Title: | Censored Mixed-Effects Models with Different Correlation Structures |
---|---|
Description: | Left, right or interval censored mixed-effects linear model with autoregressive errors of order p or DEC correlation structure using the type-EM algorithm. The error distribution can be Normal or t-Student. It provides the parameter estimates, the standard errors and prediction of future observations (available only for the normal case). Olivari et all (2021) <doi:10.1080/10543406.2020.1852246>. |
Authors: | Rommy C. Olivari, Kelin Zhong, Aldo M. Garay and Victor H. Lachos |
Maintainer: | Rommy C. Olivari <[email protected]> |
License: | GPL (>= 2) |
Version: | 2.4.1 |
Built: | 2024-11-27 06:29:12 UTC |
Source: | CRAN |
This functino fits left, right or intervalar censored mixed-effects linear model, with autoregressive errors of order p
, using the EM algorithm. It returns estimates, standard errors and prediction of future observations.
ARpMMEC.est( y, x, z, tt, cc, nj, struc = "UNC", order = 1, initial = NULL, nu.fixed = TRUE, typeModel = "Normal", cens.type = "left", LI = NULL, LS = NULL, MaxIter = 200, error = 1e-04, Prev = FALSE, step = NULL, isubj = NULL, xpre = NULL, zpre = NULL )
ARpMMEC.est( y, x, z, tt, cc, nj, struc = "UNC", order = 1, initial = NULL, nu.fixed = TRUE, typeModel = "Normal", cens.type = "left", LI = NULL, LS = NULL, MaxIter = 200, error = 1e-04, Prev = FALSE, step = NULL, isubj = NULL, xpre = NULL, zpre = NULL )
y |
Vector |
x |
Design matrix of the fixed effects of order |
z |
Design matrix of the random effects of order |
tt |
Vector |
cc |
Vector of censoring indicators of length |
nj |
Vector |
struc |
|
order |
Order of the autoregressive process. Must be a positive integer value. |
initial |
List with the initial values in the next orden: betas,sigma2,alphas,phi and nu. If it is not indicated it will be provided automatically. Default is |
nu.fixed |
Logical. Should estimate the parameter "nu" for the t-student distribution?. If is False indicates the value in the list of initial values. Default is |
typeModel |
|
cens.type |
|
LI |
Vector censoring lower limit indicator of length |
LS |
Vector censoring upper limit indicator of length |
MaxIter |
The maximum number of iterations of the EM algorithm. Default is |
error |
The convergence maximum error. Default is |
Prev |
Indicator of the prediction process. Available at the moment only for the |
step |
Number of steps for prediction. Default is |
isubj |
Vector indicator of subject included in the prediction process. Default is |
xpre |
Design matrix of the fixed effects to be predicted. Default is |
zpre |
Design matrix of the random effects to be predicted. Default is |
returns list of class “ARpMMEC”:
FixEffect |
Data frame with: estimate, standar errors and confidence intervals of the fixed effects. |
Sigma2 |
Data frame with: estimate, standar errors and confidence intervals of the variance of the white noise process. |
Phi |
Data frame with: estimate, standar errors and confidence intervals of the autoregressive parameters. |
RandEffect |
Data frame with: estimate, standar errors and confidence intervals of the random effects. |
nu |
the parameter "nu" for the t-student distribution |
Est |
Vector of parameters estimate (fixed Effects, sigma2, phi, random effects). |
SE |
Vector of the standard errors of (fixed Effects, sigma2, phi, random effects). |
Residual |
Vector of the marginal residuals. |
loglik |
Log-likelihood value. |
AIC |
Akaike information criterion. |
BIC |
Bayesian information criterion. |
AICc |
Corrected Akaike information criterion. |
iter |
Number of iterations until convergence. |
Yfit |
Vector "y" fitted |
MI |
Information matrix |
Prev |
Predicted values (if xpre and zpre is not |
time |
Processing time. |
others |
The first and second moments of the random effect and vector Y |
Olivari, R. C., Garay, A. M., Lachos, V. H., & Matos, L. A. (2021). Mixed-effects models for censored data with autoregressive errors. Journal of Biopharmaceutical Statistics, 31(3), 273-294. doi:10.1080/10543406.2020.1852246
## Not run: p.cens = 0.1 m = 10 D = matrix(c(0.049,0.001,0.001,0.002),2,2) sigma2 = 0.30 phi = 0.6 beta = c(1,2,1) nj=rep(4,10) tt=rep(1:4,length(nj)) x<-matrix(runif(sum(nj)*length(beta),-1,1),sum(nj),length(beta)) z<-matrix(runif(sum(nj)*dim(D)[1],-1,1),sum(nj),dim(D)[1]) data=ARpMMEC.sim(m,x,z,tt,nj,beta,sigma2,D,phi,struc="ARp",typeModel="Normal",p.cens=p.cens) teste1=ARpMMEC.est(data$y_cc,x,z,tt,data$cc,nj,struc="ARp",order=1,typeModel="Normal",MaxIter = 2) teste2=ARpMMEC.est(data$y_cc,x,z,tt,data$cc,nj,struc="ARp",order=1,typeModel="Student",MaxIter = 2) xx=matrix(runif(6*length(beta),-1,1),6,length(beta)) zz=matrix(runif(6*dim(D)[1],-1,1),6,dim(D)[1]) isubj=c(1,4,5) teste3=ARpMMEC.est(data$y_cc,x,z,tt,data$cc,nj,struc="ARp",order=1,typeModel="Normal", MaxIter = 2,Prev=TRUE,step=2,isubj=isubj,xpre=xx,zpre=zz) teste3$Prev ## End(Not run)
## Not run: p.cens = 0.1 m = 10 D = matrix(c(0.049,0.001,0.001,0.002),2,2) sigma2 = 0.30 phi = 0.6 beta = c(1,2,1) nj=rep(4,10) tt=rep(1:4,length(nj)) x<-matrix(runif(sum(nj)*length(beta),-1,1),sum(nj),length(beta)) z<-matrix(runif(sum(nj)*dim(D)[1],-1,1),sum(nj),dim(D)[1]) data=ARpMMEC.sim(m,x,z,tt,nj,beta,sigma2,D,phi,struc="ARp",typeModel="Normal",p.cens=p.cens) teste1=ARpMMEC.est(data$y_cc,x,z,tt,data$cc,nj,struc="ARp",order=1,typeModel="Normal",MaxIter = 2) teste2=ARpMMEC.est(data$y_cc,x,z,tt,data$cc,nj,struc="ARp",order=1,typeModel="Student",MaxIter = 2) xx=matrix(runif(6*length(beta),-1,1),6,length(beta)) zz=matrix(runif(6*dim(D)[1],-1,1),6,dim(D)[1]) isubj=c(1,4,5) teste3=ARpMMEC.est(data$y_cc,x,z,tt,data$cc,nj,struc="ARp",order=1,typeModel="Normal", MaxIter = 2,Prev=TRUE,step=2,isubj=isubj,xpre=xx,zpre=zz) teste3$Prev ## End(Not run)
This function simulates a censored response variable with autoregressive errors of order p
, with mixed effect and a established censoring rate. This function returns the censoring vector and censored response vector.
ARpMMEC.sim( m, x = NULL, z = NULL, tt = NULL, nj, beta, sigmae, D, phi, struc = "ARp", order = 1, typeModel = "Normal", p.cens = NULL, n.cens = NULL, cens.type = "left", nu = NULL )
ARpMMEC.sim( m, x = NULL, z = NULL, tt = NULL, nj, beta, sigmae, D, phi, struc = "ARp", order = 1, typeModel = "Normal", p.cens = NULL, n.cens = NULL, cens.type = "left", nu = NULL )
m |
Number of individuals |
x |
Design matrix of the fixed effects of order |
z |
Design matrix of the random effects of order |
tt |
Vector |
nj |
Vector |
beta |
Vector of values fixed effects. |
sigmae |
It's the value for sigma. |
D |
Covariance Matrix for the random effects. |
phi |
Vector of length |
struc |
Correlation structure. This must be one of |
order |
Order of the autoregressive process. Must be a positive integer value. |
typeModel |
|
p.cens |
Censoring percentage for the process. Default is |
n.cens |
Censoring level for the process. Default is |
cens.type |
|
nu |
degrees of freedom for t-Student distibution (nu > 0, maybe non-integer). |
returns list:
cc |
Vector of censoring indicators. |
y_cc |
Vector of responses censoring. |
## Not run: p.cens = 0.1 m = 10 D = matrix(c(0.049,0.001,0.001,0.002),2,2) sigma2 = 0.30 phi = 0.6 beta = c(1,2,1) nj=rep(4,10) tt=rep(1:4,length(nj)) x<-matrix(runif(sum(nj)*length(beta),-1,1),sum(nj),length(beta)) z<-matrix(runif(sum(nj)*dim(D)[1],-1,1),sum(nj),dim(D)[1]) data=ARpMMEC.sim(m,x,z,tt,nj,beta,sigma2,D,phi,struc="ARp",typeModel="Normal",p.cens=p.cens) y<-data$y_cc cc<-data$cc ## End(Not run)
## Not run: p.cens = 0.1 m = 10 D = matrix(c(0.049,0.001,0.001,0.002),2,2) sigma2 = 0.30 phi = 0.6 beta = c(1,2,1) nj=rep(4,10) tt=rep(1:4,length(nj)) x<-matrix(runif(sum(nj)*length(beta),-1,1),sum(nj),length(beta)) z<-matrix(runif(sum(nj)*dim(D)[1],-1,1),sum(nj),dim(D)[1]) data=ARpMMEC.sim(m,x,z,tt,nj,beta,sigma2,D,phi,struc="ARp",typeModel="Normal",p.cens=p.cens) y<-data$y_cc cc<-data$cc ## End(Not run)