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Abstract

The development of powerful new 3D scanning techniques has enabled the generation of
large up-to-date anthropometric databases which provide highly valued data to improve
the ergonomic design of products adapted to the user population. As a consequence,
Ergonomics and Anthropometry are two increasingly quantitative fields, so advanced sta-
tistical methodologies and modern software tools are required to get the maximum benefit
from anthropometric data.

This paper presents a new R package, called Anthropometry, which is available on
the Comprehensive R Archive Network. It brings together some statistical methodolo-
gies concerning clustering, statistical shape analysis, statistical archetypal analysis and
the statistical concept of data depth, which have been especially developed to deal with
anthropometric data. They are proposed with the aim of providing effective solutions to
some common anthropometric problems, such as clothing design or workstation design
(focusing on the particular case of aircraft cockpits). The utility of the package is shown
by analyzing the anthropometric data obtained from a survey of the Spanish female pop-
ulation performed in 2006 and from the 1967 United States Air Force survey.

This manuscript is contained in Anthropometry as a vignette.

Keywords: R, anthropometric data, clustering, statistical shape analysis, archetypal analysis,
data depth.

1. Introduction

Ergonomics is the science that investigates the interactions between human beings and the
elements of a system. The application of ergonomic knowledge in multiple areas such as cloth-
ing and footwear design or both working and household environments is required to achieve
the best possible match between the product and its users. To that end, it is fundamental
to know the anthropometric dimensions of the target population. Anthropometry refers to
the study of the measurements and dimensions of the human body and is considered a very
important branch of Ergonomics because of its significant influence on the ergonomic design
of products (Pheasant 2003).
A major issue when developing new patterns and products that fit the target population well is
the lack of up-to-date anthropometric data. Improvements in health care, nutrition and living
conditions as well as the transition to a sedentary life style have changed the body dimensions
of people over recent decades. Anthropometric databases must therefore be updated regularly.
Traditionally, human physical characteristics and measurements have been manually taken
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using rudimentary methods like calipers, rulers or measuring tapes (Simmons and Istook 2003;
Lu and Wang 2008; Shu, Wuhrer, and Xi 2011). These procedures are simple (user-friendly),
non-invasive and not particularly expensive. However, obtaining a statistically useful sample
of thousands of people by hand is time-consuming and error-prone: the set of measurements
obtained, and therefore the shape information, is usually imprecise and inaccurate.

In recent years, the development of new three-dimensional (3D) body scanner measurement
systems has represented a huge step forward in the way anthropometric data are collected and
updated. This technology provides highly detailed, accurate and reproducible anthropometric
data from which 3D shape images of the people being measured can be obtained (Istook
and Hwang 2001; Lerch, MacGillivray, and Domina 2007; Wang, Wu, Lin, Yang, and Lu
2007; D’Apuzzo 2009). The great potential of 3D body scanning techniques constitutes a
true breakthrough in realistically characterizing people and has made it possible to conduct
new large-scale anthropometric surveys in different countries (for instance, in the USA, the
UK, France, Germany and Australia). Within this context, the Spanish Ministry of Health
sponsored a 3D anthropometric study of the Spanish female population in 2006 (Alemany,
González, Nácher, Soriano, Arnáiz, and Heras 2010). A sample of 10,415 Spanish females from
12 to 70 years old, randomly selected from the official Postcode Address File, was measured.
Associated software provided by the scanner manufacturers made a triangulation based on
the 3D spatial location of a large number of points on the body surface. A 3D binary image of
the trunk of each woman (white pixel if it belongs to the body, otherwise black) is produced
from the collection of points located on the surface of each woman scanned, as explained in
Ibáñez, Simó, Domingo, Durá, Ayala, Alemany, Vinué, and Solves (2012a). The two main
goals of this study, which was conducted by the Biomechanics Institute of Valencia, were
as follows: firstly, to characterize the morphology of females in Spain in order to develop
a standard sizing system for the garment industry and, secondly, to encourage an image of
healthy beauty in society by means of mannequins that are representative of the population.
In order to tackle both these objectives, Statistics plays an essential role.

In every methodological and practical anthropometric problem, body size variability within
the user population is characterized by means of a limited number of anthropometric cases.
This is what is called a user-centered design process. An anthropometric case represents the
set of body measurements the product evaluator plans to accommodate in design (HFES 300
Committee 2004). A case may be a particular human being or a combination of measurements.
Depending on the features and needs of the product being designed, three types of cases can be
distinguished: central, boundary and distributed. If the product being designed is a one-size
product (one-size to accommodate people within a predetermined portion of the population),
as may be the case in working environment design, the cases are selected on an accommodation
boundary. However, if we focus on a multiple-size product (n sizes to fit n groups of people
within a predetermined portion of the population), clothing design being the most apparent
example, central cases are selected. Regarding distributed cases, they are spread throughout
the distribution of body dimensions. Central and boundary cases can be considered special
types of distributed cases, but distributed cases might not include them. Distributed cases
represent an alternative when it is necessary to have a greater number of cases that covers the
entire distribution. In such a situation, a small number of central (or boundary) cases would
not be sufficient, since they are only spread toward the middle (or edges) of the distribution.
The statistical methodologies that we have developed seek to define central and boundary
cases to tackle the clothing sizing system design problem and the workplace design problem
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(focusing on the particular case of an aircraft cockpit).

Clothing sizing systems divide a population into homogeneous subgroups based on some key
anthropometric dimensions (size groups), in such a way that all individuals in a size group
can wear the same garment (Ashdown 2007; Chung, Lin, and Wang 2007). An efficient and
optimal sizing system must accommodate as large a percentage of the population as possible,
in as few sizes as possible, that best describes the shape variability of the population. In
addition, the garment fit for accommodated individuals must be as good as possible. Each
clothing size is defined from a person who is near the center for the dimensions considered
in the analysis. This central individual, which is considered as the size representative (the
size prototype), becomes the basic pattern from which the clothing line in the same size
is designed. Once a particular garment has been designed, fashion designers and clothing
manufacturers hire fit models to test and assess the size specifications of their clothing before
the production phase. Fit models have the appropriate body dimensions selected by each
company to define the proportional relationships needed to achieve the fit the company has
determined (Ashdown 2005; Workman and Lentz 2000; Workman 1991). Fit models are
usually people with central measurements in each body dimension. The definition of an
efficient sizing system depends to a large extent on the accuracy and representativeness of
the fit models.

Clustering is the statistical tool that classifies a set of individuals into groups (clusters), in
such a way that subjects in the same cluster are more similar (in some way) to each other than
to those in other clusters (Kaufman, L. and Rousseeuw, P. J. 1990). In addition, clusters are
represented by means of a representative central observation. Therefore, clustering comes up
naturally as a useful statistical approach to try to define an efficient sizing system and to elicit
prototypes and fit models. Specifically, five of the methodologies that we have developed are
based on different clustering methods. Four of them are aimed at segmenting the population
into optimal size groups and obtaining size prototypes. The first one, hereafter referred to as
trimowa, has been published in Ibáñez, Vinué, Alemany, Simó, Epifanio, Domingo, and Ayala
(2012b). It is based on using a special distance function that mathematically captures the idea
of garment fit. The second and third ones (called CCbiclustAnthropo and TDDclust) belong
to a technical report (Vinué and Ibáñez 2014), which can be accessed on the author’s website,
http://www.uv.es/vivigui/docs/biclustDepth. The CCbiclustAnthropo methodology adapts a
particular clustering algorithm mostly used for the analysis of gene expression data to the field
of Anthropometry. TDDclust uses the statistical concept of data depth (Liu, Parelius, and
Singh 1999) to group observations according to the most central (deep) one in each cluster. As
mentioned, traditional sizing systems are based on using a suitable set of key body dimensions,
so clustering must be carried out in the Euclidean space. In the three previous procedures,
we have always worked in this way. Instead, in the fourth and last one, hereinafter called as
kmeansProcrustes, a clustering procedure is developed for grouping women according to their
3D body shape, represented by a configuration matrix of anatomical markers (landmarks).
To that end, the statistical shape analysis (Dryden and Mardia 1998) will be fundamental.
This approach has been published in Vinué, Simó, and Alemany (2014b). Lastly, the fifth
clustering proposal is presented with the goal of identifying accurate fit models and is again
used in the Euclidean space. It is based on another clustering method originally developed for
biological data analysis. This method, called hipamAnthropom, has been published in Vinué,
León, Alemany, and Ayala (2014a). Well-defined fit models and prototypes can be used to
develop representative and precise mannequins of the population.

http://www.uv.es/vivigui/docs/biclustDepth.pdf
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A sizing system is intended only to cover what is known as the “standard” population, leaving
out the individuals who might be considered outliers with respect to a set of measurements. In
this case, outliers are called disaccommodated individuals. Clothing industries usually design
garments for the standard sizes in order to optimize market share. The four aforementioned
methods concerned with apparel sizing system design (trimowa, CCbiclustAnthropo, TDDclust
and kmeansProcrustes) take into account this fact. In addition, because hipamAnthropom is
based on hierarchical features, it is capable of discovering and returning true outliers.
Unlike clothing design, where representative cases correspond to central individuals, in de-
signing a one-size product, such as working environments or the passenger compartment of
any vehicle, including aircraft cockpits, the most common approach is to search for boundary
cases. In these situations, the variability of human shape is described by extreme individuals,
which are those that have the smallest or largest values (or extreme combinations) in the
dimensions considered in the study. These design problems fall into a more general category:
the accommodation problem. The supposition is that the accommodation of boundaries will
facilitate the accommodation of interior points (with less-extreme dimensions) (Bertilsson,
Högberg, and Hanson 2012; Parkinson, Reed, Kokkolaras, and Papalambros 2006; HFES 300
Committee 2004). For instance, a garage entrance must be designed for a maximum case,
while for reaching things such as a brake pedal, the individual minimum must be obtained.
In order to tackle the accommodation problem, two methodological contributions based on
statistical archetypal analysis are put forward. An archetype in Statistics is an extreme ob-
servation that is obtained as a convex combination of other subjects of the sample (Cutler
and Breiman 1994). The first of these methodologies has been published in Epifanio, Vinué,
and Alemany (2013), and the second has been published in Vinué, Epifanio, and Alemany
(2015), which presents the new concept of archetypoids.
As far as we know, there is currently no reference in the literature related on Anthropometry
or Ergonomics that provides the programming of the proposed algorithms. In addition, to
the best of our knowledge, with the exception of modern human modelling tools like “Jack”
and “Ramsis”, which are two of the most widely used tools by a broad range of industries
(Blanchonette 2010), there are no other general software applications or statistical packages
available on the Internet to tackle the definition of an efficient sizing system or the accommo-
dation problem. Within this context, this paper introduces a new R package (R Development
Core Team 2015) called Anthropometry, which brings together the algorithms associated with
all the above-mentioned methodologies. All of them were applied to the anthropometric study
of the Spanish female population and to the 1967 United States Air Force (USAF) survey.
Anthropometry includes several data files related to both anthropometric databases. All the
statistical methodologies, anthropometric databases and this R package were announced in
the author’s PhD thesis (Vinué 2014), which is freely available in a Spanish institutional open
archive. The latest version of Anthropometry is always available from the Comprehensive R
Archive Network at http://cran.r-project.org/package=Anthropometry. The package version
1.6 (or greater) is needed to reproduce the examples of this manuscript.
The outline of the paper is as follows: Section 2 describes all the data files included in
Anthropometry. Section 3 is intended to guide users in their choice of the different methods
presented. Section 4 gives a brief explanation of each statistical technique developed. In
Section 5 some examples of their application are shown, pointing out at the same time the
consequences of choosing different argument values. Section 6 provides a discussion about
the practical usefulness of the methods. Finally, concluding remarks are given in Section 7.

http://cran.r-project.org/package=Anthropometry
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One appendix describes the algorithms listings related to each methodology.

2. Data

2.1. Spanish anthropometric survey

The Spanish National Institute of Consumer Affairs (INC according to its Spanish acronym),
under the Spanish Ministry of Health and Consumer Affairs, commissioned a 3D anthro-
pometric study of the Spanish female population in 2006, after signing a commitment with
the top Spanish companies in the apparel industry. The Spanish National Research Council
(CSIC in Spanish) planned and developed the design of the experiment and received advice on
Anthropometry from the Complutense University of Madrid. The study itself was conducted
by the Biomechanics Institute of Valencia (Alemany et al. 2010). The target sample was
made up of 10,415 women grouped into 10 age groups ranging from 12 to 70 years, randomly
chosen from the official Postcode Address File.
As an illustrative example of the full Spanish survey, Anthropometry contains a database
called sampleSpanishSurvey, made up of a sample of 600 Spanish women and their measure-
ments for five anthropometric variables: bust, chest, waist and hip circumferences and neck to
ground length. These variables are chosen for three main reasons: they are recommended by
experts, they are commonly used in the literature and they appear in the European standard
on sizing systems. Size designation of clothes. Part 2: Primary and secondary dimensions
(European Committee for Standardization 2002).
As mentioned above, the women’s shape is represented by a set of landmarks, specifically
66 points. A data file called landmarksSampleSpaSurv contains the configuration matrix
of landmarks for each of the 600 women. As also noted above, a 3D binary image of each
woman’s trunk is available. Hence, the dissimilarity between trunk forms can be computed
and a distance matrix between women can be built. The distance matrix used in Vinué et al.
(2015) is included in Anthropometry and is called descrDissTrunks.

2.2. USAF survey

This database contains the information provided by the 1967 United States Air Force (USAF)
survey. It can be downloaded from http://www.dtic.mil/dtic/. This survey was conducted
in 1967 by the anthropology branch of the Aerospace Medical Research Laboratory (Ohio).
A sample of 2420 subjects of the Air Force personnel, between 21 and 50 years of age, were
measured at 17 Air Force bases across the United States of America. A total of 202 variables
were collected. The dataset associated with the USAF survey is available on USAFSurvey. In
the methodologies related to archetypal analysis, six anthropometric variables from the total
of 202 will be selected. They are the same as those selected in Zehner, Meindl, and Hudson
(1993) and are called cockpit dimensions because they are critical in order for designing an
aircraft cockpit.

2.3. Geometric figures

Two geometric figures, a cube and a parallelepiped, made up of 8 and 34 landmarks, are avail-
able in the package as cube8landm, cube34landm, parallelep8landm and parallelep34landm,

http://www.dtic.mil/dtic/
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respectively.

3. Anthropometric problems and their algorithmic solutions
In the Anthropometry R package five clustering methods are available (trimowa, CCbiclus-
tAnthropo, TDDclust, hipamAnthropom and kmeansProcrustes), each offering a different the-
oretical foundation and practical benefits. In addition, the archetypoid algorithm is included.
The purpose of this Section is to provide users with insights that can enable them to make
a suitable selection of the proposed methods. Clustering methodologies have been developed
to obtain central cases. On the other hand, methods based on archetype and archetypoid
analysis aim to identify boundary cases. Figure 1 shows a decision tree which indicates when
each approach is best suited to obtain representative central or boundary cases.

Figure 1: Decision tree for case selection methods.

Regarding clustering methods, the main difference between them is their practical objective.
This is the first key to finding out which method is right for the user. If the goal of the practi-
tioner is to obtain representative fit models for apparel sizing, the hipamAnthropom algorithm
must be used. Otherwise, if the goal is to create clothing size groups and size prototypes, the
other four methods are suitable. If the user wanted to design lower body garments, CCbiclus-
tAnthropo should be chosen, while for designing upper body garments, trimowa, TDDclust
and kmeansProcrustes are suitable. Choosing one of the latter three methods depends on the
kind of data being collected. If the database contains a set of 3D landmarks representing the
shape of women, the kmeansProcrustes method must be applied. On the other hand, trimowa
and TDDclust can be used when the data are 1D body measurements. For illustrative pur-
poses, Figure 2 shows a decision tree that helps the user to decide which clustering approach



Guillermo Vinué 7

is best suited.

Figure 2: Decision tree as user guidance for choosing which of the different clustering methods
to apply.

As a conclusion to this discussion, an illustrative comparison of the outcomes of using trimowa
and TDDclust on a random sample subset is given below. We restrict our attention to these
two methods because both of them have the same intention. Table 1 shows, in blue and with a
frame box, the upper prototypes obtained with TDDclust and with trimowa, respectively (the
R code used to obtain these results is available in http://www.uv.es/vivigui/softw/sect3.R).
In this case, two of the three prototypes match. However, it is worth pointing out that in
another case it is possible that none of them would match. This is because of the different
statistical foundation of each approach. At this point, it would be recommendable to use the
trimowa methodology because it has been developed further than TDDclust, returns outcomes
with a significantly lower computational time, regardless of the sample size, and is endorsed
by a scientific publication.

Label women neck to ground waist bust
92 134.3 71.1 82.7
480 133.1 96.8 106.5
340 136.3 85.9 95.9
377 136.1 87.6 97.9

Table 1: Upper size prototypes obtained by TDDclust (in blue) and by trimowa (frame box).

http://www.uv.es/vivigui/softw/sect3.R
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4. Statistical methodologies

4.1. Anthropometric dimensions-based clustering and shape analysis

For practical guidance, Algorithm 1 explains the workflow for clustering-based approaches
from an Anthropometry point of view, followed by the description of individual algorithms.
See Appendix A for details about the algorithm listings.

1. The data matrix is segmented using a primary control dimension (bust or waist).
Note 1: The segmentation is done according to the classes suggested in the European

standard on sizing systems. Size designation of clothes. Part 3: Measurements
and intervals (European Committee for Standardization 2005). This standard
is drawn up by the European Union and is a set of guidelines for the textile
industry to promote the implementation of a clothing sizing system, that is
adapted to users.

2. A further clustering segmentation is carried out using other secondary control anthropometric variables.

if bust was selected in 1. then
use one of the following methodologies:
- trimowa (see Algorithm 3).
- TDDclust (see Algorithm 5).
- hipamAnthropom (see Algorithm 6).
- kmeansProcrustes (see Algorithm 9, 10 and 11).

else
if waist was selected in 1. then

use CCbiclustAnthropo (see Algorithm 4).
end if

end if
Note 2: In this way, the first segmentation provides a first easy input to choose the

size, while the resulting clusters (subgroups) for each bust (or waist) and other
anthropometric measurements optimize the sizing. From the point of view of
clothing design, by using a more appropriate statistical strategy, such as
clustering, homogeneous subgroups are generated taking into account the
anthropometric variability of the secondary dimensions that have a significant
influence on garment fit.

Algorithm 1: Workflow for clustering-based approaches.

The trimowa methodology
The aim of a sizing system is to divide a varied population into groups using certain key
body dimensions (Ashdown 2007; Chung et al. 2007). Three types of approaches can be
distinguished for creating a sizing system: traditional step-wise sizing, multivariate methods
and optimization methods. Traditional methods are not useful because they use bivariate
distributions to define a sizing chart and do not consider the variability of other relevant
anthropometric dimensions. Recently, more sophisticated statistical methods have been de-
veloped, especially using principal component analysis (PCA) and clustering (Gupta and
Gangadhar 2004; Hsu 2009b; Luximon, Zhang, Luximon, and Xiao 2012; Hsu 2009a; Chung
et al. 2007; Zheng, Yu, and Fan 2007; Bagherzadeh, Latifi, and Faramarzi 2010). Peter Try-
fos was the first to suggest an optimization method (Tryfos 1986). He developed an integer
programming procedure to maximize garment sales. Later, McCulloch et al. (McCulloch,
Paal, and Ashdown 1998) modified Tryfos’ approach by focusing the problem on maximizing
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the quality of fit instead of on the sales. The sizes were determined by means of a nonlinear
optimization problem. The objective function measured the misfit between a person and the
prototype, using a particular dissimilarity measure and removing from the data set a prefixed
proportion of the sample.
The first clustering methodology proposed, called trimowa, is closed to the one developed in
McCulloch et al. (1998), in terms of maximizing the quality of fit by using a dissimilarity
measure to compare individuals and prototypes and by leaving out some individuals of the
data set. However, there are two main differences. First, when searching for k prototypes, a
more statistical approach is assumed. To be specific, a trimmed version of the partitioning
around medoids (PAM or k-medoids) clustering algorithm is used. The trimming procedure
allows us to remove outlier observations (García-Escudero, Gordaliza, Matrán, and Mayo-
Iscar 2008; García-Escudero, Gordaliza, and Matrán 2003). Second, the dissimilarity measure
defined in McCulloch et al. (1998) is modified using an OWA (ordered weighted average)
operator to consider the user morphology. This approach was published in Ibáñez et al.
(2012b) and it is implemented in the trimowa function. Next, the mathematical details
behind this procedure are briefly explained. A detailed exposition is given in Ibáñez et al.
(2012b); Vinué (2014). The dissimilarity measure is defined as follows. Let x = (x1, . . . , xp) be
an individual of the user population represented by a feature vector of size p of his/her body
measurements. In the same way, let y = (y1, . . . , yp) be the p measurements of the prototype
of a particular size. Then, d(x, y) measures the misfit between a particular individual and the
prototype. In other words, d(x, y) indicates how far a garment made for prototype y would
be from the measurements for a given person x. In McCulloch et al. (1998) the dissimilarity
measure in each measurement has the following expression:

di(xi, yi) =



al
i(ln(yi) − bl

i − ln(xi)) if ln(xi) < ln(yi) − bl
i

0 if ln(yi) − bl
i ≤ ln(xi) ≤ ln(yi) + bh

i

ah
i (ln(xi) − bh

i − ln(yi)) if ln(xi) > ln(yi) + bh
i

(1)

where al
i, bl

i, ah
i and bh

i are constants for each dimension and have the following meaning: bi

corresponds to the range in which there is a perfect fit; ai indicates the rate at which fit
deteriorates outside this range, i.e., it reflects the misfit rate. In McCulloch et al. (1998) the
global dissimilarity is merely defined as a sum of squared discrepancies over each of the p
body measurements considered:

d(x, y) =
p∑

i=1

(
di(xi, yi)

)2 (2)

Because the different dissimilarities di(xi, yi)’s are being aggregated (summed), an OWA
operator can be used. Let d1, . . . , dp the values to be aggregated. An OWA operator of
dimension p is a mapping f : Rp → R where f(d1, . . . , dp) = w1b1 + . . . + wpbp, being bj the
jth largest element in the collection d1, . . . , dp (i.e., these values are ordered in decreasing
order) and W = (w1, . . . , wp) an associated weighting vector such that wi ∈ [0, 1], 1 ≤ i ≤ p
and

∑p
j=1 wj = 1. Because the OWA operators are bounded between the max and min

operators, a measure called orness was defined in Yager (1988) to classify the OWA operators
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between those two. The orness quantity adjusts the importance to be attached to the values
d1, . . . , dp, depending on their ranks:

orness(W ) = 1
p − 1

p∑
i=1

(p − i)wi. (3)

On consequence, the dissimilarity used in trimowa and also in hipamAnthropom is defined as
follows:

d(x, y) =
p∑

i=1
wi

(
di(xi, yi)

)2 (4)

In short, the dissimilarity presented in Equation 4 is defined as a sum of squared discrepancies
over each of the p body measurements considered, adjusting the importance of each one
of them by assigning to each one of them a particular OWA weight. The set of weights
W = (w1, . . . , wp) is based on using a mixture of the binomial Bi(p − 1, 1.5 − 2 · orness)
and the discrete uniform probability distributions. Specifically, each weight is calculated as
wi = λ · πi + (1 − λ) · 1

p , where πi is the binomial probability for each i = 0, . . . , p − 1.
The algorithm associated with the trimowa methodology is summarized in Algorithm 3 (the
number of clusters is labeled k as in the k-medoids algorithm).
Our approach allows us to obtain more realistic prototypes (medoids) because they correspond
to real women from the database and the selection of individual discommodities. In addition,
the use of OWA operators has resulted in a more realistic dissimilarity measure between
individuals and prototypes. We learned from this situation that there is an ongoing search
for advanced statistical approaches that can deliver practical solutions to the definition of
central people and optimal size groups. Consequently, we have come across two different
statistical strategies in the literature and have aimed to discuss their potential usefulness in
the definition of an efficient clothing sizing system. These approaches are based on biclustering
and data depth and will be summarized below.

The CCbiclustAnthropo methodology
Given a data set with a number of rows and columns, conventional clustering can be applied to
either the rows or the columns of the data matrix, separately. In a traditional row cluster, each
row is defined using all the columns of the data matrix. Something similar would occur with
a column cluster. Biclustering is a novel clustering approach that consists of simultaneously
partitioning the set of rows and the set of columns into subsets. With biclustering, each row
in a bicluster is defined using only a subset of columns and vice versa. Therefore, clustering
provides a global model but biclustering defines a local one (Madeira and Oliveira 2004). This
interesting property made us think that biclustering could perhaps be useful for obtaining
efficient size groups, since they would only be defined for the most relevant anthropometric
dimensions that describe a body in the detail necessary to design a well-fitting garment.
Recently, a large number of biclustering methods have been developed. Some of them are
implemented in different sources, including R. Currently, the most complete R package for
biclustering is biclust (Kaiser and Leisch 2008; Kaiser, Santamaria, Khamiakova, Sill, Theron,
Quintales, and Leisch 2013). The usefulness of the approaches included in biclust for dealing
with anthropometric data was investigated in Vinué (2012). Among the conclusions reached,
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the most important was concerned with the possibility of considering the Cheng & Church
biclustering algorithm (Cheng and Church 2000) (referred to below as CC) as a potential
statistical approach to be used for defining size groups. Specifically, in Vinué (2012) an algo-
rithm to find size groups (biclusters) and disaccommodated women with CC was set out. This
methodology is called CCbiclustAnthropo and it is implemented in the CCbiclustAnthropo
function. Next, the mathematical details behind the CCbiclustAnthropo procedure are briefly
described. First of all, the CC algorithm must be introduced (see Cheng and Church 2000;
Vinué 2014; Kaiser and Leisch 2008, for more details). The CC algorithm searches for bi-
clusters with constant values (in rows or in columns). To that end, it defines the following
score:

H(I, J) = 1
|I||J |

∑
i∈I,j∈J

(aij − aiJ − aIj + aIJ)2,

where aiJ is the mean of the ith row of the bicluster, aIj is the mean of the jth column of
the bicluster and aIJ is its overall mean. Then, a subgroup is called a bicluster if the score is
below a value δ ≥ 0 and above an α-fraction of the score of the whole data (α > 1).
The CC algorithm implemented in the biclust function of the biclust package requires three
arguments. Firstly, the maximum number of biclusters to be found. We propose that this
number should be fixed for each waist size according to the number of women it contains:
For less than 150, fix 2 biclusters; between 151-300, 3; between 351-450, 4; greater than 415,
5. Secondly, the α value. Its default value (1.5) is maintained. Finally, the δ value. Because
CC is nonexhaustive, i.e., it might not group every woman into a bicluster, the value of δ
can be iteratively adapted to the number of disaccommodated women we want to discard in
each size. The proportion of the trimmed sample is prefixed to 0.01 per size. In this way, a
number of women between 0 and the previous fixed proportion will not be assigned to any
group. The algorithm associated with the CCbiclustAnthropo methodology is summarized in
Algorithm 4.
Designing lower body garments depends not only on the waist circumference (the principal
dimension in this case), but also on other secondary control dimensions (for upper body gar-
ments only the bust circumference is usually needed). Biclustering produces subgroups of
objects that are similar in one subgroup of variables and different in the remaining variables.
Therefore, it seems more interesting to use a biclustering algorithm with a set of lower body
dimensions. For that purpose, all the body variables related to the lower body in the Spanish
anthropometric survey were chosen (there were 36). An efficient partition into different bi-
clusters was obtained with promising results. All individuals in the same bicluster can wear
a garment designed for the specific body dimensions (waist and other variables) which were
the most relevant for defining the group. Each group is represented by the median woman.
The main interest of this approach was descriptive and exploratory and the important point
to note here is that CCbiclustAnthropo cannot be used with sampleSpanishSurvey, since
this data file does not contain variables related to the lower body in addition to waist and
hip. However, this function is included in the package in the hope that it could be helpful
or useful for other researchers. All theoretical and practical details are given in Vinué and
Ibáñez (2014), Vinué (2014) and Vinué (2012).
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The TDDclust methodology
The statistical concept of data depth is another general framework for descriptive and infer-
ential analysis of numerical data in a certain number of dimensions. In essence, the notion
of data depth is a generalization of standard univariate rank methods in higher dimensions.
A depth function measures the degree of centrality of a point regarding a probability distri-
bution or a data set. The highest depth values correspond to central points and the lowest
depth values correspond to tail points (Liu et al. 1999; Zuo and Serfling 2000). Therefore,
the depth paradigm is another very interesting strategy for identifying central prototypes.
The development of clustering and classification methods using data depth measures has
received increasing attention in recent years (Dutta and Ghosh 2012; Lange, Mosler, and
Mozharovskyi 2012; López and Romo 2010; Ding, Dang, Peng, and Wilkins 2007). The most
relevant contribution to this field has been made by Rebecka Jörnsten in Jörnsten (2004)
(see Jörnsten, Vardi, and Zhang 2002; Pan, Jörnsten, and Hart 2004, for more details). She
introduced two clustering and classification methods (DDclust and DDclass, respectively)
based on L1 data depth (see Vardi and Zhang 2000, for more details). The DDclust method
is proposed to solve the problem of minimizing the sum of L1-distances from the observations
to the nearest cluster representatives. In clustering terms, the L1 data depth is the amount
of probability mass needed at a point z to make z the multivariate L1-median (a robust
representative) of the data cluster.
An extension of DDclust is introduced which incorporates a trimmed procedure, aimed at seg-
menting the data into efficient size groups using central (the deepest) people. This method-
ology will be referred to below as TDDclust and it can be used within Anthropometry by
using a function with the same name. Next, the mathematical details behind the TDDclust
procedure are briefly described. A thorough explanation is given in Vinué and Ibáñez (2014);
Vinué (2014). First, the L1 multivariate median (from now on, L1-MM) is defined as the
solution of the Weiszfeld problem (Vardi and Zhang 2000). Vardi et al. (Vardi and Zhang
2000) proved that the depth function associated with the L1-MM, called L1 data depth, is:

D(y) =


1 − ||ē(y)|| if y /∈ {x1, . . . , xm},

1 − (||ē(y)|| − fk) if y = xk.
(5)

where ei(y) = (y − xi)/||y − xi|| (unit vector from y to xi) and ē(y) =
∑

xk ̸=y ei(y)fi (average
of the unit vectors from y to all observations), with fi = ηi /

∑k
j=1 ηj (ηi is a weight for xi)

and ||ē(y)|| is close to 1 if y is close to the edge of the data, and close to 0 if y is close to the
center.
The DDclust method is proposed to solve the problem of minimizing the sum of L1-distances
from the observations to the nearest cluster representatives. Specifically, DDclust iterates
between median computations via the modified Weiszfeld algorithm (Weiszfeld and Plastria
2009) and a Nearest-Neighbor allocation scheme with simulation annealing. The clustering
criterion function used in DDclust is the maximization of:

C(IK
1 ) = 1

N

K∑
k=1

∑
i∈I(k)

(1 − λ)sili + λReDi (6)
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with respect to a partition IK
1 = {I(1), . . . , I(K)}. For each point i, sili is the silhouette

width, ReDi is the difference between the within cluster L1 data depth and the between
cluster L1 data depth, and λ ∈ [0, 1] is a parameter that controls the influence the data depth
has over the clustering. Following Zuo (2006), for any 0 < α < α∗ = supx(D(x)) ≤ 1, the
α-th trimmed depth region is:

Dα = {x : D(x) ≥ α}. (7)

The idea behind TDDclust is to define trimmed regions at each step of the iterative algorithm
and to apply the DDclust algorithm to the remaining set of observations. The algorithm
associated with the TDDclust methodology is summarized in Algorithm 5.

The hipamAnthropom methodology
Representative fit models are important for defining a meaningful sizing system. However,
there is no agreement among apparel manufacturers and almost every company employs a
different fit model. Companies try to improve the quality of garment fit by scanning their fit
models and deriving dress forms from the scans (Ashdown 2007; Song and Ashdown 2010).
A fit model’s measurements correspond to the commercial specifications established by each
company to achieve the company’s fit (Loker, Ashdown, and Schoenfelder 2005; Workman
and Lentz 2000; Workman 1991). Beyond merely wearing the garment for inspection, a
fit model provides objective feedback about the fit, movement or comfort of a garment in
place of the consumer. The hipamAnthropom methodology is proposed in order to provide
new insights about this problem. This methodology is available in the hipamAnthropom
function. It consists of two classification algorithms based on the hierarchical partitioning
around medoids (HIPAM) clustering method presented in Wit and McClure (2004), which has
been modified to deal with anthropometric data. HIPAM is a divisive hierarchical clustering
algorithm using PAM. This procedure was published in Vinué et al. (2014a). The outputs of
the two algorithms include a set of central representative subjects or medoids taken from the
original data set, which constitute our fit models. They can also detect outliers. The first
one, called HIPAMMO, is a slightly modification of the HIPAM that uses the dissimilarity
defined in Equation 4. HIPAMMO uses the average silhouette width (asw, see Kaufman,
L. and Rousseeuw, P. J. (1990)) as a measure of cluster structure and the maximization of
the asw as the rule to subdivide each already accepted cluster. The use of asw could be too
restrictive. That’s why a second algorithm, HIPAMIMO, is proposed, where the differences
regarding the original HIPAM are even deeper. It incorporates a different criterion: the INCA
statistic criterion (Irigoien and Arenas 2008; Arenas and Cuadras 2002; Irigoien, Sierra, and
Arenas 2012) to decide the number of child clusters and as a stopping rule. In short, INCA
is defined as the probability of properly classified individuals and it is estimated with the
following expression:

INCAk = 1
k

k∑
j=1

Nj

nj
(8)

where Nj is the total number of units in a cluster Cj which are well classified and nj is
the size of cluster Cj . Next, a briefly exposure about the details behind HIPAMMO and
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HIPAMIMO is given. Let’s start with HIPAMMO: The output of a HIPAM algorithm is
represented by a classification tree where each node corresponds to a cluster. The end nodes
give us the final partition. The highest or top node, T , corresponds to the whole database.
For a given node P , the algorithm must decide if it is convenient to split this (parent) cluster
into new (child) clusters, or stop. If |P | ≤ 2, then it is an end (or terminal) node. If not,
a PAM is applied to P with k1 groups, where k1 is chosen by maximizing the asw of the
new partition. After a post-processing step, a partition C = {C1, . . . , Ck} is finally obtained
from P (k is not necessarily equal to k1). Next, the mean silhouette width of C (or aswC)
is obtained, and then the same steps used to generate C are applied to each Ci to obtain
a new partition. If we denote by SSi the asw of the new partition with i = 1, . . . , k (if
|Ci| ≤ 2 then SSi = 0), then the Mean Split Silhouette (MSS) is defined as the mean of the
SSi’s. If MSS(k) < aswC , then these new k child clusters of the partition C are included in
the classification tree. Otherwise, P is a terminal node. On the other hand, the algorithm
HIPAMIMO is summarized in Algorithm 6. The main difference between HIPAMMO and
HIPAMIMO is in the use of the INCA criterion:

1. At each node P , if there is k such that INCAk > 0.2, then we select the k prior to the
first largest slope decrease.

2. On the other hand, if INCAk < 0.2 for all k, then P is a terminal node.

However, this procedure does not apply either to the top node T , or to the generation of the
new partitions from which the MSS is calculated. In this case, even when all INCAk < 0.2,
we fix k = 3 as the number of groups to divide and proceed.

The kmeansProcrustes methodology
The clustering methodologies explained so far use a set of control anthropometric variables as
the basis for a different type of sizing system in which people are grouped in a size group based
on a full range of measurements. Consequently, clustering is done in the Euclidean space.
The shape of the women recruited into the Spanish anthropometric survey is represented
by a configuration matrix of correspondence points called landmarks. Taking advantage of
this fact, we have adapted the k-means clustering algorithm to the field of statistical shape
analysis, to define size groups of women according to their body shapes. The representative of
each size group is the average woman. This approach was published in Vinué et al. (2014b).
We have adapted both the original Lloyd and Hartigan-Wong (H-W) versions of k-means
to the field of shape analysis and we have demonstrated, by means of a simulation study,
that the Lloyd version is more efficient for clustering shapes than the H-W version. The
function that uses the Lloyd version of k-means adapted to shape analysis (what we called
kmeansProcrustes) is LloydShapes. The function that uses the H-W version of k-means
adapted to shape analysis is HartiganShapes. A trimmed version of kmeansProcrustes can
be also executed with trimmedLloydShapes.
To adapt k-means to the context of shape analysis, we integrated the Procrustes distance and
Procrustes mean into it. A glossary of the concepts of shape analysis used is provided below.
The following general notation will be used: n refers to the number of objects, h to the number
of landmarks and m to the number of dimensions (in our case, m = 3). Then, each object
is described by an h × m configuration matrix X containing the m Cartesian coordinates of
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its h landmarks. The pre-shape of an object is what is left after allowing for the effects of
translation and scale. The shape of an object is what is left after allowing for the effects of
translation, scale and rotation. The shape space Σh

m (named Kendall shape space) is the set of
all possible shapes. The Procrustes distance is the square root of the sum of squared differences
between the positions of the landmarks in two optimally (by least-squares) superimposed
configurations at centroid size (the centroid size is the most commonly used measure of size
for a configuration). The Procrustes mean is the shape that has the least summed squared
Procrustes distance to all the configurations of a sample. Algorithms 9, 10 and 11 show the
algorithms behind LloydShapes, trimmedLloydShapes and HartiganShapes, respectively.

4.2. Archetypal analysis

Regarding the methodologies using archetypal analysis, for practical guidance, Algorithm 2
explains their corresponding workflow, followed by the description of individual algorithms.
See Appendix A for details about the algorithm listings.

1. Depending on the problem, the data may or may not be standardized.
2. An accommodation subsample is selected.
3. A number k of archetypes is obtained (see Algorithm 12).
4. The nearest individuals to the archetypes are computed.
5. A number k of archetypoids is obtained (see Algorithm 13).

Algorithm 2: Workflow for archetypal-based approaches.

In ergonomic-related problems, where the goal is to create more efficient people-machine
interfaces, a small set of extreme cases (boundary cases), called human models, is sought.
Designing for extreme individuals is appropriate where some limiting factor can define either
a minimum or maximum value which will accommodate the population. The basic principle is
that accommodating boundary cases will be sufficient to accommodate the whole population.
For too long, the conventional solution for selecting this small group of boundary models
was based on the use of percentils. However, percentils are a kind of univariate descriptive
statistic, so they are suitable only for univariate accommodation and should not be used in
designs that involve two or more dimensions. Furthermore, they are not additive (Zehner
et al. 1993; Robinette and McConville 1981; Moroney and Smith 1972). Today, the alterna-
tive commonly used for the multivariate accommodation problem is based on PCA (Friess
and Bradtmiller 2003; Hudson, Zehner, and Meindl 1998; Robinson, Robinette, and Zehner
1992; Bittner, Glenn, Harris, Iavecchia, and Wherry 1987). However, it is known that the
PCA approach presents some drawbacks (Friess 2005). In Epifanio et al. (2013), a different
statistical approach for determining multivariate limits was put forward: archetypal analy-
sis (Cutler and Breiman 1994), and its advantages regarding over PCA were demonstrated.
The theoretical basis of archetype analysis is as follows. Let X be an n × m matrix that
represents a multivariate dataset with n observations and m variables. The goal of archetype
analysis is to find a k × m matrix Z that characterizes the archetypal patterns in the data,
such that data can be represented as mixtures of those archetypes. Specifically, archetype
analysis is aimed at obtaining the two n × k coefficient matrices α and β which minimize
the residual sum of squares that arises from combining the equation that shows xi as being
approximated by a linear combination of zj ’s (archetypes) and the equation that shows zj ’s
as linear combinations of the data:
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∥xi −
∑k

j=1 αijzj∥2

zj =
n∑

l=1
βjlxl

 ⇒ RSS =
n∑

i=1
∥xi −

k∑
j=1

αijzj∥2 =
n∑

i=1
∥xi −

k∑
j=1

αij

n∑
l=1

βjlxl∥2, (9)

under the constraints

1)
k∑

j=1
αij = 1 with αij ≥ 0 and i = 1, . . . , n and

2)
n∑

l=1
βjl = 1 with βjl ≥ 0 and j = 1, . . . , k.

On the one hand, constraint 1) tells us that the predictors of xi are finite mixtures of

archetypes, x̂i =
k∑

j=1
αijzj . Each αij is the weight of the archetype j for the individual i,

that is to say, the α coefficients represent how much each archetype contributes to the ap-
proximation of each individual. On the other hand, constraint 2) implies that archetypes zj

are convex combinations of the data points, zj =
n∑

l=1
βjlxl. Algorithm 12 shows an outline of

the archetypal algorithm, following Eugster and Leisch (2009).
The function that allows us to reproduce the results discussed in Epifanio et al. (2013) is
archetypesBoundary (use set.seed(2010) to obtain the same results).
According to the previous definition, archetypes computed by archetypal analysis are a convex
combination of the sampled individuals, but they are not necessarily real observations. The
archetypes would correspond to specific individuals when zj is an observation of the sample,
that is to say, when only one βjl is equal to 1 in constraint 2) for each j. As βjl ≥ 0
and the sum of constraint 2) is 1, this implies that βjl should only take on the value 0 or
1. In some problems, it is crucial that the archetypes are real subjects, observations of the
sample, and not fictitious. To that end, we have proposed a new archetypal concept: the
archetypoid, which corresponds to specific individuals and each observation of the data set
can be represented as a mixture of these archetypoids. In the analysis of archetypoids, the
original continuos optimization problem therefore becomes:

RSS =
n∑

i=1
∥xi −

k∑
j=1

αijzj∥2 =
n∑

i=1
∥xi −

k∑
j=1

αij

n∑
l=1

βjlxl∥2, (10)

under the constraints

1)
k∑

j=1
αij = 1 with αij ≥ 0 and i = 1, . . . , n and

2)
n∑

l=1
βjl = 1 with βjl ∈ {0, 1} and j = 1, . . . , k i.e. βjl = 1 for one and only one l and

βjl = 0 otherwise.
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This new concept archetypoids is introduced in a paper published in Vinué et al. (2015). We
have developed an efficient computational algorithm based on PAM to compute archetypoids
(called archetypoid algorithm), we have analyzed some of their theoretical properties, we have
explained how they can be obtained when only dissimilarities between observations are known
(features are unavailable) and we have demonstrated some of their advantages regarding over
classical archetypes.
The archetypoid algorithm has two phases: a BUILD phase and a SWAP phase, like PAM.
In the BUILD step, an initial set of archetypoids is determined, made up of the nearest
individuals to the archetypes computed in the first instance. This set can be defined in three
different ways: The first possibility consists in computing the Euclidean distance between the
k archetypes and the individuals and choosing the nearest ones, as mentioned in Epifanio
et al. (2013) (set candns). The second choice identifies the individuals with the maximum α
value for each archetype, i.e. the individuals with the largest relative share for the respective
archetype (set candα, used in Eugster (2012) and Seiler and Wohlrabe (2013)). The third
choice identifies the individuals with the maximum β value for each archetype, i.e., the major
contributors in the generation of the archetypes (set candβ). Accordingly, the initial set of
archetypoids is candns, candα or candβ. The aim of the SWAP phase of the archetypoid
algorithm is the same as that of the SWAP phase of PAM, but the objective function is now
given by Equation 10 (see Vinué et al. 2015; Vinué 2014, for more details). Algorithm 13
shows an outline of the archetypoid algorithm.

5. Applications
This Section presents a detailed explanation of the numerical and graphical outcome provided
by each method by means of several examples. In addition, some relevant comments are given
about the consequences of choosing different argument values in each case.
First of all, Anthropometry must be loaded into R:

library("Anthropometry")

5.1. Anthropometric dimensions-based clustering and shape analysis

The trimowa methodology
The following code executes the trimowa methodology. A similar code was used to obtain
the results described in Ibáñez et al. (2012b). We use sampleSpanishSurvey and its five
anthropometric variables. The bust circumference is used as the primary control dimension.
Twelve bust sizes (from 74 cm to 131 cm) are defined according to the European standard on
sizing systems. Size designation of clothes. Part 3: Measurements and intervals (European
Committee for Standardization 2005).

dataTrimowa <- sampleSpanishSurvey
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))
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The aggregation weights of the OWA operator are computed. They are used to calculate the
global dissimilarity between the individuals and the prototypes. We give orness a value of 0.7
in order to highlight the largest aggregated values, that is to say, the largest discrepancies
between the women’s body measurements and those of the prototype. An orness value close
to 1 gives more importance to the worst fit, whilst an orness value close to 0 gives more
importance to the best fit (see Vinué (2014, p. 27-31) for details).

orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)

Next the trimowa algorithm is used within each bust size. In this situation, where trimowa
is applied to a sequence of body sizes, this algorithm is used inside the helper function
computSizesTrimowa. Three size groups (clusters, argument numClust) are calculated per
bust segment. This number of groups is quite well aligned with the strategy used by companies
to design sizes. A larger numClust will result in many sizes being designed, increasing the
production a lot. A smaller numClust corresponds to too few sizes being designed and having
a poor accommodation index.
The trimmed proportion, alpha, is prefixed to 0.01 per segment (therefore, the accommo-
dation rate in each bust size will be 99%). This selection allows us to accommodate a very
large percentage of the population in the sizing system. A larger trimmed proportion would
result in a smaller amount of accommodated people. The number of random initializations
is 10 (niter), with seven steps per initialization (algSteps). These values are small in the
interests of a fast execution. The more random repetitions, the more accurate the prototypes
and the more representative of the size group. In Ibáñez et al. (2012b), the number of random
initializations was 600.
In addition, a vector of five constants (one per variable) is needed to define the dissimilarity.
The numbers collected in the ah argument are related to the particular five variables selected
in sampleSpanishSurvey. Different body variables would require different constants (see
McCulloch et al. 1998; Vinué 2014, for further details).
To reproduce results, a seed for randomness is fixed. This will also be done with the other
methods presented below.

numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)

#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
numSizes <- bustSizes$nsizes - 1
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc,

numSizes, weightsTrimowa, numClust,
alpha, niter, algSteps, ah, FALSE)

The prototypes are the clustering medoids. The anthrCases generic function allows us to
obtain the estimated cases by each method.
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prototypes <- anthrCases(res_trimowa, numSizes)

Figure 3 shows the scatter plots of bust circumference against neck to ground with the three
prototypes obtained for each bust class without (left) and with (right) the prototypes defined
by the European standard. The prototypes color and the plot title must be provided. Unlike
the European standard prototypes, which are strictly defined for any database, our prototypes
are better adapted to the particular body measurements of the sample of individuals belonging
to each size.

bustVariable <- "bust"
xlim <- c(72, 132)
color <- c("black", "red", "green", "blue", "cyan", "brown", "gray",

"deeppink3", "orange", "springgreen4", "khaki3", "steelblue1")
variable <- "necktoground"
ylim <- c(116, 156)
title <- "Prototypes \n bust vs neck to ground"
plotPrototypes(dataTrimowa, prototypes, numSizes, bustVariable,

variable, color, xlim, ylim, title, FALSE)
plotPrototypes(dataTrimowa, prototypes, numSizes, bustVariable,

variable, color, xlim, ylim, title, TRUE)
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Figure 3: Bust vs. neck to ground, jointly with our medoids (left) and the prototypes defined
by the European standard (right).
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The TDDclust methodology
A basic example of the TDDclust methodology is shown here. Computing data depth is very
demanding. As an illustration, only 25 individuals are selected. In addition, the neck to
ground, waist and bust variables are selected.

dataTDDcl <- sampleSpanishSurvey[1 : 25, c(2, 3, 5)]
dataTDDcl_aux <- sampleSpanishSurvey[1 : 25, c(2, 3, 5)]

In line with trimowa, three size groups are calculated (numClust) and a trimmed proportion
is fixed to 0.01 (alpha). The lambda controls the influence the data depth has over the
clustering. If lambda is 1, the clustering criterion is equivalent to the average silhouette width.
On the contrary, if lambda is 0, it is given by the average relative data depth. Fixing lambda
to 0.5 is an intermediate and suggested scenario. A detailed explanation of the consequences
of different lambda values is given in Jörnsten (2004). Because the depth computation is
costly, we only run the algorithm for five iterations (niter).
The other arguments are given by default. A different value for Th may result in the optimum
clustering not being found (see Jörnsten 2004, page 75). A different simulated annealing
parameter (T0 and simAnn) may change the clustering results obtained.

numClust <- 3 ; alpha <- 0.01 ; lambda <- 0.5 ; niter <- 5
Th <- 0 ; T0 <- 0 ; simAnn <- 0.9

#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
res_TDDcl <- TDDclust(dataTDDcl, numClust, lambda, Th, niter, T0, simAnn,

alpha, dataTDDcl_aux, verbose = FALSE)

The following code statements allow us to analyze the clustering results, the final value of the
optimal partition and the iteration in which the optimal partition was found, respectively.

table(res_TDDcl$NN[1,])
#1 2 3
#5 10 9
res_TDDcl$Cost
#[1] 0.3717631
res_TDDcl$klBest
#[1] 3

The prototypes are obtained with anthrCases. In addition, the trimmOutl generic function
allows us to obtain the trimmed or outlier observations discarded by each method.

prototypes <- anthrCases(res_TDDcl)
trimmed <- trimmOutl(res_TDDcl)

The hipamAnthropom methodology
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The following code statements illustrate how to use the hipamAnthropom methodology. The
same twelve bust segments as in trimowa are used.

dataHipam <- sampleSpanishSurvey
bust <- dataHipam$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

In this situation, where hipamAnthropom is applied to a sequence of body sizes, this algorithm
is used inside the helper function computSizesHipamAnthropom. The HIPAMIMO algorithm
is used. It was verified in Vinué et al. (2014a) that HIPAMIMO showed better performance
for finding representative prototypes. The maximum number of clusters that any cluster can
be divided into is fixed to five (maxsplit). In the HIPAM algorithm the number of sub-
clusters that any cluster is potentially divided into is between 2 and maxsplit. A larger
maxsplit than five could result in too many clusters, which is not interesting from the point
of view of the strategy used by companies to design sizes.
The same orness and vector of constants as in trimowa are used.

type <- "IMO"
maxsplit <- 5 ; orness <- 0.7
ah <- c(23, 28, 20, 25, 25)

#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
numSizes <- bustSizes$nsizes - 1
res_hipam <- computSizesHipamAnthropom(dataHipam, bust, bustSizes$bustCirc,

numSizes, maxsplit, orness, type,
ah, FALSE)

The fit models are the clustering medoids and the outliers are the discarded observations.

fitmodels <- anthrCases(res_hipam, numSizes)
outliers <- trimmOutl(res_hipam, numSizes)

Figure 4 displays the fit models (left) and the outliers (right) corresponding to each bust size.
The fit models color and the plot title must be provided. The important point to note here
is the fact that each bust segment has a small sample size. This might explain the fact that
this algorithm (and also HIPAMMO) does not find large homogeneous clusters and therefore
identifies a lot of women as outliers in each class for this database. One of the features of
the HIPAM algorithm is that it is a very sensitive algorithm for identifying outliers. A broad
discussion, analysis and thoughts on the anthropometric meaning of these outliers is given in
Vinué et al. (2014a) (including the supplementary material).

bustVariable <- "bust"
xlim <- c(72, 132)
color <- c("black", "red", "green", "blue", "cyan", "brown", "gray",

"deeppink3", "orange", "springgreen4", "khaki3", "steelblue1")
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variable <- "hip"
ylim <- c(83, 153)
title <- "Fit models HIPAM_IMO \n bust vs hip"
title_outl <- "Outlier women HIPAM_IMO \n bust vs hip"
plotPrototypes(dataHipam, fitmodels, numSizes, bustVariable,

variable, color, xlim, ylim, title, FALSE)
plotTrimmOutl(dataHipam, outliers, numSizes, bustVariable,

variable, color, xlim, ylim, title_outl)
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Figure 4: Bust vs. hip with the medoids (left) and with the outliers (right) obtained using
HIPAMIMO.

The kmeansProcrustes methodology
To conclude this Section, the use of the kmeansProcrustes methodology is illustrated. For the
sake of simplicity of the computation involved only a small sample (the first 50 individuals)
is selected. When there are missing values (NA’s, not available numbers), they are removed.

landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
landmarksNoNa_First50 <- landmarksNoNa[1 : 50, ]
numIndiv <- dim(landmarksNoNa_First50)[1]

We have to define an array with the 3D landmarks of the sample objects.

array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First50)

Again, three size groups are calculated (numClust) and a trimmed proportion is fixed to
0.01 (alpha). The trimmedLloydShapes algorithm is used with only five iterations and five
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steps per initialization in the interests of a fast execution. A larger number of repetitions
is suggested to obtain more optimal results. The default relative stopping criteria is 0.0001.
Using this small value ensures that the algorithm stops when the decrease in the objective
function is hardly visible. A larger stopping value could prematurely stop the algorithm (but
the decrease in the objective function should have been taken into account).

numClust <- 3 ; alpha <- 0.01 ; algSteps <- 5
niter <- 5 ; stopCr <- 0.0001

#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
res_kmProc <- trimmedLloydShapes(array3D, numIndiv, alpha, numClust,

algSteps, niter, stopCr,
verbose = FALSE)

The clustering results are obtained in the following way:

clust_kmProc <- res_kmProc$asig
table(clust_kmProc)
#1 2 3
#19 18 12

The optimal prototypes and the trimmed individuals of the optimal iteration can be also
identified:

prototypes <- anthrCases(res_kmProc)
trimmed <- trimmOutl(res_kmProc)

In order to examine the differences between clusters for some key anthropometric dimensions,
their boxplots can be represented. To do this, we need to identify the first 50 individuals in
sampleSpanishSurvey and to remove the trimmed ones. Figure 5 (left) displays the boxplots
for neck to ground measurement for the three clusters calculated.

data_First50 <- sampleSpanishSurvey[1 : 50, ]
data_First50_notrimm <- data_First50[-trimmed, ]
boxplot(data_First50_notrimm$necktoground ~ as.factor(clust_kmProc),

main = "Neck to ground")

In addition, Figure 5 (right) displays the projection on the xy-plane of the recorded points
and mean shape for cluster 1.

projShapes(1, array3D, clust_kmProc, prototypes)
legend("topleft", c("Registrated data", "Mean shape"),

pch = 1, col = 1:2, text.col = 1:2)
title("Procrustes registrated data for cluster 1 \n

with its mean shape superimposed", sub = "Plane xy")
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Figure 5: Boxplots for the neck to ground measurement for three clusters (left) and projection
on the xy-plane of the recorded points and mean shape for cluster 1 (right). Results provided
by trimmed kmeansProcrustes.

5.2. Archetypal analysis

We focus on the cockpit design problem. The accommodation of boundaries (our archety-
poids) ensures the accommodation of interior points in the cockpit. We use the USAFSurvey
database. Again, as an illustrative example only the first 50 individuals are chosen. From the
total variables, the six so-called cockpit dimensions are selected. They are thumb tip reach,
buttock-knee length, popliteal height sitting, sitting height, eye height sitting and shoulder
height sitting. We convert the variables from mm into inches in order to compare our results
with those discussed in Zehner et al. (1993) (see Epifanio et al. 2013, for more details). The
procedure followed for each problem is as follows:
Before computing archetypes and archetypoids, the data must be preprocessed. Firstly, de-
pending on the problem, the user must decide whether or not to standardize the data. Sec-
ondly, it must be decided whether to use the Mahalanobis distance or a depth procedure to
establish the percentage of the population to accommodate (see Epifanio et al. 2013, Section
2.2.2 for more details). Both actions are done with the following preprocessing function. In
this case, the variables are standardized, as they measure different dimensions. This is indi-
cated with the first TRUE argument in preprocessing. On the other hand, when designing a
workspace, it has typically been a requirement that 95 percent of the relevant population are
accommodated (value 0.95 in the third argument). Finally, the second TRUE (and fourth and
final parameter) indicates that the Mahalanobis distance is used to remove the most extreme
5% data.

USAFSurvey_First50 <- USAFSurvey[1 : 50, ]
variabl_sel <- c(48, 40, 39, 33, 34, 36)
USAFSurvey_First50_inch <- USAFSurvey_First50[,variabl_sel] / (10 * 2.54)
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USAFSurvey_preproc <- preprocessing(data = USAFSurvey_First50_inch,
stand = TRUE, percAccomm = 0.95,
mahal= TRUE)

Next, archetypes must be calculated. In the archetypes R package (Eugster, Leisch, and
Seth 2014; Eugster and Leisch 2009) this is done with the stepArchetypes function, which
executes the archetype algorithm repeatedly. However, this function standardizes the data
by default and this option is not always desired. To overcome this, a new R function called
stepArchetypesRawData has been written, which results from modifying and adapting the
original stepArchetypes to apply the archetype algorithm to raw data. In this way, the
archetype algorithm is run repeatedly from 1 to numArch archetypes. The user can decide
how many archetypes are to be considered. We chose numArch equal to 10 because a larger
number of boundary cases may overwhelm the designer and therefore be counterproductive.
The argument numRep specifies the number of repetitions of the algorithm. Choosing twenty
repetitions ensures that the best possible archetypes are obtained.

#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
numArch <- 10 ; numRep <- 20
oldw <- getOption("warn")
options(warn = -1)
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data,

numArch=1:numArch, numRep = numRep,
verbose = FALSE)

options(warn = oldw)
screeplot(lass)

Once the archetypes are obtained, archetypoids are calculated either with the archetypoids
function or with the stepArchetypoids function, which is a function based on stepArchetypes
to execute the archetypoid algorithm repeatedly. According to the screeplot and following
the elbow criterion, we compute three archetypoids (beginning from candns, candα and candβ

sets of the nearest observations to the archetypes).

numArchoid <- 3
res_archoids_ns <- archetypoids(numArchoid, USAFSurvey_preproc$data,

huge = 200, step = FALSE, ArchObj = lass,
nearest = "cand_ns" , sequ = TRUE)

res_archoids_alpha <- archetypoids(numArchoid, USAFSurvey_preproc$data,
huge = 200, step = FALSE, ArchObj = lass,
nearest = "cand_alpha", sequ = TRUE)

res_archoids_beta <- archetypoids(numArchoid, USAFSurvey_preproc$data,
huge = 200, step = FALSE, ArchObj = lass,
nearest = "cand_beta", sequ = TRUE)

boundaries_ns <- anthrCases(res_archoids_ns)
boundaries_alpha <- anthrCases(res_archoids_alpha)
boundaries_beta <- anthrCases(res_archoids_beta)
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In this case, the candns, candα and candβ archetypoids match (although the candns, candα

and candβ archetypes do not), so it is enough to represent a single percentile plot. To that end,
the percentilsArchetypoid computes the percentils of the archetypoids for every column
of the data frame.

df <- USAFSurvey_preproc$data
matPer <- t(sapply(1:dim(df)[2], percentilsArchetypoid, boundaries_ns, df, 0))

Figure 6 shows the percentils of three archetypoids.

barplot(matPer, beside = TRUE, main = paste(numArchoid,
" archetypoids", sep = ""),

ylim = c(0, 100), ylab = "Percentile",
xlab = "Each bar is related to each anthropometric

variable selected")
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Figure 6: Percentils of three archetypoids, beginning from the candns, candα and candβ

sets for USAFSurvey. In this case, the candns, candα and candβ archetypoids coincide. The
anthropometric variables selected are thumb tip reach, buttock-knee length, popliteal height
sitting, sitting height, eye height sitting and shoulder height sitting.

6. Discussion
Procedures related to clustering, data depth and shape analysis (trimowa, CCbiclustAnthropo,
hipamAnthropom, TDDclust and kmeansProcrustes) are aimed at defining optimal clothing
size groups and both 1D and 3D central cases, which are actually representative statistical
models or prototypes (and fit models in the case of hipamAnthropom) of the human body
of the target population. The five aforementioned methodologies followed the same scheme.
Firstly, the selected data matrix was segmented using a primary control dimension (bust
or waist) and then a further segmentation was carried out using other secondary control
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Figure 7: Practical implementation of the methodologies presented. These are three T-shirts
designed from the prototypes obtained. The three T-shirts have the same bust size (primary
dimension), but different measurements for other secondary dimensions. This method of
designing and labelling may speed up the purchasing process, making it more satisfactory.

anthropometric variables. The number of size groups generally obtained with these methods
was three, because this number is quite well aligned to clothing industry practice for the mass
production of clothing, where the objective is to optimize sizes by addressing only the most
profitable. This procedure can be translated into practice as shown in Figure 7.

For a given bust size, for example, 86-90 cm, the three T-shirts in Figure 7 were designed from
the three prototypes obtained by any of the aforementioned methodologies. It can be seen
that all three have the same bust size (primary dimension), but different measurements for
other secondary dimensions (in this example, waist and neck-to-hip are selected for illustrative
purposes). In a commercial situation, a woman in a store would directly select the T-shirts
with her bust size and, out of all of them, she would finally choose the one with her same
measurements for the other secondary variables. As a result, the customer would have quickly
and easily found a T-shirt that fits perfectly. It is believed that the statistical methodologies
presented here can speed up the purchasing process, making it more satisfactory. Figure 7 also
shows a proposal for garment labelling. Clothing fit depends a lot on better garment labelling.
Apparel companies should offer consumers truthful information that is not confusing on the
garment sizes that they wish to offer for sale, so that people can easily recognise their size. In
addition, the prototypes and fit models obtained can also be used to make more realistic store
mannequins, thus helping to offer an image of healthy beauty in society, which is another very
useful and practical application.

On the other hand, the two approaches based on archetypal and archetypoid analysis make
it possible to identify boundary cases, that is to say, the individuals who present extreme
body measurements. The basic idea is that accommodating boundary cases will accommo-
date the people who fall within the boundaries (less extreme population). This strategy is
valuable in all human-computer interaction problems, for example, the design and packaging
of plane cockpits or truck cabins. When designing workstations or evaluating manual work,
it is common to use only a few human figure models (extreme cases, which would be our
archetypoids) as virtual test individuals. These models are capable of representing people
with a wide range of body sizes and shapes. Archetypal and archetypoid analysis can be very
useful in improving industry practice when using human model tools to design products and
work environments.
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7. Conclusions
New three-dimensional whole-body scanners have drastically reduced the cost and duration
of the measurement process. These types of systems, in which the human body is digitally
scanned and the resulting data converted into exact measurements, make it possible to obtain
accurate, reproducible and up-to-date anthropometric data. These databases constitute very
valuable information to effectively design better-fitting clothing and workstations, to under-
stand the body shape of the population and to reduce the design process cycle. Therefore,
rigorous statistical methodologies and software applications must be developed to make the
most of them.
This paper introduces a new R package called Anthropometry that brings together different
statistical methodologies concerning clustering, the statistical concept of data depth, statisti-
cal shape analysis and archetypal analysis, which have been especially developed to deal with
anthropometric data. The data used have been obtained from a 3D anthropometric survey
of the Spanish female population and from the USAF survey. Procedures related to cluster-
ing, data depth and shape analysis are aimed at defining optimal clothing size groups and
both central prototypes and fit models. The two approaches based on archetypal analysis are
useful for determining boundary human models which could be useful for improving industry
practice in workspace design.
The Anthropometry R package is a positive contribution to help tackle some statistical prob-
lems related to Ergonomics and Anthropometry. It provides a useful software tool for engi-
neers and researchers in these fields so that they can analyze their anthropometric data in a
comprehensive way.
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Appendix

A. Algorithm listings

1. Set k, number of groups; algSteps, number of repetitions to find optimal medoids; and niter, number of
repetitions of the whole algorithm.
2. Select k starting points that will serve as seed medoids (e.g., draw at random k subjects from the whole
data set).
for r = 1→ niter do

for s = 1→ algSteps do
Assume that xi1 , ..., xik are the k medoids obtained in the previous iteration.
Assign each observation to its nearest medoid:

di = min
j=1,...k

d(xi, xij ), i = 1, . . . , n,

and keep the set H having the ⌈n(1− α)⌉ observations with lowest di’s.
Split H into H = {H1, ..., Hk} where the points in Hj are those closer to xij than to any of the other
medoids.
The medoid xij for the next iteration will be the medoid of observations belonging to group Hj .
Compute

F0 = 1
⌈n(1− α)⌉

k∑
j=1

∑
xi∈Hj

d(xi, xij ). (A1)

if s == 1 then
F1 = F0.
Set M the set of medoids associated to F0.

else
if F1 > F0 then

F1 = F0.
Set M the set of medoids associated to F0.

end if
end if

end for
if r == 1 then

F2 = F1.
Set M the set of medoids associated to F1.

else
if F2 > F1 then

F2 = F1.
Set M the set of medoids associated to F1.

end if
end if

end for
return M and F2.

Algorithm 3: trimowa algorithm.
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1. Set k, number of biclusters; delta (initial default value 1); and disac, number of women who will not
form part of any group (at the beginning, it is equally to the number of women belonging to each size).
2. The proportion of disaccommodated sample is prefixed to 1% per segment.
while disac > ceiling(0.01 ∗ number of women belonging to the size) do

biclust(data, method = BCCC(), delta = delta, alpha = 1.5, number = k)
disac = number of women not grouped.
delta = delta + 1

end while

Algorithm 4: CCbiclustAnthropo algorithm.

1. Start with an initial partition IK
1 = {I(1), . . . , I(K)} obtained with PAM. Set β = βinit.

2. Compute:

• The L1-MM of the K clusters, y0(1), . . . , y0(K).

• The silhouette widths, sili ∀i = 1, . . . , n.

• The within cluster L1 data depth of xi : i ∈ I(k), Dw
i = D(xi|k).

• The between cluster L1 data depth of xi, Db
i = D(xi|l) (for I(l) the nearest cluster of xi : i ∈ I(k)).

• The relative data depths, ReDi = Dw
i −Db

i ∀i = 1, . . . , n.

• The total value of the partition, C(IK
1 ).

3. Compute ci = (1− λ)sili + λReDi ∀i = 1, . . . , n. Remove R = {i : ci ≤ α}, being α the trimming
size. Let R be the set of ⌈n(1− α)⌉ non-trimmed points.
4. Identify a set of observations S = {i ∈ R : ci ≤ T}, where T is a prefixed threshold.
5. For a random subset E ⊂ S, identify the nearest competing clusters. Define the partition with E
relocated as ĨK

1 .
6. Compute the value of the new partition C(ĨK

1 ).
if C(ĨK

1 ) > C(IK
1 ) then

set IK
1 ← ĨK

1 .
else

if C(ĨK
1 ) ≤ C(IK

1 ) then
set IK

1 ← ĨK
1 with probability P r(β, ∆(C)), being b a tuning parameter, and ∆(C) = C(ĨK

1 )−C(IK
1 ).

end if
else

Keep IK
1 .

end if
Set S = S−E removing the subset E form S.
7. Iterate 5-6 until set S is empty.
8. ∀j ∈ {1, . . . , n : xj ∈ R} compute kj = argmax{ck

j } being ck
j the value of cj as in Equation 6, assuming

that the j-th point belongs to cluster k. Assign xj to the kj-th cluster.
9. If no moves were accepted for the last M iterations and β <∞, set β =∞ and iterate 2-8. If no moves
were accepted for the last M iterations and β =∞. Otherwise, set β = 2β and iterate 2-8.

Algorithm 5: TDDclust algorithm.

Affiliation:
Guillermo Vinué
Department of Statistics and Operations Research
Faculty of Mathematics
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1. Initialization of the tree:
Let the top cluster with all the elements be T .
1.1. Initial clustering: Apply a PAM to T with the number of clusters, k1, provided by the INCA
statistic with the following rule:
if INCAk1 < 0.2 ∀k1 then

k1 = 3
else

k1 as the value preceding the first biggest slope decrease.
end if
An initial partition with k1 clusters is obtained.
1.2. Post-processing: Apply several partitioning or collapsing procedures to the k1 clusters to try to
improve the asw.
A partition with k clusters from T is obtained.
2. Local HIPAM:
while there are active clusters do

Generation of the candidate clustering partition: PHASE I FOR HIP AMIMO

Evaluation of the candidate clustering partition: PHASE II FOR HIP AMIMO

end while

Algorithm 6: The HIPAMIMO method of the hipamAnthropom algorithm.

For each cluster, P , of a partition:
1.
if |P | ≤ 2 then

STOP (P is a terminal node).
else

if INCAk1 < 0.2 ∀k1 then
STOP (P is a terminal node).

else
2. Initial clustering: Apply a PAM to P with the number of clusters, k1, provided by the INCA
statistic as the value preceding the first biggest slope decrease. An initial partition with k1 clusters is
obtained.
3. Post-processing: Apply several partitioning or collapsing procedures to the k1 clusters to try to
improve the asw.
The candidate partition, C = {C1, . . . , Ck}, from P is obtained.

end if
end if

Algorithm 7: PHASE I FOR HIPAMIMO.

Let the candidate clustering partition be C = {C1, . . . , Ck} obtained from P .
1. Calculate the asw of C, aswC .
2. For each Ci, generate a new partition using the steps 1.1. and 1.2. of the initialization of the tree and
calculate its SSi.
3.

if MSS(k) = 1
k

k∑
i=1

SSi < aswC then

C is accepted.
else

C is rejected. STOP (P is a terminal node).

end if
Algorithm 8: PHASE II FOR HIPAMIMO.
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1. Given a vector of shapes Z = ([Z1], . . . , [Zk]) [Zi] ∈ Σh
m i = 1, . . . , k, we minimize with respect to a

k-partition C = (C1, . . . , Ck), assigning each shape ([X1], . . . , [Xn]) to the class whose centroid has the
Procrustes minimum distance to it.
2. Given C, we minimize with respect to Z, taking Z = ([µ̂1], . . . , [µ̂k]), and [µ̂i] i = 1, . . . , k, the
Procrustes mean of shapes in cluster Ci.
3. Steps 1. and 2. are repeated until convergence of the algorithm.

Algorithm 9: LloydShapes algorithm.

1. Given a centroid vector Z = ([Z1], . . . , [Zk]) [Zi] ∈ Σh
m i = 1, . . . , k, we calculate the Procrustes

distances of each shape ([X1], . . . , [Xn]) to its closest centroid. The nα shapes with largest distances are
removed, the n(1− α) left are assigned to the class whose centroid has the minimum full Procrustes
distance to it.
2. Given C, we minimize with respect to Z, taking Z = ([µ̂1], . . . , [µ̂k]), and [µ̂i] i = 1, . . . , k, the
Procrustes mean of shapes in cluster Ci.
3. Steps 1. and 2. are repeated until convergence of the algorithm.

Algorithm 10: trimmedLloydShapes algorithm.

1. Given a centroid vector Z = ([Z1], . . . , [Zk]) [Zi] ∈ Σh
m i = 1, . . . , k, for each shape [Xj ] (j = 1, 2, ..., n),

find its closest and second closest cluster centroids, and denote these clusters by C1(j) and C2(j),
respectively. Assign shape [Xj ] to cluster C1(j).
2. Update the cluster centroids to be the Procrustes mean of the shapes contained within them.
3. Initially, all clusters belong to the live set.
4. This stage is called the optimal-transfer stage: Consider each shape [Xj ] (j = 1, 2, ..., n) in turn. If
cluster l (l = 1, 2, ..., k) is updated in the last quick-transfer stage, then it belongs to the live set
throughout that stage. Otherwise, at each step, it is not in the live set if it has not been updated in the
last n optimal-transfer steps. Let shape [Xj ] be in cluster l1. If l1 is in the live set, do Step 4.a.
Otherwise, do Step 4.b.

4.a. Compute the minimum of the quantity, R2 = nl∥xj −zl∥2

nl+1 , over all clusters l (l ̸= li, l = 1, 2, ..., k).

Let l2 be the cluster with the smallest R2. If this value is greater than or equal to nl1 ∥xj −zl1 ∥2

nl1 +1 , no
reallocation is necessary and Cl2 is the new C2(j). Otherwise, shape [Xj ] is allocated to cluster l2
and Cl1 is the new C1(j). Cluster centroids are updated to be the Procrustes means of shapes
assigned to them if reallocation has taken place. The two clusters that are involved in the transfer
of shape [Xj ] at this particular step are now in the live set.

4.b. This step is the same as Step (iv-a), except that the minimum R2 is only computed over clusters in
the live set.

5. Stop if the live set is empty. Otherwise, go to Step 6. after one pass through the data set.
6. This is the quick-transfer stage: Consider each shape [Xj ] (j = 1, 2, ..., n) in turn. Let l1 = C1(j) and
l2 = C2(j). It is not necessary to check shape [Xj ] if both clusters l1 and l2 have not changed in the last n

steps. Compute the values R1 = nl1 ∥xj −zl1 ∥2

nl1 +1 and R2 = nl2 ∥xj −zl2 ∥2

nl2 +1 . If R1 is less than R2, shape [Xj ]
remains in cluster l1. Otherwise, switch C1(j) and C2(j) and update the mean shapes of clusters l1 and
l2. The two clusters are also noteworthy for their involvement in a transfer at this step.
7. If no transfer took place in the last n steps, go to Step 4. Otherwise, go to Step 6.

Algorithm 11: HartiganShapes algorithm.
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Given the number of archetypes k:
1. Data preparation and initialization: scale data, add a dummy row and initialize β in such a way that
the constraints are fulfilled to calculate the starting archetypes Z.
2. Loop until RSS reduction is enough small or the number of iterations is reached (see Equation 9):

2.1. Find best α for the given set of archetypes Z.

2.2. Recompute archetypes Z̃.

2.3. Find best β for the given set of archetypes Z̃.

2.4. Recalculate archetypes Z.

2.5. Compute residual sum of squares RSS.

3. Post-processing step: remove dummy row and rescale archetypes.

Algorithm 12: Archetypal algorithm.

1. BUILD phase: look for a good initial set of k archetypoids from the n data points.
2. SWAP phase: for each archetypoid a

(a) For each non-archetypoid data point o.

i. Swap a and o and compute the RSS of the configuration (see Equation 10, α coefficients
must be calculated).

3. Select the configuration with the lowest RSS.
4. Repeat steps 2 to 4 until there is no change in the archetypoids.

Algorithm 13: Archetypoid algorithm.
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