Title: | Development of Visualization Tools for Protein Sequence |
---|---|
Description: | The image of the amino acid transform on the protein level is drawn, and the automatic routing of the functional elements such as the domain and the mutation site is completed. |
Authors: | Xiaoyu Zhang |
Maintainer: | Yao Geng <[email protected]> |
License: | GPL-3 |
Version: | 1.1 |
Built: | 2024-11-09 06:27:49 UTC |
Source: | CRAN |
The image of the amino acid transform on the protein level is drawn, and the automatic routing of the functional elements such as the domain and the mutation site is completed.
The DESCRIPTION file:
Package: | Autoplotprotein |
Type: | Package |
Title: | Development of Visualization Tools for Protein Sequence |
Version: | 1.1 |
Date: | 2017-06-02 |
Author: | Xiaoyu Zhang |
Maintainer: | Yao Geng <[email protected]> |
Description: | The image of the amino acid transform on the protein level is drawn, and the automatic routing of the functional elements such as the domain and the mutation site is completed. |
License: | GPL-3 |
Depends: | XML, plyr, plotrix, seqinr, ade4 |
NeedsCompilation: | no |
Packaged: | 2017-07-06 01:05:04 UTC; Administrator |
Repository: | CRAN |
Date/Publication: | 2017-07-06 10:00:07 UTC |
Config/pak/sysreqs: | libxml2-dev zlib1g-dev |
Index of help topics:
Autoplotprotein Two - dimensional structure of protein Autoplotprotein-package Development of Visualization Tools for Protein Sequence conservation conservation data Save the information domain_data downloading protein length length_data downloading protein length plotdomain ploting domain plotmutagensis ploting mutagensis plotsite ploting site site_data downloading protein site
Xiaoyu Zhang
Maintainer: Yao Geng <[email protected]>
https://cran.r-project.org/doc/manuals/R-exts.html
codehelp
Draw a visualized structure of the protein
Autoplotprotein()
Autoplotprotein()
The tool ennable visualization of amino acid changes at the protein level,The scale of a protein domain and the position of a functional motif/site will be precisely defined
Visualization of protein structure
Xiaoyu Zhang
https://cran.r-project.org/doc/manuals/R-exts.html
codehelp
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { library("ade4") library("seqinr") library("plotrix") protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F) length = read.table("Length.txt", sep = "\t", stringsAsFactors = F) site = read.table("Site.txt", sep = "\t", stringsAsFactors = F) muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F) option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F) size <- c(10.5, 7.27) high <- c(1, -1) sizen = size[1] highn = high[1] if (option[2, 2] == "no") { sizen = size[2] highn = high[2] } path = protein[1] pdf(as.character(path), height = sizen[1], width = 11) layout(matrix(c(1, 2), nrow = 1), widths = c(1, 3)) par(oma = c(3, 0, 2, 0), mar = c(4, 0, 2, 0) + 0.4) nameOfYourQuery = option[2, 1] additionalOptions = option[2, 2] showReferenceSequence = option[2, 3] showConservationScore = option[2, 4] showGridlinesAtTicks = option[2, 5] conservation = option[2, 6] zoomIn = zoomin[2, 1] zoomStart = zoomin[2, 2] zoomEnd = zoomin[2, 3] tickSize = as.numeric(zoomin[2, 4]) plot((-30:-15), rep(-1, 16), col = "white", type = "l", ann = FALSE, bty = "n", xaxt = "n", yaxt = "n", xlim = c(-160, -15), ylim = c(highn[1], -5.5)) if (additionalOptions == "yes") { if (conservation == "yes") { lines((-30:-15), rep(0, 16), col = "purple3") lines((-30:-15), rep(-0.5, 16), col = "purple3") lines((-30:-15), rep(-1, 16), col = "purple3") text(-100, -0.5, "Conservation", col = "purple3", cex = 0.9, font = 2) text(-45, -1, "1", col = "purple3", cex = 0.9) text(-45, -0.5, "0.5", col = "purple3", cex = 0.9) text(-45, 0, "0", col = "purple3", cex = 0.9) } } if (additionalOptions == "yes") { if (showReferenceSequence == "yes") { text(-100, -4.9, "Reference", col = "black", cex = 0.9, font = 2) } } if (additionalOptions == "yes") { if (showConservationScore == "yes") { text(-100, 0.5, "Score", col = "purple3", cex = 0.9, font = 2) } } text(-100, -2.95, nameOfYourQuery, col = "blue", cex = 0.9, font = 2) Protein = function(start = 1, end, height = -0.3, color = "green", face = "stereoscopic") { x = 0 kong1 = (round(log(start, 10)) + 1) * start/50 kong2 = (round(log(end, 10)) + 1) * end/50 if (round(log(end, 10)) + 1 <= 5) { kong2 = (round(log(end, 10)) + 1) * end/50 } else { kong2 = 5 * end/50 } h1 = -2.8 h2 = -3.1 boxplot((1:as.numeric(end)), rep(h1, as.numeric(end)), xlab = "Amino Acid Position", ylab = "", xlim = c(0, as.numeric(end)), ylim = c(highn[1], -5.5), axes = FALSE) if (face == "stereoscopic") { cylindrect(start, h1, end, h2, col = color, gradient = "y") } else { rect(start, h1, end, h2, col = color) } text(0, h1 - height/2, start, adj = 1) text(end - 17, h1 - height/2, end, adj = 0) } ZoomIn = function(start = 1, end, height = -0.3, color = "green", face = "stereoscopic", zoomstart, zoomend) { x = 0 kong1 = (round(log(start, 10)) + 1) * start/50 kong2 = (round(log(end, 10)) + 1) * end/50 if (round(log(end, 10)) + 1 <= 5) { kong2 = (round(log(end, 10)) + 1) * end/50 } else { kong2 = 5 * end/50 } h1 = -2.8 h2 = -3.1 boxplot((as.numeric(zoomstart):as.numeric(zoomend)), rep(h1, as.numeric(zoomend)), xlab = "Amino Acid Position", ylab = "", xlim = c(as.numeric(zoomstart), as.numeric(zoomend)), ylim = c(highn[1], -5.5), axes = FALSE) if (face == "stereoscopic") { cylindrect(start, h1, end, h2, col = color, gradient = "y") } else { rect(start, h1, end, h2, col = color) } text(start, h1 + height/2, start, adj = 1) text(end, h1 + height/2, end, adj = 0) } if (zoomIn == "yes") { ZoomIn(start = as.numeric(length[1]), end = as.numeric(length[2]), height = as.numeric(protein[4]), color = as.character(protein[5]), face = protein[6], zoomstart = zoomin[2, 2], zoomend = zoomin[2, 3]) } else { Protein(start = as.numeric(length[1]), end = as.numeric(length[2]), height = as.numeric(protein[4]), color = as.character(protein[5]), face = protein[6]) } legend("topleft", legend = c("mutation", "Protein Domain"), pch = c(19, 15), col = c("lightseagreen", "deeppink"), box.col = "white", bg = "white", pt.cex = 1.5, text.width = 1) ticks = seq(0, as.numeric(length[2]), by = tickSize) axis(side = 1, at = ticks, las = 3) if (additionalOptions == "yes") { if (showGridlinesAtTicks == "yes") { len = array(rep(1:as.numeric(length[2]))) for (i in 1:length(len)) { abline(v = ticks[i], lty = 3, lwd = 0.5, col = "lightgray") } } } }
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { library("ade4") library("seqinr") library("plotrix") protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F) length = read.table("Length.txt", sep = "\t", stringsAsFactors = F) site = read.table("Site.txt", sep = "\t", stringsAsFactors = F) muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F) option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F) size <- c(10.5, 7.27) high <- c(1, -1) sizen = size[1] highn = high[1] if (option[2, 2] == "no") { sizen = size[2] highn = high[2] } path = protein[1] pdf(as.character(path), height = sizen[1], width = 11) layout(matrix(c(1, 2), nrow = 1), widths = c(1, 3)) par(oma = c(3, 0, 2, 0), mar = c(4, 0, 2, 0) + 0.4) nameOfYourQuery = option[2, 1] additionalOptions = option[2, 2] showReferenceSequence = option[2, 3] showConservationScore = option[2, 4] showGridlinesAtTicks = option[2, 5] conservation = option[2, 6] zoomIn = zoomin[2, 1] zoomStart = zoomin[2, 2] zoomEnd = zoomin[2, 3] tickSize = as.numeric(zoomin[2, 4]) plot((-30:-15), rep(-1, 16), col = "white", type = "l", ann = FALSE, bty = "n", xaxt = "n", yaxt = "n", xlim = c(-160, -15), ylim = c(highn[1], -5.5)) if (additionalOptions == "yes") { if (conservation == "yes") { lines((-30:-15), rep(0, 16), col = "purple3") lines((-30:-15), rep(-0.5, 16), col = "purple3") lines((-30:-15), rep(-1, 16), col = "purple3") text(-100, -0.5, "Conservation", col = "purple3", cex = 0.9, font = 2) text(-45, -1, "1", col = "purple3", cex = 0.9) text(-45, -0.5, "0.5", col = "purple3", cex = 0.9) text(-45, 0, "0", col = "purple3", cex = 0.9) } } if (additionalOptions == "yes") { if (showReferenceSequence == "yes") { text(-100, -4.9, "Reference", col = "black", cex = 0.9, font = 2) } } if (additionalOptions == "yes") { if (showConservationScore == "yes") { text(-100, 0.5, "Score", col = "purple3", cex = 0.9, font = 2) } } text(-100, -2.95, nameOfYourQuery, col = "blue", cex = 0.9, font = 2) Protein = function(start = 1, end, height = -0.3, color = "green", face = "stereoscopic") { x = 0 kong1 = (round(log(start, 10)) + 1) * start/50 kong2 = (round(log(end, 10)) + 1) * end/50 if (round(log(end, 10)) + 1 <= 5) { kong2 = (round(log(end, 10)) + 1) * end/50 } else { kong2 = 5 * end/50 } h1 = -2.8 h2 = -3.1 boxplot((1:as.numeric(end)), rep(h1, as.numeric(end)), xlab = "Amino Acid Position", ylab = "", xlim = c(0, as.numeric(end)), ylim = c(highn[1], -5.5), axes = FALSE) if (face == "stereoscopic") { cylindrect(start, h1, end, h2, col = color, gradient = "y") } else { rect(start, h1, end, h2, col = color) } text(0, h1 - height/2, start, adj = 1) text(end - 17, h1 - height/2, end, adj = 0) } ZoomIn = function(start = 1, end, height = -0.3, color = "green", face = "stereoscopic", zoomstart, zoomend) { x = 0 kong1 = (round(log(start, 10)) + 1) * start/50 kong2 = (round(log(end, 10)) + 1) * end/50 if (round(log(end, 10)) + 1 <= 5) { kong2 = (round(log(end, 10)) + 1) * end/50 } else { kong2 = 5 * end/50 } h1 = -2.8 h2 = -3.1 boxplot((as.numeric(zoomstart):as.numeric(zoomend)), rep(h1, as.numeric(zoomend)), xlab = "Amino Acid Position", ylab = "", xlim = c(as.numeric(zoomstart), as.numeric(zoomend)), ylim = c(highn[1], -5.5), axes = FALSE) if (face == "stereoscopic") { cylindrect(start, h1, end, h2, col = color, gradient = "y") } else { rect(start, h1, end, h2, col = color) } text(start, h1 + height/2, start, adj = 1) text(end, h1 + height/2, end, adj = 0) } if (zoomIn == "yes") { ZoomIn(start = as.numeric(length[1]), end = as.numeric(length[2]), height = as.numeric(protein[4]), color = as.character(protein[5]), face = protein[6], zoomstart = zoomin[2, 2], zoomend = zoomin[2, 3]) } else { Protein(start = as.numeric(length[1]), end = as.numeric(length[2]), height = as.numeric(protein[4]), color = as.character(protein[5]), face = protein[6]) } legend("topleft", legend = c("mutation", "Protein Domain"), pch = c(19, 15), col = c("lightseagreen", "deeppink"), box.col = "white", bg = "white", pt.cex = 1.5, text.width = 1) ticks = seq(0, as.numeric(length[2]), by = tickSize) axis(side = 1, at = ticks, las = 3) if (additionalOptions == "yes") { if (showGridlinesAtTicks == "yes") { len = array(rep(1:as.numeric(length[2]))) for (i in 1:length(len)) { abline(v = ticks[i], lty = 3, lwd = 0.5, col = "lightgray") } } } }
Draw a conservative curve, calculate the conservative score
conservation()
conservation()
The tool ennable visualization of amino acid changes at the protein level,The scale of a protein domain and the position of a functional motif/site will be precisely defined. The features available includeting conservation, conservation score
The returned value is a conservative score
Xiaoyu Zhang
https://cran.r-project.org/doc/manuals/R-exts.html
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F) length = read.table("Length.txt", sep = "\t", stringsAsFactors = F) site = read.table("Site.txt", sep = "\t", stringsAsFactors = F) muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F) option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F) nameOfYourQuery = option[2, 1] additionalOptions = option[2, 2] showReferenceSequence = option[2, 3] showConservationScore = option[2, 4] showGridlinesAtTicks = option[2, 5] conservation = option[2, 6] zoomIn = zoomin[2, 1] zoomStart = zoomin[2, 2] zoomEnd = zoomin[2, 3] tickSize = as.numeric(zoomin[2, 4]) referenceSequencePositionInFile = option[2, 7] option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) a <- read.fasta(file = "alignmentFile.fasta") seq <- list() for (i in 1:length(a)) { seq[[i]] <- a[[i]][1:length(a[[i]])] } numberOfSeq <- length(seq) mat <- matrix(0, nrow = length(a), ncol = length(a[[1]])) for (i in 1:length(seq)) { mat[i, ] <- seq[[i]] } df <- as.data.frame(mat) tdf <- t(df) referenceSequencePositionInFile = option[2, 7] referenceSeq <- tdf[which(tdf[, as.numeric(referenceSequencePositionInFile)] != "-"), ] referenceSeq <- as.data.frame(referenceSeq) write.table(referenceSeq, file = "alignment_table", sep = "\t", quote = F, row.names = F, col.names = F) counter <- rep(0, nrow(referenceSeq)) a <- read.table("alignment_table", sep = "\t") a <- data.frame(lapply(a, as.character), stringsAsFactors = FALSE) for (i in 1:nrow(a)) { a[i, "consensus"] <- paste(as.character(a[i, ]), collapse = "") } countBases <- function(string) { table(strsplit(string, "")[[1]]) } c <- as.character(a[, "consensus"]) tab <- list() for (i in 1:length(c)) { tab[[i]] <- countBases(c[i]) } score <- rep(0, nrow(a)) for (i in 1:length(tab)) { for (j in 1:length(tab[[i]])) { if ((names(tab[[i]][j])) == a[i, ][as.numeric(referenceSequencePositionInFile)]) score[i] <- tab[[i]][j] } } scorePlot <- -(((score/numberOfSeq))) a <- read.fasta(file = "alignmentFile.fasta") seqForPlot <- a[[as.numeric(referenceSequencePositionInFile)]][ which(a[[as.numeric(referenceSequencePositionInFile)]] != "-")] if (additionalOptions == "yes") { if (conservation == "yes") { lines(scorePlot, col = "purple3") } } if (additionalOptions == "yes") { if (showReferenceSequence == "yes") { rect(0, -4.75, length(scorePlot), -5.05, col = "white", border = NA) for (i in 1:length(seqForPlot)) { text(i, -4.9, toupper(seqForPlot[i]), font = 2, cex = 1) } } } if (additionalOptions == "yes") { if (showConservationScore == "yes") { rect(0, 0.3, length(scorePlot), 0.7, col = "white", border = NA) for (i in 1:length(seqForPlot)) { text(i, 0.5, toupper(abs(round(scorePlot[i], 1))), font = 2, cex = 0.8, srt = 90, col = "purple3") } } } }
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F) length = read.table("Length.txt", sep = "\t", stringsAsFactors = F) site = read.table("Site.txt", sep = "\t", stringsAsFactors = F) muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F) option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F) nameOfYourQuery = option[2, 1] additionalOptions = option[2, 2] showReferenceSequence = option[2, 3] showConservationScore = option[2, 4] showGridlinesAtTicks = option[2, 5] conservation = option[2, 6] zoomIn = zoomin[2, 1] zoomStart = zoomin[2, 2] zoomEnd = zoomin[2, 3] tickSize = as.numeric(zoomin[2, 4]) referenceSequencePositionInFile = option[2, 7] option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) a <- read.fasta(file = "alignmentFile.fasta") seq <- list() for (i in 1:length(a)) { seq[[i]] <- a[[i]][1:length(a[[i]])] } numberOfSeq <- length(seq) mat <- matrix(0, nrow = length(a), ncol = length(a[[1]])) for (i in 1:length(seq)) { mat[i, ] <- seq[[i]] } df <- as.data.frame(mat) tdf <- t(df) referenceSequencePositionInFile = option[2, 7] referenceSeq <- tdf[which(tdf[, as.numeric(referenceSequencePositionInFile)] != "-"), ] referenceSeq <- as.data.frame(referenceSeq) write.table(referenceSeq, file = "alignment_table", sep = "\t", quote = F, row.names = F, col.names = F) counter <- rep(0, nrow(referenceSeq)) a <- read.table("alignment_table", sep = "\t") a <- data.frame(lapply(a, as.character), stringsAsFactors = FALSE) for (i in 1:nrow(a)) { a[i, "consensus"] <- paste(as.character(a[i, ]), collapse = "") } countBases <- function(string) { table(strsplit(string, "")[[1]]) } c <- as.character(a[, "consensus"]) tab <- list() for (i in 1:length(c)) { tab[[i]] <- countBases(c[i]) } score <- rep(0, nrow(a)) for (i in 1:length(tab)) { for (j in 1:length(tab[[i]])) { if ((names(tab[[i]][j])) == a[i, ][as.numeric(referenceSequencePositionInFile)]) score[i] <- tab[[i]][j] } } scorePlot <- -(((score/numberOfSeq))) a <- read.fasta(file = "alignmentFile.fasta") seqForPlot <- a[[as.numeric(referenceSequencePositionInFile)]][ which(a[[as.numeric(referenceSequencePositionInFile)]] != "-")] if (additionalOptions == "yes") { if (conservation == "yes") { lines(scorePlot, col = "purple3") } } if (additionalOptions == "yes") { if (showReferenceSequence == "yes") { rect(0, -4.75, length(scorePlot), -5.05, col = "white", border = NA) for (i in 1:length(seqForPlot)) { text(i, -4.9, toupper(seqForPlot[i]), font = 2, cex = 1) } } } if (additionalOptions == "yes") { if (showConservationScore == "yes") { rect(0, 0.3, length(scorePlot), 0.7, col = "white", border = NA) for (i in 1:length(seqForPlot)) { text(i, 0.5, toupper(abs(round(scorePlot[i], 1))), font = 2, cex = 0.8, srt = 90, col = "purple3") } } } }
Keep all the information of the painted protein in a file
data()
data()
Save information, including protein mutation point information, domain information, option information, enlargement information, protein information, length information and site information
Data of various kinds of information
Xiaoyu Zhang
https://cran.r-project.org/doc/manuals/R-exts.html
codehelp
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { library("ade4") library("seqinr") library("plotrix") protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F) length = read.table("Length.txt", sep = "\t", stringsAsFactors = F) site = read.table("Site.txt", sep = "\t", stringsAsFactors = F) muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F) option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F) c <- merge(muta, domain, all = T, sort = FALSE) c <- merge(c, option, all = T, sort = FALSE) c <- merge(c, zoomin, all = T, sort = FALSE) c <- merge(c, protein, all = T, sort = FALSE) c <- merge(c, length, all = T, sort = FALSE) c <- merge(c, site, all = T, sort = FALSE) write.table(c, file = "data.txt", sep = "\t", quote = FALSE, row.names = F, col.names = F) }
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { library("ade4") library("seqinr") library("plotrix") protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F) length = read.table("Length.txt", sep = "\t", stringsAsFactors = F) site = read.table("Site.txt", sep = "\t", stringsAsFactors = F) muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F) option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F) c <- merge(muta, domain, all = T, sort = FALSE) c <- merge(c, option, all = T, sort = FALSE) c <- merge(c, zoomin, all = T, sort = FALSE) c <- merge(c, protein, all = T, sort = FALSE) c <- merge(c, length, all = T, sort = FALSE) c <- merge(c, site, all = T, sort = FALSE) write.table(c, file = "data.txt", sep = "\t", quote = FALSE, row.names = F, col.names = F) }
Load the start and end positions of the domain
domain_data()
domain_data()
The tool ennable visualization of amino acid changes at the protein level,The scale of a protein domain and the position of a functional motif/site will be precisely defined. The features available include domains
The start and end positions of the domain
Xiaoyu Zhang
https://cran.r-project.org/doc/manuals/R-exts.html
codehelp
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { library(XML) library(plyr) protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) name = protein[2] url_p = "http://www.uniprot.org/uniprot/" url_s = "#showFeatures" url_w = paste(url_p, name, url_s, sep = "") url = url_w doc <- htmlParse(url) position_d = xpathSApply (doc, "//table[@id= 'domainsAnno_section'] /tr/td/ a[@class = 'position tooltipped']", xmlValue) name_d = xpathSApply (doc, "//table[@id= 'domainsAnno_section']/tr/td/span[@property='text']", xmlValue) s_d = c() for (i in 1:length(position_d)) { s_d[i] <- gsub(pattern = "//D", replacement = "x", position_d[i]) } s_d <- strsplit(s_d, "xxx") d1_d <- laply(s_d, function(x) x[1]) d2_d <- laply(s_d, function(x) x[2]) r1_d = d1_d r2_d = d2_d r3_d = name_d dfrm_d = data.frame(r1_d, r2_d, r3_d) write.table(dfrm_d, file = "Domain.txt", sep = "/t", quote = FALSE, row.names = F, col.names = F) }
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { library(XML) library(plyr) protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) name = protein[2] url_p = "http://www.uniprot.org/uniprot/" url_s = "#showFeatures" url_w = paste(url_p, name, url_s, sep = "") url = url_w doc <- htmlParse(url) position_d = xpathSApply (doc, "//table[@id= 'domainsAnno_section'] /tr/td/ a[@class = 'position tooltipped']", xmlValue) name_d = xpathSApply (doc, "//table[@id= 'domainsAnno_section']/tr/td/span[@property='text']", xmlValue) s_d = c() for (i in 1:length(position_d)) { s_d[i] <- gsub(pattern = "//D", replacement = "x", position_d[i]) } s_d <- strsplit(s_d, "xxx") d1_d <- laply(s_d, function(x) x[1]) d2_d <- laply(s_d, function(x) x[2]) r1_d = d1_d r2_d = d2_d r3_d = name_d dfrm_d = data.frame(r1_d, r2_d, r3_d) write.table(dfrm_d, file = "Domain.txt", sep = "/t", quote = FALSE, row.names = F, col.names = F) }
Download the length of the protein, including the starting and ending positions
length_data()
length_data()
Download the length of the protein, including the starting and ending positions
The length of the protein
Xiaoyu Zhang
https://cran.r-project.org/doc/manuals/R-exts.html
codehelp
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { library(XML) library(plyr) protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) name = protein[2] url_p = "http://www.uniprot.org/uniprot/" url_s = "#showFeatures" url_w = paste(url_p, name, url_s, sep = "") url = url_w doc <- htmlParse(url) position_l = xpathSApply (doc, "//table[@id= 'peptides_section'] /tr/td/ a[@class = 'position tooltipped']", xmlValue) s_l <- c() for (i in 1:length(position_l)) { s_l[i] <- gsub(pattern = "//D", replacement = "x", position_l[i]) } s_l <- strsplit(s_l, "xxx") d2_l <- laply(s_l, function(x) x[2]) r1_l <- 0 r2_l <- d2_l dfrm_l <- data.frame(r1_l, r2_l) write.table(dfrm_l, file = "Length.txt", sep = "/t", quote = FALSE, row.names = F, col.names = F) }
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { library(XML) library(plyr) protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) name = protein[2] url_p = "http://www.uniprot.org/uniprot/" url_s = "#showFeatures" url_w = paste(url_p, name, url_s, sep = "") url = url_w doc <- htmlParse(url) position_l = xpathSApply (doc, "//table[@id= 'peptides_section'] /tr/td/ a[@class = 'position tooltipped']", xmlValue) s_l <- c() for (i in 1:length(position_l)) { s_l[i] <- gsub(pattern = "//D", replacement = "x", position_l[i]) } s_l <- strsplit(s_l, "xxx") d2_l <- laply(s_l, function(x) x[2]) r1_l <- 0 r2_l <- d2_l dfrm_l <- data.frame(r1_l, r2_l) write.table(dfrm_l, file = "Length.txt", sep = "/t", quote = FALSE, row.names = F, col.names = F) }
Draw the domain of the protein
plotdomain()
plotdomain()
The tool ennable visualization of amino acid changes at the protein level,The scale of a protein domain and the position of a functional motif/site will be precisely defined. The features available include domains
The starting position, end position and name of the protein domain
Xiaoyu Zhang
https://cran.r-project.org/doc/manuals/R-exts.html
codehelp
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F) length = read.table("Length.txt", sep = "\t", stringsAsFactors = F) site = read.table("Site.txt", sep = "\t", stringsAsFactors = F) muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F) option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F) Domain = function(start, end, name, height = -0.3, color = "orange", face = "stereoscopic", protein_width, x_y) { h1 = -2.8 h2 = -3.1 dec = 2 * nchar(name) * protein_width/100 if (face == "stereoscopic") { cylindrect(start, h1, end, h2, col = color, gradient = "y") } else { rect(start, h1, end, h2, col = color) } if (end - start >= dec) { par(srt = 0) text((end + start)/2, h1 + height/2, name, cex = 0.7) isContain = TRUE } else { isContain = FALSE } isContain } Domain_w = function(domain_pos, domain_name, protein_width) { dec = 1.4 * protein_width/100 position2 = 1:length(domain_pos) position2[1] = domain_pos[1] if (length(domain_pos) > 1) { for (i in 2:length(domain_pos)) { if (domain_pos[i] - domain_pos[i - 1] <= dec) { if (domain_pos[i] != domain_pos[i - 1]) { position2[i] = position2[i - 1] + dec } else { position2[i] = position2[i - 1] } } else { position2[i] = domain_pos[i] } } } return(position2) } Domain_h = function(position, position2, name, height = -0.3, x_y, up_down) { h1 = -0.1 h2 = -0.2 h = -0.4 hh1 = -2.8 if (up_down == "up") { if (position == position2) { segments(position, hh1 + height, position, hh1 + height + h) } else { segments(position, hh1 + height, position, hh1 + height + h1) segments(position2, hh1 + height + h - h2, position2, hh1 + height + h) segments(position, hh1 + height + h1, position2, hh1 + height + h - h2) } text(position2, hh1 + height + h - 0.02, name, srt = 90, adj = c(0, 0.5), cex = 0.8) } else { if (position == position2) { segments(position, hh1, position, hh1 - h) } else { segments(position, hh1, position, hh1 - h1) segments(position2, hh1 - h + h2, position2, hh1 - h) segments(position, hh1 - h1, position2, hh1 - h + h2) } text(position2, hh1 - h + 0.02, name, srt = 270, adj = c(0, 0.5), cex = 0.8) } } if (!is.na(domain[1, 1])) { domainn = domain count = 0 for (i in 1:nrow(domainn)) { isContain = Domain(start = as.numeric(domainn[i, 1]), end = as.numeric(domainn[i, 2]), name = as.character(domainn[i, 3]), height = as.numeric(protein[4]), color = i + 1, face = protein[6], protein_width = as.numeric(length[2]), x_y = flag) if (isContain == TRUE) { domain = domain[-i + count, ] count = count + 1 } } domain2 = (domain[, 1] + domain[, 2])/2 if (length(domain2) != 0) { flag = TRUE if (flag == TRUE) { position3 = Domain_w(domain2, domain[, 3], as.numeric(length[2])) } for (i in 1:nrow(domain)) { position1 = (as.numeric(domain[i, 1]) + as.numeric(domain[i, 2]))/2 Domain_h(position = position1, position2 = position3[i], name = as.character(domain[i, 3]), height = as.numeric(protein[4]), x_y = flag, up_down = "down") } } } }
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F) length = read.table("Length.txt", sep = "\t", stringsAsFactors = F) site = read.table("Site.txt", sep = "\t", stringsAsFactors = F) muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F) option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F) Domain = function(start, end, name, height = -0.3, color = "orange", face = "stereoscopic", protein_width, x_y) { h1 = -2.8 h2 = -3.1 dec = 2 * nchar(name) * protein_width/100 if (face == "stereoscopic") { cylindrect(start, h1, end, h2, col = color, gradient = "y") } else { rect(start, h1, end, h2, col = color) } if (end - start >= dec) { par(srt = 0) text((end + start)/2, h1 + height/2, name, cex = 0.7) isContain = TRUE } else { isContain = FALSE } isContain } Domain_w = function(domain_pos, domain_name, protein_width) { dec = 1.4 * protein_width/100 position2 = 1:length(domain_pos) position2[1] = domain_pos[1] if (length(domain_pos) > 1) { for (i in 2:length(domain_pos)) { if (domain_pos[i] - domain_pos[i - 1] <= dec) { if (domain_pos[i] != domain_pos[i - 1]) { position2[i] = position2[i - 1] + dec } else { position2[i] = position2[i - 1] } } else { position2[i] = domain_pos[i] } } } return(position2) } Domain_h = function(position, position2, name, height = -0.3, x_y, up_down) { h1 = -0.1 h2 = -0.2 h = -0.4 hh1 = -2.8 if (up_down == "up") { if (position == position2) { segments(position, hh1 + height, position, hh1 + height + h) } else { segments(position, hh1 + height, position, hh1 + height + h1) segments(position2, hh1 + height + h - h2, position2, hh1 + height + h) segments(position, hh1 + height + h1, position2, hh1 + height + h - h2) } text(position2, hh1 + height + h - 0.02, name, srt = 90, adj = c(0, 0.5), cex = 0.8) } else { if (position == position2) { segments(position, hh1, position, hh1 - h) } else { segments(position, hh1, position, hh1 - h1) segments(position2, hh1 - h + h2, position2, hh1 - h) segments(position, hh1 - h1, position2, hh1 - h + h2) } text(position2, hh1 - h + 0.02, name, srt = 270, adj = c(0, 0.5), cex = 0.8) } } if (!is.na(domain[1, 1])) { domainn = domain count = 0 for (i in 1:nrow(domainn)) { isContain = Domain(start = as.numeric(domainn[i, 1]), end = as.numeric(domainn[i, 2]), name = as.character(domainn[i, 3]), height = as.numeric(protein[4]), color = i + 1, face = protein[6], protein_width = as.numeric(length[2]), x_y = flag) if (isContain == TRUE) { domain = domain[-i + count, ] count = count + 1 } } domain2 = (domain[, 1] + domain[, 2])/2 if (length(domain2) != 0) { flag = TRUE if (flag == TRUE) { position3 = Domain_w(domain2, domain[, 3], as.numeric(length[2])) } for (i in 1:nrow(domain)) { position1 = (as.numeric(domain[i, 1]) + as.numeric(domain[i, 2]))/2 Domain_h(position = position1, position2 = position3[i], name = as.character(domain[i, 3]), height = as.numeric(protein[4]), x_y = flag, up_down = "down") } } } }
Draw the mutagensis of the protein
plotmutagensis()
plotmutagensis()
The tool ennable visualization of amino acid changes at the protein level,The scale of a protein domain and the position of a functional motif/site will be precisely defined. The features available include mutagensis
The location, height and name of the transition point
Xiaoyu Zhang
https://cran.r-project.org/doc/manuals/R-exts.html
codehelp
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F) length = read.table("Length.txt", sep = "\t", stringsAsFactors = F) site = read.table("Site.txt", sep = "\t", stringsAsFactors = F) muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F) option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F) Mutagenesis = function(position, position2, color, height2, height, up_down, start, end, pc, cex1) { h1 = -0.1 h2 = -1.4 h = -1.6 hh1 = -2.8 if (up_down == "up") { if (position == position2) { segments(position, hh1 + height, position, hh1 + height + h) } else { segments(position, hh1 + height, position, hh1 + height + h1) segments(position2, hh1 + height + h - h2, position2, hh1 + height + h) segments(position, hh1 + height + h1, position2, hh1 + height + h - h2) } } x = 0 kong1 = (round(log(start, 10)) + 1) * start/50 kong2 = (round(log(end, 10)) + 1) * end/50 if (round(log(end, 10)) + 1 <= 5) { kong2 = (round(log(end, 10)) + 1) * end/50 } else { kong2 = 5 * end/50 } boxplot(x, xlim = c(start - kong1, end + kong2), ylim = c(1, -5.5), axes = FALSE, add = TRUE, border = FALSE) points(position2, height2, pch = pc, col = color, cex = cex1) } Change_h = function(muta_pos, muta_name, protein_h) { d = 0.1 d1 = 0.26 hh1 = -2.8 height2 = 1:length(muta_pos) height2[1] = hh1 + protein_h - d1 position_h = muta_pos position_h[1] = muta_pos[1] if (length(muta_pos) > 1) { for (i in 2:length(muta_pos)) { if (muta_pos[i] == position_h[i - 1]) { height2[i] = height2[i - 1] - d } else { height2[i] = hh1 + protein_h - d1 } } } height2 } Change_m = function(muta, protein_width) { dec = 1.4 * protein_width/100 position3 = 1:length(muta) position3[1] = muta[1] if (length(muta) > 1) { for (i in 2:length(muta)) { if (muta[i] - muta[i - 1] <= dec) { if (muta[i] != muta[i - 1]) { position3[i] = position3[i - 1] + dec } else { position3[i] = position3[i - 1] } } else { position3[i] = muta[i] } } } position3 } if (!is.na(muta[1, 1])) { position3 = Change_m(muta[, 1], as.numeric(length[2])) height2 = Change_h(muta[, 1], muta[, 2], as.numeric(protein[4])) for (i in 1:nrow(muta)) { Mutagenesis(position = as.numeric(muta[i, 1]), position2 = position3[i], color = as.character(muta[i, 2]), height2 = height2[i], height = as.numeric(protein[4]), up_down = "up", start = as.numeric(length[1]), end = as.numeric(length[2]), pc = as.numeric(protein[7]), cex1 = as.numeric(protein[8])) } } }
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F) length = read.table("Length.txt", sep = "\t", stringsAsFactors = F) site = read.table("Site.txt", sep = "\t", stringsAsFactors = F) muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F) option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F) Mutagenesis = function(position, position2, color, height2, height, up_down, start, end, pc, cex1) { h1 = -0.1 h2 = -1.4 h = -1.6 hh1 = -2.8 if (up_down == "up") { if (position == position2) { segments(position, hh1 + height, position, hh1 + height + h) } else { segments(position, hh1 + height, position, hh1 + height + h1) segments(position2, hh1 + height + h - h2, position2, hh1 + height + h) segments(position, hh1 + height + h1, position2, hh1 + height + h - h2) } } x = 0 kong1 = (round(log(start, 10)) + 1) * start/50 kong2 = (round(log(end, 10)) + 1) * end/50 if (round(log(end, 10)) + 1 <= 5) { kong2 = (round(log(end, 10)) + 1) * end/50 } else { kong2 = 5 * end/50 } boxplot(x, xlim = c(start - kong1, end + kong2), ylim = c(1, -5.5), axes = FALSE, add = TRUE, border = FALSE) points(position2, height2, pch = pc, col = color, cex = cex1) } Change_h = function(muta_pos, muta_name, protein_h) { d = 0.1 d1 = 0.26 hh1 = -2.8 height2 = 1:length(muta_pos) height2[1] = hh1 + protein_h - d1 position_h = muta_pos position_h[1] = muta_pos[1] if (length(muta_pos) > 1) { for (i in 2:length(muta_pos)) { if (muta_pos[i] == position_h[i - 1]) { height2[i] = height2[i - 1] - d } else { height2[i] = hh1 + protein_h - d1 } } } height2 } Change_m = function(muta, protein_width) { dec = 1.4 * protein_width/100 position3 = 1:length(muta) position3[1] = muta[1] if (length(muta) > 1) { for (i in 2:length(muta)) { if (muta[i] - muta[i - 1] <= dec) { if (muta[i] != muta[i - 1]) { position3[i] = position3[i - 1] + dec } else { position3[i] = position3[i - 1] } } else { position3[i] = muta[i] } } } position3 } if (!is.na(muta[1, 1])) { position3 = Change_m(muta[, 1], as.numeric(length[2])) height2 = Change_h(muta[, 1], muta[, 2], as.numeric(protein[4])) for (i in 1:nrow(muta)) { Mutagenesis(position = as.numeric(muta[i, 1]), position2 = position3[i], color = as.character(muta[i, 2]), height2 = height2[i], height = as.numeric(protein[4]), up_down = "up", start = as.numeric(length[1]), end = as.numeric(length[2]), pc = as.numeric(protein[7]), cex1 = as.numeric(protein[8])) } } }
Draw the protein site
plotsite()
plotsite()
The tool ennable visualization of amino acid changes at the protein level,The scale of a protein domain and the position of a functional motif/site will be precisely defined. The features available include site
Location of the site in the protein
Xiaoyu Zhang
https://cran.r-project.org/doc/manuals/R-exts.html
codehelp
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F) length = read.table("Length.txt", sep = "\t", stringsAsFactors = F) site = read.table("Site.txt", sep = "\t", stringsAsFactors = F) muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F) option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F) Site = function(position, position2, name, height = -0.3, x_y, up_down) { h1 = -0.1 h2 = -0.2 h = -0.4 hh1 = -2.8 if (up_down == "up") { if (position == position2) { segments(position, hh1 + height, position, hh1 + height + h) } else { segments(position, hh1 + height, position, hh1 + height + h1) segments(position2, hh1 + height + h - h2, position2, hh1 + height + h) segments(position, hh1 + height + h1, position2, hh1 + height + h - h2) } text(position2, hh1 + height + h - 0.02, name, srt = 90, adj = c(0, 0.5), cex = 0.8) } else { if (position == position2) { segments(position, hh1, position, hh1 - h) } else { segments(position, hh1, position, hh1 - h1) segments(position2, hh1 - h + h2, position2, hh1 - h) segments(position, hh1 - h1, position2, hh1 - h + h2) } text(position2, hh1 - h + 0.02, name, srt = 270, adj = c(0, 0.5), cex = 0.8) } } Change_x = function(site_pos, site_name, protein_width) { dec = 1.4 * protein_width/100 position2 = 1:length(site_pos) position2[1] = site_pos[1] if (length(site_pos) > 1) { for (i in 2:length(site_pos)) { if (site_pos[i] - site_pos[i - 1] <= dec) { if (site_pos[i] != site_pos[i - 1]) { position2[i] = position2[i - 1] + dec } else { position2[i] = position2[i - 1] } } else { position2[i] = site_pos[i] } } } return(position2) } if (!is.na(site[1, 1])) { position2 = Change_x(site[, 1], site[, 2], as.numeric(length[2])) for (i in 1:nrow(site)) { Site(position = as.numeric(site[i, 1]), position2 = position2[i], name = as.character(site[i, 2]), height = as.numeric(protein[4]), x_y = flag, up_down = "up") } } }
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F) length = read.table("Length.txt", sep = "\t", stringsAsFactors = F) site = read.table("Site.txt", sep = "\t", stringsAsFactors = F) muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F) option = read.table("Option.txt", sep = "\t", stringsAsFactors = F) zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F) Site = function(position, position2, name, height = -0.3, x_y, up_down) { h1 = -0.1 h2 = -0.2 h = -0.4 hh1 = -2.8 if (up_down == "up") { if (position == position2) { segments(position, hh1 + height, position, hh1 + height + h) } else { segments(position, hh1 + height, position, hh1 + height + h1) segments(position2, hh1 + height + h - h2, position2, hh1 + height + h) segments(position, hh1 + height + h1, position2, hh1 + height + h - h2) } text(position2, hh1 + height + h - 0.02, name, srt = 90, adj = c(0, 0.5), cex = 0.8) } else { if (position == position2) { segments(position, hh1, position, hh1 - h) } else { segments(position, hh1, position, hh1 - h1) segments(position2, hh1 - h + h2, position2, hh1 - h) segments(position, hh1 - h1, position2, hh1 - h + h2) } text(position2, hh1 - h + 0.02, name, srt = 270, adj = c(0, 0.5), cex = 0.8) } } Change_x = function(site_pos, site_name, protein_width) { dec = 1.4 * protein_width/100 position2 = 1:length(site_pos) position2[1] = site_pos[1] if (length(site_pos) > 1) { for (i in 2:length(site_pos)) { if (site_pos[i] - site_pos[i - 1] <= dec) { if (site_pos[i] != site_pos[i - 1]) { position2[i] = position2[i - 1] + dec } else { position2[i] = position2[i - 1] } } else { position2[i] = site_pos[i] } } } return(position2) } if (!is.na(site[1, 1])) { position2 = Change_x(site[, 1], site[, 2], as.numeric(length[2])) for (i in 1:nrow(site)) { Site(position = as.numeric(site[i, 1]), position2 = position2[i], name = as.character(site[i, 2]), height = as.numeric(protein[4]), x_y = flag, up_down = "up") } } }
Download the site of the protein, including the name
site_data()
site_data()
Download the site of the protein, including the distribution of the locus of the marker space
The location of the marker line
Xiaoyu Zhang
https://cran.r-project.org/doc/manuals/R-exts.html
codehelp
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { library(XML) library(plyr) protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) name = protein[2] url_p = "http://www.uniprot.org/uniprot/" url_s = "#showFeatures" url_w = paste(url_p, name, url_s, sep = "") url = url_w doc <- htmlParse(url) position_s = xpathSApply (doc, "//table[@id= 'sitesAnno_section'] /tr/td/ a[@class = 'position tooltipped']", xmlValue) name_s = xpathSApply (doc, "//table[@id= 'sitesAnno_section']/tr/td/span[@property='text']", xmlValue) s_s <- c() for (i in 1:length(position_s)) { s_s[i] <- gsub(pattern = "//D", replacement = "x", position_s[i]) } s_s <- strsplit(s_s, "xxx") d1_s <- laply(s_s, function(x) x[1]) d2_s <- laply(s_s, function(x) x[2]) r1_site = d1_s r2_site = name_s dfrm_site = data.frame(r1_site, r2_site) write.table(dfrm_site, file = "Site.txt", sep = "/t", quote = FALSE, row.names = F, col.names = F) }
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function () { library(XML) library(plyr) protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F) name = protein[2] url_p = "http://www.uniprot.org/uniprot/" url_s = "#showFeatures" url_w = paste(url_p, name, url_s, sep = "") url = url_w doc <- htmlParse(url) position_s = xpathSApply (doc, "//table[@id= 'sitesAnno_section'] /tr/td/ a[@class = 'position tooltipped']", xmlValue) name_s = xpathSApply (doc, "//table[@id= 'sitesAnno_section']/tr/td/span[@property='text']", xmlValue) s_s <- c() for (i in 1:length(position_s)) { s_s[i] <- gsub(pattern = "//D", replacement = "x", position_s[i]) } s_s <- strsplit(s_s, "xxx") d1_s <- laply(s_s, function(x) x[1]) d2_s <- laply(s_s, function(x) x[2]) r1_site = d1_s r2_site = name_s dfrm_site = data.frame(r1_site, r2_site) write.table(dfrm_site, file = "Site.txt", sep = "/t", quote = FALSE, row.names = F, col.names = F) }