--- title: "BSPBSS-vignette" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{BSPBSS-vignette} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup, message=FALSE} library(BSPBSS) ``` ## A toy example This is a basic example which shows you how to solve a common problem. First we load the package and generate simulated images with a probabilistic ICA model: ```{r, message=FALSE} library(BSPBSS) set.seed(612) sim = sim_2Dimage(length = 30, sigma = 5e-4, n = 30, smooth = 6) ``` The true source signals are three 2D geometric patterns (set `smooth=0` to generate patterns with sharp edges). ```{r} levelplot2D(sim$S,lim = c(-0.04,0.04), sim$coords) ``` which generate observed images such as ```{r} levelplot2D(sim$X[1:3,], lim = c(-0.12,0.12), sim$coords) ``` Then we generate initial values for mcmc, ```{r} ini = init_bspbss(sim$X, sim$coords, q = 3, ker_par = c(0.1,50), num_eigen = 50) ``` and run! ```{r, message = TRUE} res = mcmc_bspbss(ini$X,ini$init,ini$prior,ini$kernel,n.iter=2000,n.burn_in=1000,thin=10,show_step=100) ``` Then the results can be summarized by ```{r} res_sum = sum_mcmc_bspbss(res, ini$X, ini$kernel, start = 101, end = 200, select_p = 0.5) ``` and shown by ```{r} levelplot2D(res_sum$S, lim = c(-1.3,1.3), sim$coords) ``` For comparison, we show the estimated sources provided by informax ICA here. ```{r} levelplot2D(ini$init$ICA_S, lim = c(-1.7,1.7), sim$coords) ```