
BB: An R Package for Solving a Large System of
Nonlinear Equations and for Optimizing a

High-Dimensional Nonlinear Objective Function

Ravi Varadhan
Johns Hopkins University

Paul D. Gilbert
Bank of Canada

Abstract

This introduction to the R package BB is a (slightly) modified version of Varadhan and
Gilbert (2009), published in the Journal of Statistical Software.

We discuss R package BB, in particular, its capabilities for solving a nonlinear system of
equations. The function BBsolve in BB can be used for this purpose. We demonstrate the
utility of these functions for solving: (a) large systems of nonlinear equations, (b) smooth,
nonlinear estimating equations in statistical modeling, and (c) non-smooth estimating
equations arising in rank-based regression modeling of censored failure time data. The
function BBoptim can be used to solve smooth, box-constrained optimization problems.
A main strength of BB is that, due to its low memory and storage requirements, it is
ideally suited for solving high-dimensional problems with thousands of variables.

Keywords: accelerate failure time model, Barzilai-Borwein, derivative-free, estimating equa-
tions, large-scale optimization, non-monotone line search, non-smooth optimization, rank-
based regression.

1. Introduction
R (R Development Core Team 2009) package BB provides functions for solving large-scale
nonlinear problems. BB (version 2009.6-1) comprises six functions, which are nested at three
levels. At the bottom level are three functions: sane and dfsane for solving a nonlinear system
of equations; and spg for optimizing a nonlinear objective function with box constraints.
These functions, especially dfsane and spg, are the workhorses of BB. The functions BBsolve
and BBoptim are at the next higher level. BBsolve is a wrapper for dfsane. It takes a single
parameter vector as starting value and calls dfsane repeatedly with different algorithm control
parameters to try and achieve successful convergence to the solution. Similarly, BBoptim,
which is a wrapper for spg, takes a single parameter vector as starting value and calls spg
repeatedly with different algorithm control parameters. At the top-most level is the function
multiStart. This takes a matrix of parameters as multiple starting values and, depending
on the value of the argument action specified by the user, calls either BBsolve or BBoptim
for each starting value.
The main purposes of this article are: (1) to introduce BB to R users, (2) to present back-
ground necessary for the appropriate use of the algorithms, and (3) to demonstrate the
utility of the algorithms by presenting results on a variety of test problems. In addition

2 BB

to BB, R package nleqslv (Hasselman 2009) has recently been added to the Comprehen-
sive R Archive Network (CRAN) http://CRAN.R-project.org/. However, nleqslv uses
Newton-type methods, and hence it may not be suitable for solving large systems of equa-
tions. We will confine this article to the problem of finding a root of simultaneous nonlinear
equations, and not discuss spg for nonlinear optimization, since that problem can be ad-
dressed using existing R functions including optim, nlminb, and nlm. Other optimization
packages are summarized in the CRAN task view (Zeileis 2005) on optimization at http:
//cran.at.r-project.org/web/views/Optimization.html. However, we point out that
the optimization function spg in BB is different from the existing functions in that it is well
suited to large-scale optimization, since it does not require the Hessian matrix of the objective
function. It is based on the Barzilai-Borwein gradient method developed by Raydan (1997).
Our R implementation (which is based on the Fortran code of Birgin, Martínez, and Raydan
2001) is competitive with the limited-memory BFGS algorithm (method = "L-BFGS-B") in
optim for large-scale, box-constrained optimization, and is superior to the conjugate gradient
methods (method = "CG") in optim for large-scale, unconstrained optimization. Results pre-
sented here were obtained with BB version 2009-6.1. The most recent version of package BB
is available from CRAN at http://CRAN.R-project.org/package=BB. A tutorial on BB is
available and can be viewed from an R session by typing:

R> vignette("BB", package = "BB")

Also, a version of this paper, augmented with results from the system on which the vignette
is compiled, can be viewed by typing:

R> vignette("BBvignetteJSS", package = "BB")

The JSS paper was compiled with settings for the number of simulations and bootstrap
samples as nsim=1000, nboot=500, but, in order to maintain a reasonable build time for the
package, these values are set very much smaller in the vignette (nsim=10, nboot=50).

R> nsim <- 10 # 1000
R> nboot <- 50 # 500

2. Solving nonlinear system of equations
We are interested in solving the nonlinear system of equation

F (x) = 0, (1)

where F : Rp 7→ Rp is a nonlinear function with continuous partial derivatives. We are
interested in situations where p is large, and where the Jacobian of F is either unavailable or
requires a prohibitive amount of storage, although the algorithms in BB are also applicable
when p is small. The best known methods for solving (1) are Newton’s method and the
quasi-Newton’s methods (Ortega and Rheinboldt 1970; Dennis and Schnabel 1983). Newton’s
method employs a working linear approximation to F (x) around an estimate of the solution,
and improves it in an iterative manner:

xk+1 = xk − J(xk)−1 F (xk),

http://CRAN.R-project.org/
http://cran.at.r-project.org/web/views/Optimization.html
http://cran.at.r-project.org/web/views/Optimization.html
http://CRAN.R-project.org/package=BB

Ravi Varadhan, Paul Gilbert 3

where J : Rp ×Rp 7→ Rp is the Jacobian of F evaluated at xk. Quasi-Newton methods use an
approximation of J , which, along with the solution vector, is updated at each iteration. For
example, the classical Broyden’s (“good”) method is given by the equations:

xk+1 = xk − Bk
−1 F (xk);

Bk+1 = Bk + F (xk+1) (xk+1 − xk)⊤

(xk+1 − xk)⊤(xk+1 − xk) ,

where B0 is usually the identity matrix. These methods are attractive because they converge
rapidly from any good starting value. However, they need to solve a linear system of equations
using the Jacobian or an approximation of it at each iteration, which can be prohibitively
expensive for large p problems.
An indirect approach to solving Equation 1 is to transform it to a standard optimization
problem by defining a merit function ϕ(u) where ϕ : Rp 7→ R is a functional with a unique
global minimum at u = 0. Now, any solution of F (x) = 0 is also a minimizer of ϕ(F (x)), but
the converse does not always hold. A sufficient condition for the converse to hold is that the
Jacobian of F be non-singular at the minimizer of ϕ(u) (Ortega and Rheinboldt 1970). A
commonly used merit function is the L2-norm of F : ϕ(F (x)) = ∥F (x)∥, which is also known
as the “residual”. This approach generally does not work well in practice, and hence is little
used as a stand-alone method for solving nonlinear systems. However, as discussed later, we
shall use this approach for generating good starting values for the spectral algorithms.

2.1. Spectral method for nonlinear systems

Recently, two efficient algorithms, SANE and DF-SANE, for solving large-scale nonlinear
systems of equations have been proposed in the numerical analysis literature by Raydan and
his colleagues (SANE: La Cruz and Raydan 2003; DF-SANE: La Cruz, Martínez, and Raydan
2006). These methods are an extension of the Barzilai-Borwein method for finding local
minimum (Barzilai and Borwein 1988; Raydan 1997). They use ±F (x) as search directions in
a systematic way, with one of the spectral coefficients as steplength, and a non-monotone line-
search technique for global convergence. This provides a robust scheme for solving nonlinear
systems. The simplicity of search direction and steplength results in low-cost per iteration.
The spectral approach for nonlinear systems is defined by the following iteration:

xk+1 = xk + αk dk; k = 0, 1, 2, . . . (2)

where αk is the spectral steplength, and dk is the search direction, which is defined as follows.

dk =
{

−F (xk) : for DF-SANE,
±F (xk) : for SANE

For the SANE algorithm, the sign associated with F (xk) is that which yields a descent
direction with respect to the merit function ∥F (xk)∥2. The only spectral steplength considered
in La Cruz and Raydan (2003) and La Cruz et al. (2006) is:

αk =
s⊤

k−1 sk−1

s⊤
k−1 yk−1

; k = 1, 2, . . . , (3)

4 BB

where sk−1 = xk −xk−1, and yk−1 = F (xk)−F (xk−1). Below, and in the tables, we denote the
SANE and DF-SANE algorithms that use this steplength as sane-1 and dfsane-1, respectively.
In addition to Equation 3, Barzilai and Borwein (1988) proposed a second spectral steplength:

αk =
s⊤

k−1 yk−1

y⊤
k−1 yk−1

. (4)

We denote the SANE and DF-SANE algorithms that use this steplength as sane-2 and dfsane-
2, respectively. We also consider a third spectral steplength, first proposed in Varadhan and
Roland (2008) for the acceleration of EM algorithms:

αk = sgn(s⊤
k−1 yk−1) ∥sk−1∥

∥yk−1∥
, (5)

where sgn(x) = x/|x|, when x ̸= 0, and is zero when x = 0. For all three steplengths, we
define α0 = min(1, 1/∥F (x0)∥). The general effectiveness of spectral steplengths is due to the
fact that they can be viewed as a Rayleigh quotient with respect to a secant approximation
of the Jacobian. The scalar |αk| is closely related to the condition number of the Jacobian Jk

(Fletcher 2001).

2.2. Globalization using non-monotone line search

To achieve global convergence, the spectral iterative scheme (2) must be combined with a
suitable line search technique. For SANE, La Cruz and Raydan (2003) consider a non-
monotone line search technique (Grippo, Lampariello, and Lucidi 1986), which can be written
as

f(xk+1) ≤ max
0≤j≤M

f(xk−j) + γαk∇f(xk)⊤dk, (6)

where the merit function f(x) = F (x)⊤F (x), and γ is a small positive number (we choose
γ = 10−4). In the above condition, denoted here as the GLL condition, M is a positive integer
that plays an important role in dictating the allowable degree of non-monotonicity in the value
of the merit function, with M = 0 yielding a strictly monotone scheme. As pointed out by
Fletcher (2001), the Barzilai-Borwein schemes perform poorly when strict monotonicity is
imposed, especially in ill-conditioned problems. They perform better when some amount of
non-monotonicity is allowed, hence globalization using the GLL condition, with values of M
between 5-20. The term ∇f(xk)⊤dk in SANE is equal to ±F ⊤

k JkFk, where Fk = F (xk) and
Jk is the Jacobian of F at xk. This can be evaluated without computing the Jacobian as
follows:

F ⊤
k JkFk ≈ F ⊤

k

[
F (xk + hFk) − Fk

h

]
,

where h = 10−7.
For DF-SANE (stands for "derivative-free SANE"), La Cruz et al. (2006) propose a new, and
different globalization line search technique:

f(xk+1) ≤ max
0≤j≤M

f(xk−j) + ηk − γα2
kf(xk), (7)

where γ = 10−4, and ηk > 0 decreases with k such that
∑∞

k=0 ηk = η < ∞. Note that this
strategy does not involve any Jacobian computations. Hence the phrase "derivative-free".

Ravi Varadhan, Paul Gilbert 5

This strategy maintains the non-monotonicity of GLL, while avoiding the quadratic product
involving the Jacobian, which entails an additional function evaluation at each iteration.
Consequently, DF-SANE is generally more economical than SANE in terms of number of
evaluations of F . The presence of ηk > 0 ensures that all the iterations are well-defined,
and the forcing term −γα2

kf(xk) provides the theoretical condition sufficient for establishing
global convergence (La Cruz et al. (2006)).

2.3. Implementations of SANE and DF-SANE in BB

For detailed algorithmic implementation of the iterations and non-monotone line searches for
SANE and DF-SANE, the reader is directed to La Cruz and Raydan (2003) and La Cruz
et al. (2006), respectively. Also see the documentation for the R functions sane and dfsane
in BB for more details. Here we only discuss the salient features of our R implementation
for SANE and DF-SANE algorithms in the package BB that are different from the original
Fortran codes (which can be obtained from Raydan 2009). These are:

1. We provide an option for three spectral steplengths, Equations 3, 4 and 5. The method
argument in sane and dfsane functions can be used to select between these steplengths.
The original SANE and DF-SANE algorithms only allowed one steplength, Equation 3,
which can be selected with method=1. We have set method=2, which corresponds to
Equation 4, as the default. In our numerical experiments, this generally outperformed
the other two methods. (See Table 1 discussed in the next section for results.)

2. We re-scale the first BB steplength as: α0 = min(1, 1/∥F (x0)∥), whereas in the original
implementation α0 = 1.

3. We provide an option for improving on starting values, when the user is unable to
generate good starting values. We do this by calling the Nelder-Mead nonlinear simplex
algorithm (Nelder and Mead 1965), as implemented in the R function optim, with the
merit function f(x) as the objective function.

4. We provide an option for improving upon convergence when sane or dfsane terminates
unsuccessfully in some particular manner, i.e. when convergence = 4 or 5 for sane and
when convergence = 2 or 5 for dfsane. We do this by calling the limited memory
BFGS algorithm (method="L-BFGS-B") in optim with the merit function f(x) as the
objective function.

5. When we are close to the solution, i.e. when f(xk) < 10−4, we use the dynamic retard
strategy proposed in Luengo and Raydan (2003):

xk+1 = xk + αk−1 dk,

i.e. we use the spectral steplength from two iterations before the current one. This
retarded spectral scheme was never worse than the unretarded spectral method (Eq. 2)
in our experiments, and in many cases it actually exhibited faster convergence (results
not shown).

6. We implement an additional stopping criterion in our R functions. The iterations are
terminated when there is no decrease in the merit function f(x) over noimp iterations,

6 BB

where we choose a default value of noimp = 100. This is particularly essential when a
large M , say, M ≥ 100 is used.

2.4. What to do when the algorithm fails? – Function BBsolve

Algorithm dfsane or (sane) is said to have failed when a non-zero convergence type is ob-
tained, i.e. when convergence > 0. In this case, we have found that the following sequential
strategy generally works quite well:

1. Try a different non-monotonicity parameter M. Since the default is M = 10, try M=50.

2. Try a different method. Since the default is method = 2, try methods 1 and 3.

3. Try with Nelder-Mead initialization NM. Since the default is NM = FALSE, the user should
try NM = TRUE.

We have written an R wrapper function called BBsolve to automatically implement this
strategy. We have found this function to be successful in problems where dfsane and sane
had failed to converge. Here we give a simple example to illustrate this using the Freudenstein-
Roth function.

R> require("BB")
R> froth <- function(p){
+ r <- rep(NA, length(p))
+ r[1] <- -13 + p[1] + (p[2] * (5 - p[2]) - 2) * p[2]
+ r[2] <- -29 + p[1] + (p[2] * (1 + p[2]) - 14) * p[2]
+ r
+ }
R> p0 <- rep(0, 2)
R> dfsane(par = p0, fn = froth, control = list(trace = FALSE))

$par
[1] -4.990589 -1.448398

$residual
[1] 10.42073

$fn.reduction
[1] 17.04337

$feval
[1] 131

$iter
[1] 106

$convergence

Ravi Varadhan, Paul Gilbert 7

[1] 5

$message
[1] "Lack of improvement in objective function"

R> sane(par = p0, fn = froth, control = list(trace = FALSE))

$par
[1] -5.729871 -1.702569

$residual
[1] 9.592763

$fn.reduction
[1] 18.21428

$feval
[1] 417

$iter
[1] 127

$convergence
[1] 5

$message
[1] "Lack of improvement in objective function"

R> BBsolve(par = p0, fn = froth)

Successful convergence.
$par
[1] 5 4

$residual
[1] 2.012452e-09

$fn.reduction
[1] 6.998875

$feval
[1] 1109

$iter
[1] 233

$convergence

8 BB

[1] 0

$message
[1] "Successful convergence"

$cpar
method M NM

1 50 1

Function dfsane and sane fail to converge, while BBsolve converges successfully. A similar
wrapper function called BBoptim can be used to solve optimization problems when spg fails
to converge.

3. Numerical Experiments

3.1. Standard test problems
We have tested our algorithms extensively on a number of nonlinear systems considered in
La Cruz and Raydan (2003), La Cruz et al. (2006), and Luksan and Vlcek (2003). Here we
report the results for six problems, whose statements are given in Apppendix A. We tested
four methods, sane and dfsane, each with two steplengths Equations 3 and 4, for 1000 ran-
domly generated initial values for each problem, which are also provided in Appendix A. This
approach of using random starting values is uncommon in the numerical analysis literature
when testing new methods, and when comparing methods. Rather, a single, reasonably good
starting value is used in each test problem. Hence, our tests are much more stringent than
those commonly seen in the numerical analysis literature (e.g. La Cruz and Raydan 2003,
La Cruz et al. 2006). Therefore, it should not come as a surprise that there are substantial
number of convergence failures in some problems. We used ∥F (xn)∥√

p ≤ 10−7, where p is the
dimensionality of the problem, as the stopping criterion. We have successful convergence (i.e.
convergence = 0) when this criterion is satisfied. The algorithm (sane or dfsane) is said
to have failed when convergence > 0.
We chose p = 500 for all the 6 test problems. Unless otherwise stated explicitly, we used the
default control parameter setting for all the parameters of dfsane and sane. The numerical
experiment results presented here were performed using R version 2.9.1 running on a Microsoft
Windows Vista operating system, with a 2.2 GHz Intel Dual-core Pentium processor and 4
GB of RAM. The results are presented in Table 1.
In order to reproduce the random numbers used in this paper, the seed and RNG types are
set to known values.

R> require("setRNG")
R> test.rng <- list(kind = "Mersenne-Twister", normal.kind = "Inversion",
+ seed = 1234)
R> old.seed <- setRNG(test.rng)

Iterative numerical procedures can be sensitive to system math libraries and even hardware
floating point calculation, since a very small difference in a search steps will result in slightly

Ravi Varadhan, Paul Gilbert 9

different paths to the solution. This can result in a different number of iterations and/or a
slightly different answer. The difference may be especially aggravated in problems where the
objective function is nearly ”flat” near the solution. We have run the examples here with
different versions of R and on different hardware and operating systems and the results are
relatively similar, but users replicating the results may see small differences.
We define a ”failure” as the inability of an algorithm to achieve the default tolerance of 1.e−07
under default values for all the control parameters. It might be possible that a different control
setting enables successful convergence. In fact, this is one of the main motivations for creating
the BBsolve function that can automatically try different control settings to achieve successful
convergence.
Algorithms sane-2 and dfsane-2 performed better (using steplength Equation 4) than sane-
1 and dfsane-1 (with steplength Equation 3), except for the extended Rosenbrock function.
dfsane-2 was the best method overall. We re-ran the tests with BBsolve for the two problems:
exponential function 3 and extended Rosenbrock, where even the best performing method had
a substantial number of convergence failures. Now, BBsolve converged successfully in the
extended Rosenbrock problem for all 1000 starting values, and had only one failure in the
exponential function 3 problem. This demonstrates that BBsolve is a reliable tool for solving
a nonlinear system of equations.

3.2. Finding multiple roots or multiple local optima – Function multiStart

It is not uncommon for a nonlinear system of equations to have multiple roots or for a
nonlinear objective function to have multiple local minima (or maxima). In this case, it
may be of interest to identify as many, if not all, solutions as possible. To this end, we have
provided a function called multiStart, which can accept a matrix of parameter values, where
each row of the matrix is a starting value. The user needs to define this matrix and pass it
as an input to multiStart. Two widely used approaches are: (1) generate random numbers
according to some probability distribution, and (2) regular grid search. This function has an
argument called action, which indicates whether the user wants to solve a nonlinear system of
equations or to optimize a nonlinear objective function. For each starting value, multiStart
calls either BBsolve or BBoptim.
We now illustrate how to use multiStart to find multiple roots. We consider a system of
high-degree polynomial equations (Kearfott 1987), comprising 3 equations in 3 variables. It
has 12 real roots and 126 complex roots. Here we find all the 12 roots.
We generate 300 random starting values, each a vector of length equal to 3. The system is
then solved 300 times and the unique solutions were picked out.

R> hdp <- function(x) {
+ r <- rep(NA, length(x))
+ r[1] <- 5*x[1]^9 - 6*x[1]^5 * x[2]^2 + x[1] * x[2]^4 + 2*x[1] * x[3]
+ r[2] <- -2 * x[1]^6 * x[2] + 2 * x[1]^2 * x[2]^3 + 2 * x[2] * x[3]
+ r[3] <- x[1]^2 + x[2]^2 - 0.265625
+ r
+ }
R> old.seed <- setRNG(test.rng)
R> p0 <- matrix(runif(900), 300, 3)

10 BB

Methods # Iters # Fevals CPU (sec) # Failures
1. Exponential function 3

sane-1 147 (50, 92) 630 (131, 275) 0.30 (0.06, 0.14) 427
dfsane-1 231 (152, 271) 551 (283, 490) 0.31 (0.17, 0.28) 428
sane-2 115 (99, 130) 252 (208, 279) 0.13 (0.11, 0.14) 57
dfsane-2 210 (175, 237) 227 (183, 256) 0.15 (0.12, 0.17) 7
BBsolve 212 (175, 235) 229 (183, 254) 0.15 (0.12, 0.17) 1

2. Trigexp function
sane-1 33 (24, 27) 72 (49, 55) 0.08 (0.05, 0.06) 6
dfsane-1 29 (24, 28) 30 (25, 29) 0.04 (0.03, 0.04) 0
sane-2 37 (24, 28) 76 (49, 57) 0.08 (0.05, 0.07) 0
dfsane-2 31 (24, 28) 32 (25, 29) 0.04 (0.03, 0.05) 0

3. Broyden’s tridiagonal function
sane-1 19 (19, 19) 39 (39, 39) 0.02 (0.01, 0.02) 0
dfsane-1 19 (19, 19) 20 (20, 20) 0.01 (0.00, 0.02) 0
sane-2 20 (20, 20) 41 (41, 41) 0.02 (0.01, 0.02) 0
dfsane-2 20 (20, 20) 21 (21, 21) 0.01 (0.00, 0.02) 0

4. Extended Rosenbrock function
sane-1 41 (35, 41) 91 (73, 86) 0.03 (0.03, 0.03) 30
dfsane-1 43 (35, 42) 61 (39, 50) 0.03 (0.01, 0.03) 39
sane-2 80 (39, 120) 174 (80, 247) 0.07 (0.03, 0.10) 484
dfsane-2 61 (38, 60) 66 (42, 68) 0.04 (0.02, 0.04) 158
BBsolve 40 (37, 43) 42 (39, 45) 0.02 (0.02, 0.03) 0

5. Troesch function
sane-1 1501 (1501, 1501) 6068 (6026, 6107) 3.29 (3.21, 3.28) 1000
dfsane-1 1481 (1501, 1501) 4005 (3936, 4192) 2.43 (2.37, 2.53) 949
sane-2 803 (673, 904) 2067 (1722, 2338) 1.17 (0.97, 1.33) 1
dfsane-2 907 (763, 1033) 1391 (1169, 1580) 0.93 (0.78, 1.06) 1

6. Chandrasekhar’s H-equation
sane-1 14 (14, 14) 29 (29, 29) 2.15 (2.08, 2.21) 0
dfsane-1 14 (14, 14) 15 (15, 15) 2.15 (2.08, 2.21) 0
sane-2 13 (13, 13) 27 (27, 27) 2.15 (2.08, 2.21) 0
dfsane-2 13 (13, 13) 14 (14, 14) 2.15 (2.08, 2.21) 0

Table 1: Results of numerical experiments for 6 standard test problems. 1000 randomly
generated starting values were used for each problem. Means and inter-quartile ranges (in
parentheses) are shown. Default control parameters were used in all the algorithms.

R> ans <- multiStart(par = p0, fn = hdp, action = "solve")

R> sum(ans$conv)

[1] 294

R> pmat <- ans$par[ans$conv,]
R> ord1 <- order(pmat[, 1])

Ravi Varadhan, Paul Gilbert 11

table1
sane-1 358.700 38.750 177.250 1700.300 152.750 672.000 0.053 0.005 0.022 8.000
dfsane-1 232.100 189.750 287.750 427.300 342.500 459.000 0.015 0.013 0.017 4.000
sane-2 121.500 107.250 128.750 262.900 240.500 283.750 0.008 0.008 0.009 1.000
dfsane-2 253.300 185.750 298.750 274.900 204.250 319.750 0.011 0.008 0.012 0.000
BBsolve 231.000 185.750 253.000 248.900 204.250 272.750 0.011 0.009 0.012 0.000
sane-1 27.600 26.250 27.750 56.600 53.500 57.500 0.005 0.003 0.004 0.000
dfsane-1 32.300 26.250 30.000 35.100 27.250 31.750 0.003 0.002 0.003 0.000
sane-2 72.300 27.000 113.000 145.700 55.000 227.250 0.009 0.004 0.014 0.000
dfsane-2 43.700 27.000 59.500 44.700 28.000 60.500 0.003 0.002 0.005 0.000
sane-1 19.100 19.000 19.000 39.200 39.000 39.000 0.003 0.001 0.002 0.000
dfsane-1 19.100 19.000 19.000 20.100 20.000 20.000 0.001 0.001 0.001 0.000
sane-2 20.100 20.000 20.000 41.200 41.000 41.000 0.002 0.001 0.002 0.000
dfsane-2 20.100 20.000 20.000 21.100 21.000 21.000 0.001 0.001 0.001 0.000
sane-1 38.500 37.000 38.750 79.900 77.000 80.750 0.003 0.002 0.003 0.000
dfsane-1 37.200 33.750 38.750 42.600 39.250 46.750 0.002 0.001 0.002 0.000
sane-2 54.600 37.000 44.250 111.900 75.000 91.750 0.003 0.002 0.003 2.000
dfsane-2 39.300 36.250 42.000 44.200 39.500 45.500 0.002 0.001 0.002 0.000
BBsolve 39.300 37.000 41.500 41.300 39.000 43.500 0.002 0.002 0.002 0.000
sane-1 1501.000 1501.000 1501.000 6095.300 6052.750 6133.750 0.251 0.245 0.250 10.000
dfsane-1 1501.000 1501.000 1501.000 3979.200 3840.000 4056.000 0.177 0.172 0.180 10.000
sane-2 809.900 707.500 889.000 2079.900 1782.000 2315.500 0.086 0.074 0.095 0.000
dfsane-2 810.700 746.750 890.750 1235.100 1107.750 1378.250 0.058 0.053 0.064 0.000
sane-1 14.000 14.000 14.000 29.000 29.000 29.000 0.085 0.081 0.089 0.000
dfsane-1 14.000 14.000 14.000 15.000 15.000 15.000 0.085 0.081 0.089 0.000
sane-2 13.000 13.000 13.000 27.000 27.000 27.000 0.085 0.081 0.089 0.000
dfsane-2 13.000 13.000 13.000 14.000 14.000 14.000 0.085 0.081 0.089 0.000

Table 2: Results of numerical experiments for 6 standard test problems. 10 randomly gener-
ated starting values were used for each problem. Means and inter-quartile ranges (in paren-
theses) are shown. Default control parameters were used in all the algorithms.

12 BB

R> ans <- round(pmat[ord1,], 4)
R> ans[!duplicated(ans),]

[,1] [,2] [,3]
[1,] -0.5154 0.0000 -0.0124
[2,] -0.4670 -0.2181 0.0000
[3,] -0.4670 0.2181 0.0000
[4,] -0.2799 0.4328 -0.0142
[5,] -0.2799 -0.4328 -0.0142
[6,] 0.0000 -0.5154 0.0000
[7,] 0.0000 0.5154 0.0000
[8,] 0.2799 0.4328 -0.0142
[9,] 0.2799 -0.4328 -0.0142

[10,] 0.4670 0.2181 0.0000
[11,] 0.4670 -0.2181 0.0000
[12,] 0.5154 0.0000 -0.0124

The sum(ans$conv) gives the number of successful runs (284 in our experiments). pmat are
the converged solutions and ans[!duplicated(ans),] displays the 12 unique solutions.

4. Solving nonlinear estimating equations in statistics
Nonlinear system of equations arise commonly in statistics. In some cases, there will be a
naturally associated scalar function of parameters, which can be optimized to obtain param-
eter estimates. For example, maximum likelihood estimates can be obtained by solving the
score equations, even though in general it is better to obtain parameter estimates by directly
maximizing the log-likelihood. In other cases, there may not be a natural scalar function
associated with the nonlinear system, and we need to solve the system of equations to obtain
parameter estimates. This includes a broad class of statistical estimation problems under the
heading of estimating functions or estimating equations, where a probability distribution for
the data generating process is not explicitly postulated, but only weaker conditions such as
unbiasedness and information unbiasedness are imposed on the estimating function (Small
and Wang 2003). Well known examples are: generalized least squares (Carroll and Rup-
pert 1988), generalized estimating equations (Diggle, Heagerty, Liang, and Zeger 2002), and
semi-parametric accelerated failure time models in survival analysis (Kalbfleisch and Prentice
2002). Here we consider two examples with simulated data, and one with real data. Our goal
is to show the utility of BB for solving nonlinear estimating equations.

4.1. Poisson regression with offset
Poisson regression is commonly used to model data in the form of counts, i.e. number of
times a particular event occurred over some known period of time. We consider data of the
form (Yi, ti, Xi) : i = 1, · · · , n, where Yi are the counts over an observation period ti, and Xi

are the corresponding covariates. Estimating equations for poisson regression of count data,
with offset, can be written as:

n∑
i=1

X⊤
i

{
Yi − ti eX⊤

i β
}

= 0. (8)

Ravi Varadhan, Paul Gilbert 13

We consider a simulation problem with n = 500, and p = 8. We set β = (−5, 0.04, 0.3, 0.05,
0.3, −0.005, 0.1, −0.4), and generate data from a poisson distribution: Yi | ti, Xi ∼ poisson(tiX

⊤
i β),

where ti ∼ N(µ = 100, σ = 30), and the covariates Xi are generated according to the follow-
ing R code. This problem can be readily solved using the glm function in R, by specifying
the offset option. However, we show that it can also be directly solved by solving the esti-
mating equations Eq. 8, which are nothing but the score equations of the Poisson likelihood.
Parameter estimates from dfsane are identical to that from glm.

R> U.eqn <- function(beta) {
+ Xb <- c(X %*% beta)
+ c(crossprod(X, Y - (obs.period * exp(Xb))))
+ }
R> poisson.sim <- function(beta, X, obs.period) {
+ Xb <- c(X %*% beta)
+ mean <- exp(Xb) * obs.period
+ rpois(nrow(X), lambda = mean)
+ }
R> old.seed <- setRNG(test.rng)
R> n <- 500
R> X <- matrix(NA, n, 8)
R> X[,1] <- rep(1, n)
R> X[,3] <- rbinom(n, 1, prob=0.5)
R> X[,5] <- rbinom(n, 1, prob=0.4)
R> X[,7] <- rbinom(n, 1, prob=0.4)
R> X[,8] <- rbinom(n, 1, prob=0.2)
R> X[,2] <- rexp(n, rate = 1/10)
R> X[,4] <- rexp(n, rate = 1/10)
R> X[,6] <- rnorm(n, mean = 10, sd = 2)
R> obs.period <- rnorm(n, mean = 100, sd = 30)
R> beta <- c(-5, 0.04, 0.3, 0.05, 0.3, -0.005, 0.1, -0.4)
R> Y <- poisson.sim(beta, X, obs.period)
R> res <- dfsane(par = rep(0,8), fn = U.eqn,
+ control = list(NM = TRUE, M = 100, trace = FALSE))
R> res

$par
[1] -5.015722742 0.042448236 0.308251807 0.049251745 0.318457820
[6] -0.005503549 0.074734709 -0.461351611

$residual
[1] 9.256209e-08

$fn.reduction
[1] 9140.99

$feval
[1] 1055

14 BB

$iter
[1] 882

$convergence
[1] 0

$message
[1] "Successful convergence"

R> glm(Y ~ X[,-1], offset = log(obs.period),
+ family = poisson(link = "log"))

Call: glm(formula = Y ~ X[, -1], family = poisson(link = "log"), offset = log(obs.period))

Coefficients:
(Intercept) X[, -1]1 X[, -1]2 X[, -1]3 X[, -1]4 X[, -1]5

-5.015723 0.042448 0.308252 0.049252 0.318458 -0.005504
X[, -1]6 X[, -1]7
0.074735 -0.461352

Degrees of Freedom: 499 Total (i.e. Null); 492 Residual
Null Deviance: 2170
Residual Deviance: 519.5 AIC: 1664

The last command shows that glm gives the same result.

4.2. Rank-based regression using accelerated failure time model

Accelerated failure time (AFT) model is a useful alternative to the popular Cox relative risk
model for the analysis of failure time data subject to censoring. The AFT model relates
the logarithm of the failure time to a linear function of the covariates, and hence the model
has direct physical interpretation in terms of the failure time. Let Ti be the failure time,
and Xi ∈ Rp be the corresponding covariates for the ith individual (i = 1, . . . , n). The
semi-parametric AFT model may be written as:

log Ti = X⊤
i β + ϵi; (i = 1, . . . , n),

where β ∈ Rp is a vector of regression parameters to be estimated from the data, and ϵi are
independent errors with a common, but unspecified, probability distribution. Let Ci be the
censoring time for ith individual. It is usually assumed that Ci is independent of Ti, given
Xi. Let T ∗

i = min(Ti, Ci) and δi = I(Ti ≤ Ci), where I(.) is the usual indicator function. The
data then comprises (T ∗

i , δi, Xi). The regression parameters β are estimated by solving the
weighted log-rank estimating function (Jin, Lin, Wei, and Ying 2003):

U(β) =
n∑

i=1
δi ϕi

{
Xi −

∑n
j=1 Xj I(T ∗

j − X⊤
j β ≥ T ∗

i − X⊤
i β)∑n

j=1 I(T ∗
j − X⊤

j β ≥ T ∗
i − X⊤

i β)

}
= 0, (9)

Ravi Varadhan, Paul Gilbert 15

where ϕi is a possibly data-dependent weight function. The choice of ϕi = 1 yields the log-rank
estimator, and ϕi = n−1 ∑n

j=1 I(T ∗
j − X⊤

j β ≥ T ∗
i − X⊤

i β) yields the Gehan estimator.
In spite of the theoretical advances, semiparametric methods for the AFT model have been
seldom used in practice, mainly because of the lack of efficient and reliable computational
methods (Jin et al. 2003). One main difficulty is that the system of semiparametric estimating
functions, (9), involves step functions of the regression parameters. Therefore, conventional
numerical techniques, which depend essentially on the smoothness of the functions, cannot
be used. Lin and Geyer (1992) proposed simulated annealing, but their algorithm is not
guaranteed to find the true minimum. Jin et al. (2003) proposed an iterative estimator that
converts the solution of (9) into a sequence of minimization problems, which can be solved
using linear programming techniques. Here we take a more direct approach by directly solving
(9) using the DF-SANE algorithm, which does not involve any derivatives.
We first consider a simulation problem with n = 1000, and p = 8. We randomly generated
a 1000 × 8 matrix of binary and continuous covariates (see the code below for details of
simulation). We set β = (0.5, −0.4, 0.3, −0.2, −0.1, 0.4, 0.1, −0.6). We generated independent
errors ϵi from a log-normal distribution with mean = 1 and variance = 1. Censoring times
Ci were generated from a uniform distribution so as to obtain close to 20% censoring. We
ran 1000 simulations, with a fixed covariate matrix X, but generating new T ∗ and δ in each
simulation. For each simulated data set, we used the same starting value β0 = rep(0, 8) in
dfsane to find a root of (9). The function aft.eqn computes (9).

R> aft.eqn <- function (beta, X, Y, delta, weights = "logrank") {
+ deltaF <- delta == 1
+ Y.zeta <- Y - c(X %*% beta)
+ ind <- order(Y.zeta, decreasing = TRUE)
+ dd <- deltaF[ind]
+ n <- length(Y.zeta)
+ tmp <- apply(X[ind,], 2, function (x) cumsum(x))
+
+ if (weights == "logrank") {
+ c1 <- colSums(X[deltaF,])
+ r <- (c1 - colSums(tmp[dd,] / (1:n)[dd])) / sqrt(n)
+ }
+
+ if (weights == "gehan") {
+ c1 <- colSums(X[deltaF,]* ((1:n)[order(ind)][deltaF]))
+ r <- (c1 - colSums(tmp[dd,])) / (n * sqrt(n))
+ }
+ r
+ }
R> old.seed <- setRNG(test.rng)
R> n <- 1000
R> X <- matrix(NA, n, 8)
R> X[,1] <- rbinom(n, 1, prob=0.5)
R> X[,2] <- rbinom(n, 1, prob=0.4)
R> X[,3] <- rbinom(n, 1, prob=0.4)

16 BB

R> X[,4] <- rbinom(n, 1, prob=0.3)
R> temp <- as.factor(sample(c("0", "1", "2"), size=n, rep=T,
+ prob=c(1/3,1/3,1/3)))
R> X[,5] <- temp == "1"
R> X[,6] <- temp == "2"
R> X[,7] <- rexp(n, rate=1/10)
R> X[,8] <- rnorm(n)
R> eta.true <- c(0.5, -0.4, 0.3, -0.2, -0.1, 0.4, 0.1, -0.6)
R> Xb <- drop(X %*% eta.true)
R> old.seed <- setRNG(test.rng)
R> par.lr <- par.gh <- matrix(NA, nsim, 8)
R> stats.lr <- stats.gh <- matrix(NA, nsim, 5)
R> sumDelta <- rep(NA, nsim)
R> t1 <- t2 <-0

The sum(Delta) indicates that 81.8 percent of the individuals experienced failure. The results
are shown in Table 3 for both log-rank and Gehan estimators.

Log-rank Gehan
Parameter Truth Mean Bias Std. Dev Mean Bias Std. Dev

X1 0.5 0.498 −0.002 0.233 0.501 0.001 0.139
X2 −0.4 −0.386 0.014 0.228 −0.397 0.003 0.136
X3 0.3 0.297 −0.003 0.226 0.298 −0.002 0.135
X4 −0.2 −0.196 0.004 0.256 −0.195 0.005 0.152
X5 −0.1 −0.102 −0.002 0.270 −0.104 −0.004 0.166
X6 0.4 0.405 0.005 0.277 0.400 0.000 0.168
X7 0.1 0.100 0.000 0.011 0.100 0.000 0.007
X8 −0.6 −0.601 −0.001 0.114 −0.601 −0.001 0.068

Table 3: Simulation results for the rank-based regression in accelerated failure time model
(1000 simulations). Estimates were obtained using the dfsane algorithm with M=100.

R> cat("Simulation for Table 2: ")
R> for (i in 1:nsim) {
+ cat(i, " ")
+ err <- rlnorm(n, mean=1)
+ Y.orig <- Xb + err
+ cutoff <- floor(quantile(Y.orig, prob=0.5))
+ cens <- runif(n, cutoff, quantile(Y.orig, prob=0.95))
+ Y <- pmin(cens, Y.orig)
+ delta <- 1 * (Y.orig <= cens)
+ sumDelta[i] <- sum(delta)
+
+ t1 <- t1 + system.time(ans.eta <-
+ dfsane(par=rep(0,8), fn=aft.eqn,
+ control = list(NM = TRUE, trace = FALSE),
+ X=X, Y=Y, delta = delta, weights = "logrank"))[1]

Ravi Varadhan, Paul Gilbert 17

+ par.lr[i,] <- ans.eta$par
+ stats.lr[i,] <- c(ans.eta$iter, ans.eta$feval, as.numeric(t1),
+ ans.eta$conv, ans.eta$resid)
+
+ t2 <- t2 + system.time(ans.eta <-
+ dfsane(par=rep(0,8), fn=aft.eqn,
+ control = list(NM = TRUE, trace = FALSE),
+ X=X, Y=Y, delta = delta, weights="gehan"))[1]
+ par.gh[i,] <- ans.eta$par
+ stats.gh[i,] <- c(ans.eta$iter, ans.eta$feval, as.numeric(t2),
+ ans.eta$conv, ans.eta$resid)
+ invisible({gc(); gc()})
+ }
R> cat("\n")

R> print(t1/nsim)

user.self
0.3718

R> print(t2/nsim)

user.self
0.6895

R> print(mean(sumDelta))

[1] 820.9

R> mean.lr <- signif(colMeans(par.lr),3)
R> bias.lr <- mean.lr - eta.true
R> sd.lr <- signif(apply(par.lr, 2, sd),3)
R> mean.gh <- signif(colMeans(par.gh),3)
R> bias.gh <- mean.gh - eta.true
R> sd.gh <- signif(apply(par.gh, 2, sd),3)
R> signif(colMeans(stats.lr),3)

[1] 4.81e+02 1.24e+03 2.22e+00 5.00e+00 1.03e-02

R> signif(colMeans(stats.gh),3)

[1] 6.79e+02 2.15e+03 3.80e+00 5.00e+00 1.33e-03

We conducted another test of the ability of dfsane for solving the semi-parametric AFT
equations (9) on a real data set that has been widely used in survival analysis: Mayo

18 BB

table2 Log-rank Gehan table2 Log-rank Gehan
Truth Mean Bias Std. Dev. Mean Bias Std. Dev.

X1 0.500 0.506 0.006 0.164 0.526 0.026 0.095
X2 −0.400 −0.341 0.059 0.274 −0.365 0.035 0.114
X3 0.300 0.339 0.039 0.167 0.377 0.077 0.120
X4 −0.200 −0.249 −0.049 0.230 −0.191 0.009 0.125
X5 −0.100 −0.043 0.057 0.326 −0.039 0.061 0.210
X6 0.400 0.351 −0.049 0.203 0.376 −0.024 0.117
X7 0.100 0.100 0.000 0.009 0.100 0.000 0.005
X8 −0.600 −0.513 0.087 0.078 −0.554 0.046 0.052

Table 4: Simulation results for the rank-based regression in accelerated failure time model (
10 simulations). Estimates were obtained using the dfsane algorithm with M=100.

Clinic’s primary biliary cirrhosis (PBC) data (see the appendix of Dickson, Grambsch, Flem-
ing, Fisher, and Langworthy 1989). A corrected version of this data is available at the
Mayo Clinic’s website (http://mayoresearch.mayo.edu/mayo/research/biostat/upload/
therneau_upload/pbc.dat) and in the R package survival (Therneau and original R port by
Thomas Lumley 2009). We computed the regression coefficients for an AFT model with 5
covariates, age, log(albumin), log (bilirubin), edema, and log(protime), with log-rank and
Gehan weights. We also estimated standard errors for them using 500 bootstrap samples.
Results are provided in Table 5.

Gehan Log-rank
Covariate dfsane Jin et al. (2003) dfsane Jin et al. (2003)

age −0.026 (0.006) −0.025 (0.006) −0.027 (0.006) −0.026 (0.005)
log(albumin) 1.456 (0.518) 1.499 (0.523) 1.094 (0.504) 1.633 (0.449)

log(bili) −0.574 (0.069) −0.558 (0.063) −0.596 (0.065) −0.572 (0.056)
edema −0.996 (0.291) −0.924 (0.284) −0.842 (0.310) −0.762 (0.246)

log(protime) −2.124 (0.918) −2.776 (0.776) −0.941 (0.695) −1.918 (0.548)
Residual norm

∥F (xn)∥√
p 0.002 0.005 0.040 0.173

Table 5: Rank-based regression of the accelerated failure time (AFT) model for the primary
biliary cirrhosis (PBC) data set. Point estimates and standard errors (in parentheses) are
provided. Standard errors for dfsane are obtained from 500 bootstrap samples.

R> require("survival")
R> attach(pbc)

R> Y <- log(time)
R> delta <- status == 2
R> X <- cbind(age, log(albumin), log(bili), edema, log(protime))
R> missing <- apply(X, 1, function(x) any(is.na(x)))
R> Y <- Y[!missing]
R> X <- X[!missing,]
R> delta <- delta[!missing]

http://mayoresearch.mayo.edu/mayo/research/biostat/upload/therneau_upload/pbc.dat
http://mayoresearch.mayo.edu/mayo/research/biostat/upload/therneau_upload/pbc.dat

Ravi Varadhan, Paul Gilbert 19

R> ####### Log-rank estimator #######
R> t1 <- system.time(ans.lr <-
+ dfsane(par=rep(0, ncol(X)), fn = aft.eqn,
+ control=list(NM = TRUE, M = 100, noimp = 500, trace = FALSE),
+ X=X, Y=Y, delta=delta))[1]
R> # With maxit=5000 this fails with "Lack of improvement in objective function"
R> # not with "Maximum limit for iterations exceeded"
R>
R> t1

user.self
0.331

R> ans.lr

$par
age edema

-0.02604586 1.47049360 -0.58095618 -0.71477055 -1.35834955

$residual
[1] 0.0397396

$fn.reduction
[1] 7.15225

$feval
[1] 2088

$iter
[1] 1501

$convergence
[1] 1

$message
[1] "Maximum limit for iterations exceeded"

R> ####### Gehan estimator #######
R> t2 <- system.time(ans.gh <-
+ dfsane(par = rep(0, ncol(X)), fn = aft.eqn,
+ control = list(NM = TRUE, M = 100, noimp = 500, trace = FALSE),
+ X=X, Y=Y, delta=delta, weights = "gehan"))[1]
R> t2

user.self
0.415

20 BB

R> ans.gh

$par
age edema

-0.02548359 1.51373621 -0.56088393 -0.93627892 -2.64109642

$residual
[1] 0.001853857

$fn.reduction
[1] 3.529347

$feval
[1] 2384

$iter
[1] 1501

$convergence
[1] 1

$message
[1] "Maximum limit for iterations exceeded"

The sections which do estimates with code from Jin’s web site are not executed in the vignette
because they takes too long. You can change this by indicating eval=TRUE for the Scode
sections in the vignette.

R> # This source defines functions l1fit and aft.fun
R> source("http://www.columbia.edu/~zj7/aftsp.R")
R> # N.B. aft.fun resets the RNG seed by default to a fixed value,
R> # and does not reset it. Beware.
R>
R>
R> require("quantreg")
R> t3 <- system.time(ans.jin <-
+ aft.fun(x=X, y=Y, delta=delta, mcsize=1))[1]
R> t3
R> ans.jin$beta

R> # without Jin's results
R> U <- function(x, func, ...) sqrt(mean(func(x, ...)^2))
R> # result from Jin et al. (2003) gives higher residuals
R> table3.ResidualNorm <- c(
+ U(ans.gh$par, func=aft.eqn, X=X, Y=Y, delta=delta,
+ weights="gehan"),
+ U(ans.lr$par, func=aft.eqn, X=X, Y=Y, delta=delta))

Ravi Varadhan, Paul Gilbert 21

R> # with Jin's results
R> U <- function(x, func, ...) sqrt(mean(func(x, ...)^2))
R> # result from Jin et al. (2003) gives higher residuals
R> table3.ResidualNorm <- c(
+ U(ans.gh$par, func=aft.eqn, X=X, Y=Y, delta=delta,
+ weights="gehan"),
+ U(ans.jin$beta[1,], func=aft.eqn, X=X, Y=Y, delta=delta,
+ weights="gehan"),
+ U(ans.lr$par, func=aft.eqn, X=X, Y=Y, delta=delta),
+ U(ans.jin$beta[2,], func=aft.eqn, X=X, Y=Y, delta=delta))
R>

R> # Bootstrap to obtain standard errors
R>
R> Y <- log(time)
R> delta <- status==2
R> X <- cbind(age, log(albumin), log(bili), edema, log(protime))
R> missing <- apply(X, 1, function(x) any(is.na(x)))
R> Y.orig <- Y[!missing]
R> X.orig <- X[!missing,]
R> delta.orig <- delta[!missing]
R> old.seed <- setRNG(test.rng)
R> lr.boot <- gh.boot <- matrix(NA, nboot, ncol(X))
R> time1 <- time2 <- 0

R> cat("Bootstrap sample: ")
R> for (i in 1:nboot) {
+ cat(i, " ")
+ select <- sample(1:nrow(X.orig), size=nrow(X.orig), rep=TRUE)
+ Y <- Y.orig[select]
+ X <- X.orig[select,]
+ delta <- delta.orig[select]
+ time1 <- time1 + system.time(ans.lr <-
+ dfsane(par = rep(0, ncol(X)), fn = aft.eqn,
+ control = list(NM = TRUE, M = 100, noimp = 500, trace = FALSE),
+ X=X, Y=Y, delta=delta))[1]
+ time2 <- time2 + system.time(ans.gh <-
+ dfsane(par = rep(0, ncol(X)), fn = aft.eqn,
+ control = list(NM = TRUE, M = 100, noimp = 500, trace = FALSE),
+ X=X, Y=Y, delta=delta, weights = "gehan"))[1]
+ lr.boot[i,] <- ans.lr$par
+ gh.boot[i,] <- ans.gh$par
+ }
R> cat("\n")

R> time3 <- system.time(ans.jin.boot <-
+ aft.fun(x = X.orig, y = Y.orig, delta = delta.orig,

22 BB

+ mcsize = nboot))[1]
R> time1
R> time2
R> time3
R> colMeans(lr.boot)
R> # Results on different systems and versions of R:
R> # [1] -0.02744423 1.09871350 -0.59597720 -0.84169498 -0.95067376
R> # [1] -0.02718006 1.01484050 -0.60553894 -0.83216296 -0.82671339
R> # [1] -0.02746916 1.09371431 -0.59630955 -0.84170621 -0.94147407
R>
R> sd(lr.boot) * (499/500)
R> # Results on different systems and versions of R:
R> # [1] 0.005778319 0.497075716 0.064839483 0.306026261 0.690452468
R> # [1] 0.006005054 0.579962922 0.068367668 0.307980986 0.665742686
R> # [1] 0.005777676 0.504362828 0.064742446 0.309687062 0.695128194
R>
R> colMeans(gh.boot)
R> # Results on different systems and versions of R:
R> # [1] -0.0263899 1.4477801 -0.5756074 -0.9990443 -2.0961280
R> # [1] -0.02616728 1.41126364 -0.58311902 -1.00953045 -2.01724976
R> # [1] -0.02633854 1.45577255 -0.57439183 -0.99630007 -2.12363711
R>
R> sd(gh.boot) * (499/500)
R> # Results on different systems and versions of R:
R> # [1] 0.006248941 0.519016144 0.068759981 0.294145730 0.919565487
R> # [1] 0.005599693 0.571631837 0.075018323 0.304463597 1.043196254
R> # [1] 0.006183826 0.518332233 0.068672881 0.291036025 0.917733660
R>
R>
R> ans.jin.boot$beta
R> sqrt(diag(ans.jin.boot$betacov[,,2])) # log-rank
R> # Results on different systems and versions of R:
R> # [1] 0.005304614 0.470080732 0.053191766 0.224331718 0.545344403
R> # [1] 0.00517431 0.44904332 0.05632078 0.24613883 0.54826652
R> # [1] 0.00517431 0.44904332 0.05632078 0.24613883 0.54826652
R>
R> sqrt(diag(ans.jin.boot$betacov[,,1])) # Gehan
R> # Results on different systems and versions of R:
R> # [1] 0.005553049 0.522259799 0.061634483 0.270337048 0.803683570
R> # [1] 0.005659013 0.522871858 0.062670939 0.283731999 0.775959845
R> # [1] 0.005659013 0.522871858 0.062670939 0.283731999 0.775959845

The table is generated here without the results from running Jin’s code.
We also estimated the semiparametric AFT model using the algorithm of Jin et al. (2003).
(The R code was obtained from Dr. Jin’s website http://www.columbia.edu/~zj7/index_
files/Page382.htm). Comparing our results with theirs (see Table 5), we observe some
differences in both the point estimates and standard errors. The point estimates for the

http://www.columbia.edu/~zj7/index_files/Page382.htm
http://www.columbia.edu/~zj7/index_files/Page382.htm

Ravi Varadhan, Paul Gilbert 23

table3.part1
age −0.027 1.204 −0.028 0.860
log(albumin) 1.350 1.204 1.070 0.860
log(bili) −0.585 1.204 −0.603 0.860
edema −1.033 1.204 −0.844 0.860
log(protime) −1.957 1.204 −0.973 0.860

table3.ResidualNorm
Residual norm ∥F (xn)∥√

p 0.002 0.040

Table 6: Rank-based regression of the accelerated failure time (AFT) model for the primary
biliary cirrhosis (PBC) data set. Point estimates and standard errors (in parentheses) are
provided. Standard errors for dfsane are obtained from 50 bootstrap samples.

Gehan estimator seem to agree reasonably well. For the logrank estimator, the point estimates
of log(albumin) and log(protime) are considerably smaller (in absolute magnitude) for
dfsane than those obtained using the method of Jin et al. (2003). The residual norm from
dfsane is 2 to 4 times smaller than that of Jin et al. (2003), indicating that our solutions to (9)
are better than those in Jin et al. (2003). More accurate solutions for the log-rank estimator
can be obtained from Jin’s algorithm by using a larger number of iterations. For example,
when we used 6 iterations (the default is 3), the residual error was almost as small as that from
dfsane, and the point estimates were in better agreement. Another noteworthy difference,
especially for the log-rank estimator, is that our bootstrapped standard error estimates are
higher than the standard error estimates of Jin et al. (2003), which were obtained using a
perturbed estimating equation approach.

We also note that our AFT model estimation using dfsane is substantially faster than the
algorithm proposed in Jin et al. (2003). For example, for the PBC data, the total CPU time
for Gehan and log-rank estimates using dfsane is around 6.5 seconds, whereas it is around
99 seconds for Jin’s algorithm (for 3 iterations). For standard error estimation, the dfsane
algorithm took 1 hour, and Jin’s algorithm took 6 hours for 500 Monte-Carlo samples. A
major limitation of Jin’s R function is that it can only handle small data sets. It runs into
memory limits for even moderate size data sets, for example, it crashed when we tried it on
one of the simulated data sets discussed previously with n=1000 and 8 covariates.

It should also be noted that some problems are intrinsically hard and cannot be solved to
within a small error tolerance (e.g. default tolerance = 1.e − 07). The AFT model problem is
an example of this. This is a non-smooth problem. We cannot always achieve a tolerance of
1.0e − 07 in these problems. With the PBC data, there may not even be an ”exact” solution
that will yield a residual of 1.0e − 07. However, we can obtain a solution that is accurate
enough. It might be possible to improve upon the solution given by dfsane by changing the
control parameters (e.g. M, noimp, maxit) or by using BBsolve, but it may not be worth
the added effort for this problem.

24 BB

5. Conclusions
The package BB provides functions which improve the capabilities of R for solving nonlinear
systems of equations and for optimizing smooth, nonlinear functions in the following ways:

1. The function BBsolve offers a reliable, low-cost method to solving large-scale nonlinear
systems of equations.

2. The function BBoptim offers a reliable, low-cost method to optimizing smooth, large-
scale nonlinear problems.

3. The function multiStart can be used to find multiple roots or multiple local optima.

4. dfsane appears to be promising for solving non-smooth estimating equations, since it
does not involve any derivatives (see condition 7).

5. Rank-based regression estimation in the accelerated failure time models can be per-
formed effectively in R using the dfsane function in BB.

Acknowledgements
The work of first author (R.V.) was supported by the funding from NIH grant DA023879-
01. The authors would like to thank Drs. Marcos Raydan, Jose-Mario Martinez, Dimitris
Rizopoulos, Constantine Frangakis, and Daniel Scharfstein for the many valuable discussions
pertaining to this research. They would also like to thank the two anonymous referees, the
associate editor, and Achim Zeileis for their penetrating comments which improved the quality
of the manuscript and the software package.

References

Barzilai J, Borwein JM (1988). “Two-Point Step Size Gradient Methods.” IMA Journal of
Numerical Analysis, 8(1), 141–148.

Birgin EG, Martínez JM, Raydan M (2001). “Algorithm 813: SPG—Software for Convex-
Constrained Optimization.” ACM Transactions on Mathematical Software, 27(3), 340–349.

Carroll RJ, Ruppert D (1988). Transformation and Weighting in Regression. Chapman &
Hall/CRC Press, London, UK.

Dennis JE, Schnabel RB (1983). Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey.

Dickson ER, Grambsch PM, Fleming TR, Fisher LD, Langworthy A (1989). “Prognosis in
primary biliary cirrhosis: Model for decision making.” Hepatology, 10, 1–7.

Diggle P, Heagerty P, Liang KY, Zeger SL (2002). The Analysis of Longitudinal Data. Oxford
University Press, New York.

Ravi Varadhan, Paul Gilbert 25

Fletcher R (2001). “On the Barzilai-Borwein Method.” Technical Report NA/207, University
of Dundee, Dundee, Scotland. URL http://www.maths.dundee.ac.uk/~fletcher/.

Grippo L, Lampariello F, Lucidi S (1986). “A Nonmonotone Line Search Technique for
Newton’s Method.” SIAM Journal on Numerical Analysis, 23, 707–16.

Hasselman B (2009). nleqslv: Solve systems of non linear equations. R package version 1.4,
URL http://CRAN.R-project.org/package=nleqslv.

Jin Z, Lin DY, Wei LJ, Ying Z (2003). “Rank-Based Inference for the Accelerated Failure
Time Model.” Biometrika, 90, 341–353.

Kalbfleisch JD, Prentice RL (2002). The Statistical Analysis of Failure Time Data. John
Wiley & Sons, Hoboken, New Jersey.

Kearfott R (1987). “Some Tests of Generalized Bisection.” ACM Transactions on Mathemat-
ical Software, 13(3), 197–220.

La Cruz W, Martínez JM, Raydan M (2006). “Spectral Residual Method Without Gradient
Information for Solving Large-Scale Nonlinear Systems of Equations.” Mathematics of
Computation, 75(255), 1429.

La Cruz W, Raydan M (2003). “Nonmonotone Spectral Methods for Large-Scale Nonlinear
Systems.” Optimization Methods and Software, 18(5), 583–599.

Lin DY, Geyer CJ (1992). “Computational Methods for Semiparametric Linear Regression
with Censored Data.” Journal of Computational and Graphical Statistics, 1(1), 77–90.

Luengo F, Raydan M (2003). “Gradient Method with Dynamical Retards for Large-Scale
Optimization Problems.” Electronic Transactions on Numerical Analysis, 16, 186–193.

Luksan L, Vlcek J (2003). “Test Problems for Unconstrained Optimization.” Technical report,
Academy of Sciences of the Czech Republic, Institute of Computer Science. URL http:
//www.cs.cas.cz/luksan/reports.html.

Nelder JA, Mead R (1965). “A Simplex Method for Function Minimization.” Computer
Journal, 7, 308.

Ortega JM, Rheinboldt WC (1970). Iterative Solution of Non-Linear Equations in Several
Variables. Academic Press, New York.

Raydan M (1997). “The Barzilai and Borwein Gradient Method for the Large Scale Uncon-
strained Minimization Problem.” SIAM Journal of Optimization, 7, 26–33.

Raydan M (2009). “Marcos Raydan’s Home Page.” URL http://kuainasi.ciens.ucv.ve/
ccct/mraydan/mraydan_pub.html.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Small CG, Wang J (2003). Numerical Methods for Nonlinear Estimating Equations. Oxford
University Press, New York.

http://www.maths.dundee.ac.uk/~fletcher/
http://CRAN.R-project.org/package=nleqslv
http://www.cs.cas.cz/luksan/reports.html
http://www.cs.cas.cz/luksan/reports.html
http://kuainasi.ciens.ucv.ve/ccct/mraydan/mraydan_pub.html
http://kuainasi.ciens.ucv.ve/ccct/mraydan/mraydan_pub.html
http://www.R-project.org/
http://www.R-project.org/

26 BB

Therneau T, original R port by Thomas Lumley (2009). survival: Survival analysis, includ-
ing penalised likelihood. R package version 2.35-4, URL http://CRAN.R-project.org/
package=survival.

Varadhan R, Gilbert P (2009). “BB: An R Package for Solving a Large System of Nonlinear
Equations and for Optimizing a High-Dimensional Nonlinear Objective Function.” Journal
of Statistical Software, 32(4). URL http://www.jstatsoft.org/v32/i04/.

Varadhan R, Roland C (2008). “Simple and Globally Convergent Methods for Accelerating the
Convergence of Any EM Algorithm.” Scandinavian Journal of Statistics, 35(2), 335–353.

Zeileis A (2005). “CRAN Task Views.” R News, 5(1), 39–40. URL http://CRAN.R-project.
org/doc/Rnews/.

A. Appendix: Test Functions

1. Exponential function 3: F (x) = (F1(x), · · · , Fp(x))⊤, where:

F1(x) = ex1 − 1
Fi(x) = (i/10) (exi + xi−1 − 1), i = 2, 3, · · · , p

Initial value: x0 = rnorm(p)

2. Trigexp function: F (x) = (F1(x), · · · , Fp(x))⊤, where:

F1(x) = 3x3
1 + 2x2 − 5 + sin(x1 − x2) sin(x1 + x2)

Fi(x) = −xi−1e(xi−1−xi) + xi(4 + 3x2
i) + 2xi+1 + sin(xi − xi+1) sin(xi + xi+1) − 8,

i = 2, 3, · · · , p − 1
Fp(x) = −xp−1e(xp−1−xp) + 4xp − 3.

Initial value: x0 = rnorm(p)

3. Broyden tridiagonal function: F (x) = (F1(x), · · · , Fp(x))⊤, where:

F1(x) = x1(3 − 0.5x1) − 2x2 + 1,

Fi(x) = xi(3 − 0.5xi) − xi−1 − 2xi+1 + 1, i = 2, 3, · · · , p − 1
Fp(x) = xp(3 − 0.5xp) − xp−1 + 1.

Initial value: x0 = − runif(p)

4. Extended-Rosenbrock function: F (x) = (F1(x), · · · , Fp(x))⊤, where,
for i = 1, 2, · · · , p/2,

F2i−1(x) = 10(x2i − x2
2i−1)

F2i(x) = 1 − x2i−1.

Initial value: x0 = runif(p)

http://CRAN.R-project.org/package=survival
http://CRAN.R-project.org/package=survival
http://www.jstatsoft.org/v32/i04/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

Ravi Varadhan, Paul Gilbert 27

5. Troesch function: F (x) = (F1(x), · · · , Fp(x))⊤, where:

F1(x) = 2x1 + ρh2 sinh(ρx1) − x2,

Fi(x) = 2xi + ρh2 sinh(ρxi) − xi−1 − xi+1, i = 2, 3, · · · , p − 1
Fp(x) = 2xp + ρh2 sinh(ρxp) − xp−1 − 1,

where ρ = 10, h = 1/(p + 1).
Initial value: x0 = sort(runif(p))

6. Discretized version of Chandrasekhar’s H-equation: F (x) = (F1(x), · · · , Fp(x))⊤, where:

Fi(x) = xi −
(

1 − c

2p

p∑
j=1

yi xj

yi + yj

)−1
, i = 1, 2, · · · , p

Initial value: x0 = runif(p)

Affiliation:
Ravi Varadhan
The Center on Aging and Health & School of Medicine
Johns Hopkins University
Baltimore, USA
E-mail: rvaradhan@jhmi.edu
URL: http://www.jhsph.edu/agingandhealth/People/Faculty/Varadhan.html

Paul D. Gilbert
Canadian Economic Analysis Department
Bank of Canada
Ottawa, Canada
E-mail: pgilbert@bank-banque-canada.ca
URL: http://www.bank-banque-canada.ca/pgilbert

mailto:rvaradhan@jhmi.edu
http://www.jhsph.edu/agingandhealth/People/Faculty/Varadhan.html
mailto:pgilbert@bank-banque-canada.ca
http://www.bank-banque-canada.ca/pgilbert

	Introduction
	Solving nonlinear system of equations
	Spectral method for nonlinear systems
	Globalization using non-monotone line search
	Implementations of SANE and DF-SANE in BB
	What to do when the algorithm fails? – Function BBsolve

	Numerical Experiments
	Standard test problems
	Finding multiple roots or multiple local optima – Function multiStart

	Solving nonlinear estimating equations in statistics
	Poisson regression with offset
	Rank-based regression using accelerated failure time model

	Conclusions
	Appendix: Test Functions

