,'lastvar.objectm'. The object
names 'object1',...,'objectm' have to be identical to the object names used
in the |
Z2 |
Matrix containing all object-subject-specific covariates or
object-specific covariates that are to be included with global
effects. One row represents one subject, one column represents one
combination between covariate and object. Column names have to follow the
scheme 'firstvar.object1',...,'firstvar.objectm',...,'lastvar.objectm'. The
object names 'object1',...,'objectm' have to be identical to the object
names used in the |
folds |
Number of folds for the crossvalidation. Default is 10. |
lambda |
Vector of tuning parameters. If |
control |
Function for control arguments, mostly for internal use. See
also |
cores |
Number of cores used for (parallelized) cross-validation. By default, equal to the number of folds. |
trace |
Should the trace of the BTLLasso algorithm be printed? |
trace.cv |
Should the trace fo the cross-validation be printed? If parallelized, the trace is not working on Windows machines. |
cv.crit |
Which criterion should be used to evaluate cross-validation. Choice is
between Ranked probability score and deviance. Only |
Cross-validation can be performed parallel, default is 10-fold
cross-validation on 10 cores. Output is a cv.BTLLasso object which can then be
used for bootstrap intervalls using boot.BTLLasso
.
coefs |
Matrix containing all (original) coefficients, one row per tuning parameter, one column per coefficient. |
coefs.repar |
Matrix containing all reparameterized (for symmetric side constraint) coefficients, one row per tuning parameter, one column per coefficient. |
logLik |
Vector of log-likelihoods, one value per tuning parameter. |
design |
List containing design matrix and several additional information like, e.g., number and names of covariates. |
Y |
Response object. |
penalty |
List containing all penalty matrices and some further information on penalties |
response |
Vector containing 0-1 coded response. |
X |
X matrix containing subject-specific covariates. |
Z1 |
Z1 matrix containing subject-object-specific covariates. |
Z2 |
Z2 matrix containing (subject)-object-specific covariates. |
lambda |
Vector of tuning parameters. |
control |
Control argument, specified by |
criterion |
Vector containing values of the chosen cross-validation criterion, one value per tuning parameter. |
folds |
Number of folds in cross validation. |
cv.crit |
Cross-validation criterion, either |
df |
Vector containing degrees of freedom for all models along the grid of tuning parameters. |
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, 88(9), 1-29, doi:10.18637/jss.v088.i09
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
BTLLasso
, boot.BTLLasso
, ctrl.BTLLasso
,
plot.BTLLasso
, paths
, print.cv.BTLLasso
,
predict.BTLLasso
, coef
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
Data from the German Longitudinal Election Study (GLES), see Rattinger et al. (2014). The GLES is a long-term study of the German electoral process. It collects pre- and post-election data for several federal elections, the data used here originate from the pre-election study for 2013.
A list containing data from the German Longitudinal Election Study with 2003 (partly incomplete) observations. The list contains both information on the response (paired comparisons) and different covariates.
A response.BTLLasso object for the GLES data including
response: Ordinal paired comparison response vector
first.object: Vector containing the first-named party per paired comparison
second.object: Vector containing the second-named party per paired comparison
subject: Vector containing a person identifier per paired comparison
with.order Automatically generated vector containing information on order effect. Irrelevant, because no order effect needs to be included in the analysis of GLES data.
Matrix containing all eight person-specific covariates
Age: Age in years
Gender (0: male, 1: female)
EastWest (0: West Germany, 1: East Germany)
PersEcon: Personal economic situation, 1: good or very good, 0: else
Abitur: School leaving certificate, 1: Abitur/A levels, 0: else
Unemployment: 1: currently unemployed, 0: else
Church: Frequency of attendence in a church/synagogue/mosque/..., 1: at least once a month, 0: else
Migration: Are you a migrant / not German since birth? 1: yes, 0: no
Matrix containing all four person-party-specific covariates
Climate: Self-perceived distance of each person to all five parties with respect to ones attitude towards climate change.
SocioEcon: Self-perceived distance of each person to all five parties with respect to ones attitude towards socio-economic issues.
Immigration: Self-perceived distance of each person to all five parties with respect to ones attitude towards immigration.
https://www.gesis.org/en/gles/about-gles
Rattinger, H., S. Rossteutscher, R. Schmitt-Beck, B. Wessels, and C. Wolf (2014): Pre-election cross section (GLES 2013). GESIS Data Archive, Cologne ZA5700 Data file Version 2.0.0.
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, to appear
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
## Not run: op <- par(no.readonly = TRUE) data(GLES) Y <- GLES$Y X <- scale(GLES$X, scale = FALSE) subs <- c("(in years)","female (1); male (0)","East Germany (1); West Germany (0)", "(very) good (1); else (0)", "Abitur/A levels (1); else (0)", "currently unemployed (1); else (0)","at least once a month (1); else (0)", "yes (1); no (0)") set.seed(5) m.gles <- cv.BTLLasso(Y = Y, X = X, control = ctrl.BTLLasso(l.lambda = 50)) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles, subs.X = subs) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) data(GLES) Y <- GLES$Y X <- scale(GLES$X, scale = FALSE) subs <- c("(in years)","female (1); male (0)","East Germany (1); West Germany (0)", "(very) good (1); else (0)", "Abitur/A levels (1); else (0)", "currently unemployed (1); else (0)","at least once a month (1); else (0)", "yes (1); no (0)") set.seed(5) m.gles <- cv.BTLLasso(Y = Y, X = X, control = ctrl.BTLLasso(l.lambda = 50)) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles, subs.X = subs) par(op) ## End(Not run)
This is a subset of the GLES
data set from the German
Longitudinal Election Study (GLES), see Rattinger et al. (2014). The subset contains
only 200 of the 2003 observations and only a small part of the covariates. The GLES is
a long-term study of the German electoral process. It collects pre- and
post-election data for several federal elections, the data used here
originate from the pre-election study for 2013.
A list containing data from the German Longitudinal Election Study with 200 observations. The list contains both information on the response (paired comparisons) and different covariates.
A response.BTLLasso object for the GLES data including
response: Ordinal paired comparison response vector
first.object: Vector containing the first-named party per paired comparison
second.object: Vector containing the second-named party per paired comparison
subject: Vector containing a person identifier per paired comparison
with.order Automatically generated vector containing information on order effect. Irrelevant, because no order effect needs to be included in the analysis of GLES data.
Matrix containing all eight person-specific covariates
Age: Age in years
Gender (0: male, 1: female)
Matrix containing all four person-party-specific covariates
Climate: Self-perceived distance of each person to all five parties with respect to ones attitude towards climate change.
Immigration: Self-perceived distance of each person to all five parties with respect to ones attitude towards immigration.
https://www.gesis.org/en/gles/about-gles
Rattinger, H., S. Rossteutscher, R. Schmitt-Beck, B. Wessels, and C. Wolf (2014): Pre-election cross section (GLES 2013). GESIS Data Archive, Cologne ZA5700 Data file Version 2.0.0.
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, to appear
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
## Not run: op <- par(no.readonly = TRUE) data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') par(op) ## End(Not run)
Plots paths for every covariate of a BTLLasso object or a cv.BTLLasso
object. In contrast to plot.BTLLasso
, only one plot is created,
every covariate is illustrated by one path. For cv.BTLLasso
objects, the
optimal model according to the cross-validation is marked by a vertical
dashed line.
paths(model, y.axis = c("penalty", "L2"), x.axis = c("loglambda", "lambda"))
paths(model, y.axis = c("penalty", "L2"), x.axis = c("loglambda", "lambda"))
model |
|
y.axis |
Two possible values for the y-axis. Variables can either be plotted
with regard to their contribution to the total penalty term ( |
x.axis |
Should the paths be plotted against log(lambda+1) or against lambda?' |
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, 88(9), 1-29, doi:10.18637/jss.v088.i09
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
BTLLasso
, cv.BTLLasso
,
plot.BTLLasso
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
Plots bootstrap intervals for every single coefficient based on bootstrap estimates
calculated by boot.BTLLasso
. Bootstrap
intervals are separated by covariates, every covariate is plotted
separately.
## S3 method for class 'boot.BTLLasso' plot( x, quantiles = c(0.025, 0.975), plots_per_page = 1, ask_new = TRUE, rescale = FALSE, which = "all", include.zero = TRUE, rows = NULL, subs.X = NULL, subs.Z1 = NULL, main.Z2 = "Obj-spec. Covariates", ... )
## S3 method for class 'boot.BTLLasso' plot( x, quantiles = c(0.025, 0.975), plots_per_page = 1, ask_new = TRUE, rescale = FALSE, which = "all", include.zero = TRUE, rows = NULL, subs.X = NULL, subs.Z1 = NULL, main.Z2 = "Obj-spec. Covariates", ... )
x |
boot.BTLLasso object |
quantiles |
Which empirical quantiles of the bootstrap estimates should be plotted? |
plots_per_page |
Number of plots per page, internally specified by |
ask_new |
If TRUE, the user is asked before each plot. |
rescale |
Should the parameter estimates be rescaled for plotting? Only
applies if |
which |
Integer vector to specify which parameters/variables to plot. |
include.zero |
Should all plots contain zero? |
rows |
Optional argument for the number of rows in the plot.
Only applies if |
subs.X |
Optional vector of subtitles for variables in |
subs.Z1 |
Optional vector of subtitles for variables in |
main.Z2 |
Optional character containg main for plot containing intervals for Z2 parameters. |
... |
other parameters to be passed through to plot function. |
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, 88(9), 1-29, doi:10.18637/jss.v088.i09
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
boot.BTLLasso
, BTLLasso
,
cv.BTLLasso
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
Plots single paths for every parameter of a BTLLasso
object or a cv.BTLLasso
object. In contrast, to paths
, one plot per covariate is
created, every single parameter is illustrated by one path. For cv.BTLLasso
objects, the optimal model according to the cross-validation is marked by a
vertical dashed line.
## S3 method for class 'BTLLasso' plot( x, plots_per_page = 1, ask_new = TRUE, rescale = FALSE, which = "all", equal.ranges = FALSE, x.axis = c("loglambda", "lambda"), rows = NULL, subs.X = NULL, subs.Z1 = NULL, main.Z2 = "Obj-spec. Covariates", ... )
## S3 method for class 'BTLLasso' plot( x, plots_per_page = 1, ask_new = TRUE, rescale = FALSE, which = "all", equal.ranges = FALSE, x.axis = c("loglambda", "lambda"), rows = NULL, subs.X = NULL, subs.Z1 = NULL, main.Z2 = "Obj-spec. Covariates", ... )
x |
BTLLasso or cv.BTLLasso object |
plots_per_page |
Number of plots per page, internally specified by |
ask_new |
If TRUE, the user is asked before each plot. |
rescale |
Should the parameter estimates be rescaled for plotting? Only
applies if |
which |
Integer vector to specify which parameters/variables to plot. |
equal.ranges |
Should all single plots (for different covariates) have equal ranges on the y-axes. FALSE by default. |
x.axis |
Should the paths be plotted against log(lambda+1) or against lambda? |
rows |
Optional argument for the number of rows in the plot.
Only applies if |
subs.X |
Optional vector of subtitles for variables in |
subs.Z1 |
Optional vector of subtitles for variables in |
main.Z2 |
Optional character containg main for plot containing intervals for Z2 parameters. |
... |
Further plot arguments. |
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, 88(9), 1-29, doi:10.18637/jss.v088.i09
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
Predict function for a BTLLasso
object or a cv.BTLLasso
object. Predictions can be linear predictors, probabilities or the values
of the latent traits for both competitors in the paired comparisons.
## S3 method for class 'BTLLasso' predict(object, newdata = list(), type = c("link", "response", "trait"), ...)
## S3 method for class 'BTLLasso' predict(object, newdata = list(), type = c("link", "response", "trait"), ...)
object |
|
newdata |
List possibly containing slots Y, X, Z1 and Z2 to use new data for prediction. |
type |
Type "link" gives the linear predictors for separate categories, type "response" gives the respective probabilities. Type "trait" gives the estimated latent traits of both competitors/objects in the paired comparisons. |
... |
Further predict arguments. |
Results are lists of matrices with prediction for every single tuning parameter
for BTLLasso
objects
and a single matrix for cv.BTLLasso
objects.
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, 88(9), 1-29, doi:10.18637/jss.v088.i09
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
Prints the most important output of boot.BTLLasso
objects.
## S3 method for class 'boot.BTLLasso' print(x, quantiles = c(0.025, 0.975), rescale = FALSE, ...)
## S3 method for class 'boot.BTLLasso' print(x, quantiles = c(0.025, 0.975), rescale = FALSE, ...)
x |
|
quantiles |
Which empirical quantiles of the bootstrap estimates should be printed? |
rescale |
Should the parameter estimates be rescaled for plotting? Only
applies if |
... |
possible further arguments for print command |
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, 88(9), 1-29, doi:10.18637/jss.v088.i09
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
Prints the most important output of BTLLasso
objects.
## S3 method for class 'BTLLasso' print(x, ...)
## S3 method for class 'BTLLasso' print(x, ...)
x |
|
... |
possible further arguments for print command |
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, 88(9), 1-29, doi:10.18637/jss.v088.i09
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
Prints the most important output of cv.BTLLasso
objects.
## S3 method for class 'cv.BTLLasso' print(x, rescale = FALSE, ...)
## S3 method for class 'cv.BTLLasso' print(x, rescale = FALSE, ...)
x |
|
rescale |
Should the parameter estimates be rescaled for plotting? Only
applies if |
... |
possible further arguments for print command |
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, 88(9), 1-29, doi:10.18637/jss.v088.i09
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) ############################## ##### Example with simulated data set containing X, Z1 and Z2 ############################## data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) ############################## ##### Example with small version from GLES data set ############################## data(GLESsmall) ## extract data and center covariates for better interpretability Y <- GLESsmall$Y X <- scale(GLESsmall$X, scale = FALSE) Z1 <- scale(GLESsmall$Z1, scale = FALSE) ## vector of subtitles, containing the coding of the X covariates subs.X <- c('', 'female (1); male (0)') ## Cross-validate BTLLasso model m.gles.cv <- cv.BTLLasso(Y = Y, X = X, Z1 = Z1) m.gles.cv coef(m.gles.cv) logLik(m.gles.cv) head(predict(m.gles.cv, type="response")) head(predict(m.gles.cv, type="trait")) par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.gles.cv, subs.X = subs.X, plots_per_page = 4, which = 2:5) paths(m.gles.cv, y.axis = 'L2') ############################## ##### Example with Bundesliga data set ############################## data(Buli1516) Y <- Buli1516$Y5 Z1 <- scale(Buli1516$Z1, scale = FALSE) ctrl.buli <- ctrl.BTLLasso(object.order.effect = TRUE, name.order = "Home", penalize.order.effect.diffs = TRUE, penalize.order.effect.absolute = FALSE, order.center = TRUE, lambda2 = 1e-2) set.seed(1860) m.buli <- cv.BTLLasso(Y = Y, Z1 = Z1, control = ctrl.buli) m.buli par(xpd = TRUE, mar = c(5,4,4,6)) plot(m.buli) ############################## ##### Example with Topmodel data set ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) plot(m.models, plots_per_page = 6) par(op) ## End(Not run)
Create a response object for BTLLasso
and cv.BTLLasso
response.BTLLasso( response, first.object = NULL, second.object = NULL, subject = NULL, with.order = rep(TRUE, length(response)) )
response.BTLLasso( response, first.object = NULL, second.object = NULL, subject = NULL, with.order = rep(TRUE, length(response)) )
response |
Vector containing results (binary or ordinal) of single paired
comparisons. Alternatively, also a |
first.object |
Vector (character or factor, same length as response) indicating the first object of the respective paired comparison from response. |
second.object |
Vector (character or factor, same length as response) indicating the second object of the respective paired comparison from response. |
subject |
Vector (character, same length as response) indicating the subject that generated the respective paired comparison from response. |
with.order |
Boolean vector containing indicators for each paired comparison if an order effect was
present. By default, an order effect is assumed for each comparison. This option is relevant whenever
only some of the paired comparisons had an order effect and others did not, for example if some matches are
played on neutral ground. This option is only effective if either |
Object of class response.BTLLasso
Gunther Schauberger
[email protected]
Schauberger, Gunther and Tutz, Gerhard (2019): BTLLasso - A Common Framework and Software Package for the Inclusion and Selection of Covariates in Bradley-Terry Models, Journal of Statistical Software, 88(9), 1-29, doi:10.18637/jss.v088.i09
Schauberger, Gunther and Tutz, Gerhard (2017): Subject-specific modelling of paired comparison data: A lasso-type penalty approach, Statistical Modelling, 17(3), 223 - 243
Schauberger, Gunther, Groll Andreas and Tutz, Gerhard (2018): Analysis of the importance of on-field covariates in the German Bundesliga, Journal of Applied Statistics, 45(9), 1561 - 1578
## Not run: ############################## ##### Example how response object for Bundesliga data Buli1516 was created ############################## data(BuliResponse) Y.Buli <- response.BTLLasso(response = BuliResponse$Result, first.object = BuliResponse$TeamHome, second.object = BuliResponse$TeamAway, subject = BuliResponse$Matchday) ############################## ##### Example to create response object from paircomp object ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) ## End(Not run)
## Not run: ############################## ##### Example how response object for Bundesliga data Buli1516 was created ############################## data(BuliResponse) Y.Buli <- response.BTLLasso(response = BuliResponse$Result, first.object = BuliResponse$TeamHome, second.object = BuliResponse$TeamAway, subject = BuliResponse$Matchday) ############################## ##### Example to create response object from paircomp object ############################## data("Topmodel2007", package = "psychotree") Y.models <- response.BTLLasso(Topmodel2007$preference) X.models <- scale(model.matrix(preference~., data = Topmodel2007)[,-1]) rownames(X.models) <- paste0("Subject",1:nrow(X.models)) colnames(X.models) <- c("Gender","Age","KnowShow","WatchShow","WatchFinal") set.seed(5) m.models <- cv.BTLLasso(Y = Y.models, X = X.models) ## End(Not run)
This data set is a simulated data set including all possible types of covariates (X, Z1 and Z2) and is intended to serve for illustration purpose. The data set contains paired comparisons between four objects with five different response categories from 200 subjects.
A list containing simulated data for 200 observations. The list contains both information on the response (paired comparisons) and different covariates.
A response.BTLLasso object with simulated responses including
response: Ordinal paired comparison response vector
first.object: Vector containing the first-named object per paired comparison
second.object: Vector containing the second-named object per paired comparison
subject: Vector containing a subject identifier per paired comparison
with.order Automatically generated vector containing information on order effect. Each paired comparison is associated with an order effect.
Matrix containing both subject-specific covariates
X_var1
X_var2
Matrix containing both subject-object-specific covariates
Z1_var1
Z1_var2
Matrix containing both object-specific covariates
Z2_var1
Z2_var2
## Not run: op <- par(no.readonly = TRUE) data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) par(op) ## End(Not run)
## Not run: op <- par(no.readonly = TRUE) data(SimData) ## Specify control argument ## -> allow for object-specific order effects and penalize intercepts ctrl <- ctrl.BTLLasso(penalize.intercepts = TRUE, object.order.effect = TRUE, penalize.order.effect.diffs = TRUE) ## Simple BTLLasso model for tuning parameters lambda m.sim <- BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim par(xpd = TRUE) plot(m.sim) ## Cross-validate BTLLasso model for tuning parameters lambda set.seed(1860) m.sim.cv <- cv.BTLLasso(Y = SimData$Y, X = SimData$X, Z1 = SimData$Z1, Z2 = SimData$Z2, control = ctrl) m.sim.cv coef(m.sim.cv) logLik(m.sim.cv) head(predict(m.sim.cv, type="response")) head(predict(m.sim.cv, type="trait")) plot(m.sim.cv, plots_per_page = 4) ## Example for bootstrap intervals for illustration only ## Don't calculate bootstrap intervals with B = 20!!!! set.seed(1860) m.sim.boot <- boot.BTLLasso(m.sim.cv, B = 20, cores = 20) m.sim.boot plot(m.sim.boot, plots_per_page = 4) par(op) ## End(Not run)