--- title: "Quick start of BALLI package" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Quick start of BALLI package} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- # Quick Start This is an quick start manual of **BALLI** ```{r load-packages, message=FALSE, warning=F} require(BALLI) ``` ### 1. Load Count Data ``` data <- data.frame(read.table("counts.txt")) ``` or make example count data ```{r} GenerateData <- function(nRow) { expr_mean <- runif(1,10,100) expr_size <- runif(1,1,10) expr <- rnbinom(20,mu=expr_mean,size=expr_size) return(expr) } data <- data.frame(t(sapply(1:10000,GenerateData))) colnames(data) <- c(paste0("A",1:10),paste0("B",1:10)) rownames(data) <- paste0("gene",1:10000) head(data) ``` ### 2. Designate Group Information and Make Design Matrix ```{r} Group <- c(rep("A",10),rep("B",10)) Group ``` ```{r} design <- model.matrix(~Group, data = data) head(design) ``` ### 3. Normalize Count Data ```{r} dge <- DGEList(counts=data, group=Group) dge <- calcNormFactors(dge) dge ``` ### 4. Estimate Technical Variance ```{r} tV <- tecVarEstim(dge,design) tV ``` ### 5. Fit BALLI and See Top Significant Genes ```{r} fit <- balli(tV,intV=2) fit ```