Package 'BPM'

Title: Bayesian Purity Model to Estimate Tumor Purity
Description: Bayesian purity model to estimate tumor purity using methylation array data (DNA methylation Infinium 450K array data) without reference samples.
Authors: Jianzhao Gao, Linghao Shen, Xiaodan Fan
Maintainer: Jianzhao Gao and Xiaodan Fan <[email protected]>
License: GPL (>= 2)
Version: 1.0.0
Built: 2024-12-23 06:17:58 UTC
Source: CRAN

Help Index


gene names of probes in 450K array dat

Description

gene names of probes in 450K array dat

Format

A vector with length 480457


Get TOPK=500 DMCs and non-DMCs using moderated-t test

Description

Get TOPK=500 DMCs and non-DMCs using moderated-t test

Usage

ApiGetDMCs(betaValue, TOPK = 500, tumorNum = NULL,
  filterProbes = FALSE, userProbes = NULL)

Arguments

betaValue

A matrix from TCGA array data

TOPK

An integer number, default 500. Number of DMCs/non-DMCs.

tumorNum

A postive number, First tumorNum columns in betaValue are tumor samples. If tumorNum is NULL, first half of columns are considered as tumor samples,

filterProbes

Logistic. defalut is FALSE. The code use all probes in betaValue. If TRUE, you can use default good probes provided in our code. you can also provide your good probes in userProbes.

userProbes

A number list. The row numbers in betaValue. These rows are considered as good probes. return DMCs (TOPK DMCs and TOPK non-DMCs row index in betaValue)

Note

User can provide the good probes indexes (row number) to filter the probes. A global variable goodProbes are used in this function. goodProbes: probes with SNPs at the CpG or single base extension sites, and corss-reative probes are removed. More details see the reference paper.


Bayesian Purity Model (BPM) Main functions.

Description

Bayesian Purity Model (BPM) Main functions.

Usage

BayPM(betaValue, TOPK = 500, tumorNum = NULL, filterProbes = FALSE,
  userProbes = NULL)

Arguments

betaValue

A matrix,TCGA methlation array data. Each row: loci, Tumor1,Tumor2,...,Normal1,Nomral2,...

TOPK

A number. Number of DMCs/nonDMCs selected

tumorNum

The number of tumor samples. if NULL, the default number is half of column number of dataset.

filterProbes

Logistic. defalut is FALSE. The code use all probes in betaValue. If TRUE, you can use default good probes provided in our code. you can also provide your good probes in userProbes.

userProbes

A number list. The row numbers in betaValue. These rows are considered as good probes.

Value

tumor purity estimation of tumor samples

Examples

### need to install package "limma"
### source("https://bioconductor.org/biocLite.R");biocLite("limma");
BayPM(simUCEC,20,2);

BPM software package

Description

Bayesian model for purity estimation using DNA methylation data

Details

The main function is BayPM

Author(s)

Jianzhao Gao([email protected]), Linghao Shen Xiaodan Fan ([email protected])

References

Jianzhao Gao, Linghao Shen, and Xiaodan Fan, Bayesian model for purity estimation using DNA methylation data.(submitted)

Examples

### need to install package "limma"
### source("https://bioconductor.org/biocLite.R");biocLite("limma");
library(BPM);
BayPM(simUCEC,20,2);

Estimate noise intensity (nv) for non-DMCs, using maximum likelihood estmiation.

Description

Estimate noise intensity (nv) for non-DMCs, using maximum likelihood estmiation.

Usage

estimateNu(z, phi, maxit = 50, beginP = 20)

Arguments

z

A matrix. Observated mixed turmor samples.

phi

mode of beta-values of each row in pure nomral samples y.

maxit

A postive integer. The iteration number used in maximum likelihood.

beginP

A number, where the method start to search from for root.

return estimated nv (noise intensity)


Sampling xi and alpha (tumor purity)

Description

Sampling xi and alpha (tumor purity)

Usage

fullSampler(y, z, mstates, xprior = NULL, maxit = 1000,
  burnin = maxit, xpar = FALSE, n_ab0 = NULL, alp0 = NULL,
  xbar0 = NULL, trace = FALSE, verbose = FALSE)

Arguments

y

A matrix, observed pure normal samples

z

A matrix, observed mixed tumor samples

mstates

A matrix, hyper/hypo of dataset

xprior

A matrix, prior knowledge about purity

maxit

A number, maximum iteraction

burnin

A number, "burn-in" sample

xpar

Logistic, default is FALSE

n_ab0

initial value of n_ab

alp0

initial value of alpha

xbar0

initial value of xbar

trace

Logisitc, check the values in code, default is FALSE

verbose

Logistic, output the message,default is FALSE

Value

x_bar x_mode, x_last x2 x_sample x_sample xpar xprior2, nab n_ab2, alp alp2


good probes in packages

Description

good probes removed Y chrome.

Format

A vector with length 425698


Simulated data to illustrate datasets in packages

Description

A dataset containing 100 gene and 4 smaples, first two columns are tumor1 tumor2 last two columns are normal1 normal2

  • x. the genes

  • y. two tumor samples; two normal samples;

Format

A matrix with 100 rows and 4 columns