--- title: "Partitioning genetic trends in mean and variance" author: "Gregor Gorjanc, Jana Obsteter, Thiago de Paula Oliveira" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{PartitioningVariance} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE, fig.height = 6, fig.width = 6) ``` In breeding programmes, the observed genetic change is a sum of the contributions of different groups of individuals. Here we show how to partition the genetic mean and variance of breeding values using AlphaPart. In addition to the contribution of paths to changes in genetic mean, breeding programmes should also consider analysing changes in genetic variance to understand the drivers of genetic change in a population fully. Managing the change in genetic mean and variance in breeding programmes is essential to ensure long-term genetic gain. # Loading packages ```{r, message=FALSE} #======================================================================= # Packges #======================================================================= #devtools::install_github("AlphaGenes/AlphaPart") library(AlphaPart) library(dplyr) library(ggplot2) library(ggridges) ``` # Loading datafile ```{r} #======================================================================= # Reading and organizing Scenario 1 #======================================================================= data <- readRDS("./../inst/extdata/AlphaPartCattleSim.rds") %>% dplyr::mutate(across(generation:mother, as.numeric)) %>% dplyr::rename(status = type) %>% dplyr::mutate(across(c("sex", "status"), as.factor)) %>% dplyr::mutate(path = interaction(sex,status, sep = ":")) %>% arrange(generation, ind) %>% select(ind, father, mother, sex, status, path, generation, tbv, pheno) %>% dplyr::mutate(generation = generation - 20) %>% droplevels() # Data head head(data) %>% knitr::kable(digits = 2) # Data size dim(data) ``` * ```ind``` - individual * ```father``` and ```mother``` - individual's parents * ```sex``` - individual sex * ```status``` - if the individual is or not selected * ```path``` - the path variable used to partition the additive genetic mean * ```tbv``` - true breeding value * ```pheno``` - phenotypic value # Partitioning trends in genetic mean and variance We use the `AlphaPart` function to partition the true breeding values `(tbv)` in the `data` by the animal sex and status variable combination into females (F) and males (M) non-selected (N) and males selected (S) contributions: ```{r} part <- AlphaPart(data, colId = "ind", colFid = "father", colMid = "mother", colBV = "tbv", colPath = "path") head(part$tbv) %>% knitr::kable(digits = 2) ``` We use the generic `summary.AlphaPart` function to summarize an `AlphaPart` object by generation, con*sering: * the function **mean** ```{r} # Trends in the additve genetic mean partMean <- summary(part, by = "generation", FUN = mean) head(partMean$tbv) %>% knitr::kable(digits = 2) ``` * the function **variance** ```{r} # Trends in the additive genetic variance partVar <- summary(part, by = "generation", FUN = var, cov = TRUE) head(partVar$tbv) %>% knitr::kable(digits = 2) ``` ## Example of plots to analyse the results Distribution of breeding value partitions by sex and selection status (selected males (M(S)), non-selected males (M(N)), and females (F)) over generations. ```{r, fig.height = 10, fig.width=9} part$tbv %>% ggplot(aes(y = as.factor(generation), `tbv_F:Non-Selected`)) + geom_density_ridges( aes(fill = "F - Non-Selected", linetype = "F - Non-Selected"), alpha = .4, point_alpha = 1, rel_min_height = 0.01 ) + geom_density_ridges( aes(y = as.factor(generation), x= `tbv_M:Non-Selected`, fill = "M - Non-Selected", linetype = "M - Non-Selected"), alpha = .4, point_alpha = 1, rel_min_height = 0.01 ) + geom_density_ridges( aes(y = as.factor(generation), x= `tbv_M:Selected`, fill = "M - Selected", linetype = "M - Selected"), alpha = .4, point_alpha = 1, rel_min_height = 0.01 ) + geom_density_ridges( aes(y = as.factor(generation), x= `tbv`, fill = "Sum", linetype = "Sum"), alpha = .4, point_alpha = 1, rel_min_height = 0.01 ) + ylab("Generation") + xlab("Density plot of breeding value partitions") + labs(fill = "Path:", linetype = "Path:") + theme_bw(base_size = 20) + theme( legend.position = "top" ) ``` Partitions of genetic mean and variance by sex and selection status (selected males (M(S)), non-selected males (M(N)), and females (F)) using true breeding values: ```{r} partMean$tbv %>% ggplot(aes(y = Sum, x = generation, colour = "Sum"), size = 0.1) + scale_linetype_manual( values = c("solid", "longdash", "dashed", "dotted"))+ geom_line() + geom_line(aes(y = `F:Non-Selected`, x = generation, colour = "F"), alpha = 0.8) + geom_line(aes(y = `M:Selected`, x = generation, colour = "M(S)"), alpha = 0.8) + geom_line(aes(y = `M:Non-Selected`, x = generation, colour = "M(N)"), alpha = 0.8) + geom_vline(xintercept = 0, linetype = 2, alpha = 0.3) + ylab("Genetic Mean") + xlab("Generation") + labs(colour = "Path:") + theme_bw(base_size = 18) + theme(legend.position = "top") ``` ```{r} partVar$tbv %>% ggplot(aes(y = Sum, x = generation, colour = "Sum")) + geom_line() + geom_line(aes(y = `F:Non-Selected`, x = generation, colour = "F"), alpha = 0.8) + geom_line(aes(y = `F:Non-SelectedM:Selected`, x = generation, colour = "F:M(S)"), size =0.5, alpha =0.8) + geom_line(aes(y = `F:Non-SelectedM:Non-Selected`, x = generation, colour = "F:M(N)"), size =0.5, alpha =0.6) + geom_line(aes(y = `M:Non-SelectedM:Selected`, x = generation, colour = "M(N):M(S)"), size =0.5, alpha =0.6) + geom_line(aes(y = `M:Selected`, x = generation, colour = "M(S)"), alpha = 0.8) + geom_line(aes(y = `M:Non-Selected`, x = generation, colour = "M(N)"), size =0.5, alpha =0.8) + geom_vline(xintercept = 0, linetype = 2, alpha = 0.3) + ylab("Genetic Variance") + xlab("Generation") + labs(colour = "Path: ") + theme_bw(base_size = 18) + theme( legend.position = "top" ) ```