Title: | Model Selection and Multimodel Inference Based on (Q)AIC(c) |
---|---|
Description: | Functions to implement model selection and multimodel inference based on Akaike's information criterion (AIC) and the second-order AIC (AICc), as well as their quasi-likelihood counterparts (QAIC, QAICc) from various model object classes. The package implements classic model averaging for a given parameter of interest or predicted values, as well as a shrinkage version of model averaging parameter estimates or effect sizes. The package includes diagnostics and goodness-of-fit statistics for certain model types including those of 'unmarkedFit' classes estimating demographic parameters after accounting for imperfect detection probabilities. Some functions also allow the creation of model selection tables for Bayesian models of the 'bugs', 'rjags', and 'jagsUI' classes. Functions also implement model selection using BIC. Objects following model selection and multimodel inference can be formatted to LaTeX using 'xtable' methods included in the package. |
Authors: | Marc J. Mazerolle <[email protected]> |
Maintainer: | Marc J. Mazerolle <[email protected]> |
License: | GPL (>= 2) |
Version: | 2.3-3 |
Built: | 2024-12-30 08:28:23 UTC |
Source: | CRAN |
Description: This package includes functions to create model selection
tables based on Akaike's information criterion (AIC) and the
second-order AIC (AICc), as well as their quasi-likelihood counterparts
(QAIC, QAICc). The package also features functions to conduct classic
model averaging (multimodel inference) for a given parameter of interest
or predicted values, as well as a shrinkage version of model averaging
parameter estimates. Other handy functions enable the computation of
relative variable importance, evidence ratios, and confidence sets for
the best model. The present version supports Cox proportional hazards
models and conditional logistic regression (coxph
and
coxme
classes), linear models (lm
class), generalized
linear models (glm
, glm.nb
, vglm
, hurdle
,
and zeroinfl
classes), linear models fit by generalized least
squares (gls
class), linear mixed models (lme
class),
generalized linear mixed models (mer
, merMod
, and
glmmTMB
classes), multinomial and ordinal logistic regressions
(multinom
, polr
, clm
, and clmm
classes),
robust regression models (rlm
class), beta regression models
(betareg
class), parametric survival models (survreg
class), nonlinear models (nls
and gnls
classes), nonlinear
mixed models (nlme
and nlmerMod
classes), univariate models
(fitdist
and fitdistr
classes), and certain types of
latent variable models (lavaan
class). The package also supports
various models of unmarkedFit
and maxLikeFit
classes
estimating demographic parameters after accounting for imperfect
detection probabilities. Some functions also allow the creation of
model selection tables for Bayesian models of the bugs
and
rjags
classes. Objects following model selection and multimodel
inference can be formatted to LaTeX using xtable
methods included
in the package.
Package: | AICcmodavg |
Type: | Package |
Version: | 2.3-3 |
Date: | 2023-11-16 |
License: | GPL (>=2 ) |
LazyLoad: | yes |
Many functions of the package require a list of models as the input to conduct model selection and multimodel inference. Thus, you should start by organizing the output of the models in a list (See 'Examples' below).
This package contains several useful functions for model selection and multimodel inference for several model classes:
AICc
Computes AIC, AICc, and their quasi-likelihood counterparts (QAIC, QAICc).
aictab
Constructs model selection tables with number of parameters, AIC, delta AIC, Akaike weights or variants based on AICc, QAIC, and QAICc for a set of candidate models.
bictab
Constructs model selection tables with number of parameters, BIC, delta BIC, BIC weights for a set of candidate models.
boot.wt
Computes summary statistics from detection histories.
confset
Determines the confidence set for the best model based on one of three criteria.
DIC
Extracts DIC.
dictab
Constructs model selection tables with number of parameters, DIC, delta DIC, DIC weights for a set of candidate models.
evidence
Computes the evidence ratio between the highest-ranked model based on the information criteria selected and a lower-ranked model.
importance
Computes importance values (w+) for the support of a given parameter among set of candidate models.
modavg
Computes model-averaged estimate, unconditional standard error, and unconditional confidence interval of a parameter of interest among a set of candidate models.
modavgEffect
Computes model-averaged effect sizes between groups based on the entire candidate model set.
modavgShrink
Computes shrinkage version of model-averaged estimate, unconditional standard error, and unconditional confidence interval of a parameter of interest among entire set of candidate models.
modavgPred
Computes model-average predictions, unconditional SE's, and confidence intervals among entire set of candidate models.
multComp
Performs multiple comparisons across levels of a factor in a model selection framework.
useBIC
Computes BIC or a quasi-likelihood counterparts (QBIC).
For models not yet supported by the functions above, the following can be useful for model selection and multimodel inference conducted from input values supplied by the user:
AICcCustom
Computes AIC, AICc, QAIC, and QAICc from user-supplied input values of log-likelihood and number of parameters.
aictabCustom
Creates model selection tables based on (Q)AIC(c) from user-supplied input values of log-likelihood and number of parameters.
bictabCustom
Creates model selection tables based on (Q)BIC from user-supplied input values of log-likelihood and number of parameters.
ictab
Creates model selection tables from user-supplied values of an information criterion.
modavgCustom
Computes model-averaged parameter estimate based on (Q)AIC(c) from user-supplied input values of log-likelihood, number of parameters, parameter estimates, and standard errors.
modavgIC
Computes model-averaged parameter estimate from user-supplied values of information criterion, parameter estimates, and standard errors.
useBICCustom
Computes BIC and QBIC from user-supplied input values of log-likelihoods and number of parameters.
A number of functions for model diagnostics are available:
c_hat
Estimates variance inflation factor for binomial or Poisson GLM's based on various estimators.
checkConv
Checks the convergence information of the algorithm for the model.
checkParms
Checks the occurrence of parameter estimates with high standard errors in a model.
countDist
Computes summary statistics from distance sampling data.
countHist
Computes summary statistics from count history data.
covDiag
Computes covariance diagnostics for lambda in N-mixture models.
detHist
Computes summary statistics from detection histories.
detTime
Computes summary statistics from time-to-detection data.
extractCN
Extracts condition number from models of certain classes.
mb.gof.test
Computes the MacKenzie and Bailey goodness-of-fit test for single season and dynamic occupancy models using the Pearson chi-square statistic.
Nmix.gof.test
Computes goodness-of-fit test for N-mixture models based on the Pearson chi-square statistic.
Other utility functions include:
anovaOD
Computes likelihood-ratio test statistic corrected for overdispersion between two models.
extractLL
Extracts log-likelihood from models of certain classes.
extractSE
Extracts standard errors from models of certain classes and adds the labels.
extractX
Extracts the predictors and associated information on variables from a list of candidate models.
fam.link.mer
Extracts the distribution family and
link function from a generalized linear mixed model of classes mer
and merMod
.
predictSE
Computes predictions and associated standard errors models of certain classes.
summaryOD
Displays summary of model output adjusted for overdispersion.
xtable
Formats various objects resulting from model selection and multimodel inference to LaTeX or HTML tables.
Marc J. Mazerolle <[email protected]>.
Anderson, D. R. (2008) Model-based inference in the life sciences: a primer on evidence. Springer: New York.
Burnham, K. P., and Anderson, D. R. (2002) Model selection and multimodel inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33, 261–304.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
##Example 1: Poisson GLM with offset ##anuran larvae example from Mazerolle (2006) data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##set up candidate models in a list Cand.mod <- list() ##global model Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[2]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[3]] <- glm(Num_anura ~ Type + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[4]] <- glm(Num_anura ~ Type, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[5]] <- glm(Num_anura ~ log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[6]] <- glm(Num_anura ~ log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[7]] <- glm(Num_anura ~ Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[8]] <- glm(Num_anura ~ 1, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model c_hat(Cand.mod[[1]], method = "pearson") #uses Pearson's chi-square/df ##note the very low overdispersion: in this case, the analysis could be ##conducted without correcting for c-hat as its value is reasonably close ##to 1 ##output of model corrected for overdispersion summaryOD(Cand.mod[[1]], c.hat = 1.04) ##assign names to each model Modnames <- c("type + logperim + invertpred", "type + logperim", "type + invertpred", "type", "logperim + invertpred", "logperim", "invertpred", "intercept only") ##model selection table based on AICc aictab(cand.set = Cand.mod, modnames = Modnames) ##compute evidence ratio evidence(aictab(cand.set = Cand.mod, modnames = Modnames)) ##compute confidence set based on 'raw' method confset(cand.set = Cand.mod, modnames = Modnames, second.ord = TRUE, method = "raw") ##compute importance value for "TypeBOG" - same number of models ##with vs without variable importance(cand.set = Cand.mod, modnames = Modnames, parm = "TypeBOG") ##compute model-averaged estimate of "TypeBOG" using the natural average modavg(cand.set = Cand.mod, modnames = Modnames, parm = "TypeBOG") ##compute model-averaged estimate of "TypeBOG" using shrinkage estimator ##same number of models with vs without variable modavgShrink(cand.set = Cand.mod, modnames = Modnames, parm = "TypeBOG") ##compute model-averaged predictions for two types of ponds ##create a data set for predictions dat.pred <- data.frame(Type = factor(c("BOG", "UPLAND")), log.Perimeter = mean(min.trap$log.Perimeter), Num_ranatra = mean(min.trap$Num_ranatra), Effort = mean(min.trap$Effort)) ##model-averaged predictions across entire model set modavgPred(cand.set = Cand.mod, modnames = Modnames, newdata = dat.pred, type = "response") ##compute model-averaged effect size between two groups ##'newdata' data frame must be limited to two rows modavgEffect(cand.set = Cand.mod, modnames = Modnames, newdata = dat.pred, type = "link") ## Not run: ##Example 2: single-season occupancy model example modified from ?occu require(unmarked) ##single season data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ## add some fake covariates for illustration siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = rnorm(numSites(pferUMF))) ## observation covariates are in site-major, observation-minor order obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) ##check detection history data from data object detHist(pferUMF) ##set up candidate model set fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF) ##check detection history data from model object detHist(fm1) fm2 <- occu(~ 1 ~ sitevar1, pferUMF) fm3 <- occu(~ obsvar1 ~ sitevar2, pferUMF) fm4 <- occu(~ 1 ~ sitevar2, pferUMF) Cand.models <- list(fm1, fm2, fm3, fm4) ##assign names to elements in list ##alternative to using 'modnames' argument names(Cand.models) <- c("fm1", "fm2", "fm3", "fm4") ##check GOF of global model and estimate c-hat mb.gof.test(fm4, nsim = 100) #nsim should be > 1000 ##check for high SE's in models lapply(Cand.models, checkParms, simplify = FALSE) ##compute table print(aictab(cand.set = Cand.models, second.ord = TRUE), digits = 4) ##export as LaTeX table if(require(xtable)) { xtable(aictab(cand.set = Cand.models, second.ord = TRUE)) } ##compute evidence ratio evidence(aictab(cand.set = Cand.models)) ##evidence ratio between top model vs lowest-ranked model evidence(aictab(cand.set = Cand.models), model.high = "fm2", model.low = "fm3") ##compute confidence set based on 'raw' method confset(cand.set = Cand.models, second.ord = TRUE, method = "raw") ##compute importance value for "sitevar1" on occupancy ##same number of models with vs without variable importance(cand.set = Cand.models, parm = "sitevar1", parm.type = "psi") ##compute model-averaged estimate of "sitevar1" on occupancy ##(natural average) modavg(cand.set = Cand.models, parm = "sitevar1", parm.type = "psi") ##compute model-averaged estimate of "sitevar1" ##(shrinkage estimator) ##same number of models with vs without variable modavgShrink(cand.set = Cand.models, parm = "sitevar1", parm.type = "psi") ##compute model-average predictions ##check explanatory variables appearing in models extractX(Cand.models, parm.type = "psi") ##create a data set for predictions dat.pred <- data.frame(sitevar1 = seq(from = min(siteCovs(pferUMF)$sitevar1), to = max(siteCovs(pferUMF)$sitevar1), by = 0.5), sitevar2 = mean(siteCovs(pferUMF)$sitevar2)) ##model-averaged predictions of psi across range of values ##of sitevar1 and entire model set modavgPred(cand.set = Cand.models, newdata = dat.pred, parm.type = "psi") detach(package:unmarked) ## End(Not run) ## Not run: ##Example 3: example with user-supplied values of log-likelihoods and ##number of parameters ##vector with model LL's LL <- c(-38.8876, -35.1783, -64.8970) ##vector with number of parameters Ks <- c(7, 9, 4) ##create a vector of names to trace back models in set Modnames <- c("Cm1", "Cm2", "Cm3") ##generate AICc table aictabCustom(logL = LL, K = Ks, modnames = Modnames, nobs = 121, sort = TRUE) ##generate AIC table aictabCustom(logL = LL, K = Ks, modnames = Modnames, second.ord = FALSE, nobs = 121, sort = TRUE) ##model averaging parameter estimate ##vector of beta estimates for a parameter of interest model.ests <- c(0.0478, 0.0480, 0.0478) ##vector of SE's of beta estimates for a parameter of interest model.se.ests <- c(0.0028, 0.0028, 0.0034) ##compute model-averaged estimate and unconditional SE based on AICc modavgCustom(logL = LL, K = Ks, modnames = Modnames, estimate = model.ests, se = model.se.ests, nobs = 121) ##compute model-averaged estimate and unconditional SE based on BIC modavgCustom(logL = LL, K = Ks, modnames = Modnames, estimate = model.ests, se = model.se.ests, nobs = 121, useBIC = TRUE) ## End(Not run) ## Not run: ##Example 4: example with user-supplied values of information criterion ##model selection based on WAIC ##WAIC values waic <- c(105.74, 107.36, 108.24, 100.57) ##number of effective parameters effK <- c(7.45, 5.61, 6.14, 6.05) ##create a vector of names to trace back models in set Modnames <- c("global model", "interactive model", "additive model", "invertpred model") ##generate WAIC model selection table ictab(ic = waic, K = effK, modnames = Modnames, sort = TRUE, ic.name = "WAIC") ##compute model-averaged estimate ##vector of predictions Preds <- c(0.106, 0.137, 0.067, 0.050) ##vector of SE's for prediction Ses <- c(0.128, 0.159, 0.054, 0.039) ##compute model-averaged estimate and unconditional SE based on WAIC modavgIC(ic = waic, K = effK, modnames = Modnames, estimate = Preds, se = Ses, ic.name = "WAIC") ##export as LaTeX table if(require(xtable)) { ##model-averaged estimate and confidence interval xtable(modavgIC(ic = waic, K = effK, modnames = Modnames, estimate = Preds, se = Ses, ic.name = "WAIC")) ##model selection table with estimate and SE's from each model xtable(modavgIC(ic = waic, K = effK, modnames = Modnames, estimate = Preds, se = Ses, ic.name = "WAIC"), print.table = TRUE) } ## End(Not run)
##Example 1: Poisson GLM with offset ##anuran larvae example from Mazerolle (2006) data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##set up candidate models in a list Cand.mod <- list() ##global model Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[2]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[3]] <- glm(Num_anura ~ Type + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[4]] <- glm(Num_anura ~ Type, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[5]] <- glm(Num_anura ~ log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[6]] <- glm(Num_anura ~ log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[7]] <- glm(Num_anura ~ Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[8]] <- glm(Num_anura ~ 1, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model c_hat(Cand.mod[[1]], method = "pearson") #uses Pearson's chi-square/df ##note the very low overdispersion: in this case, the analysis could be ##conducted without correcting for c-hat as its value is reasonably close ##to 1 ##output of model corrected for overdispersion summaryOD(Cand.mod[[1]], c.hat = 1.04) ##assign names to each model Modnames <- c("type + logperim + invertpred", "type + logperim", "type + invertpred", "type", "logperim + invertpred", "logperim", "invertpred", "intercept only") ##model selection table based on AICc aictab(cand.set = Cand.mod, modnames = Modnames) ##compute evidence ratio evidence(aictab(cand.set = Cand.mod, modnames = Modnames)) ##compute confidence set based on 'raw' method confset(cand.set = Cand.mod, modnames = Modnames, second.ord = TRUE, method = "raw") ##compute importance value for "TypeBOG" - same number of models ##with vs without variable importance(cand.set = Cand.mod, modnames = Modnames, parm = "TypeBOG") ##compute model-averaged estimate of "TypeBOG" using the natural average modavg(cand.set = Cand.mod, modnames = Modnames, parm = "TypeBOG") ##compute model-averaged estimate of "TypeBOG" using shrinkage estimator ##same number of models with vs without variable modavgShrink(cand.set = Cand.mod, modnames = Modnames, parm = "TypeBOG") ##compute model-averaged predictions for two types of ponds ##create a data set for predictions dat.pred <- data.frame(Type = factor(c("BOG", "UPLAND")), log.Perimeter = mean(min.trap$log.Perimeter), Num_ranatra = mean(min.trap$Num_ranatra), Effort = mean(min.trap$Effort)) ##model-averaged predictions across entire model set modavgPred(cand.set = Cand.mod, modnames = Modnames, newdata = dat.pred, type = "response") ##compute model-averaged effect size between two groups ##'newdata' data frame must be limited to two rows modavgEffect(cand.set = Cand.mod, modnames = Modnames, newdata = dat.pred, type = "link") ## Not run: ##Example 2: single-season occupancy model example modified from ?occu require(unmarked) ##single season data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ## add some fake covariates for illustration siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = rnorm(numSites(pferUMF))) ## observation covariates are in site-major, observation-minor order obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) ##check detection history data from data object detHist(pferUMF) ##set up candidate model set fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF) ##check detection history data from model object detHist(fm1) fm2 <- occu(~ 1 ~ sitevar1, pferUMF) fm3 <- occu(~ obsvar1 ~ sitevar2, pferUMF) fm4 <- occu(~ 1 ~ sitevar2, pferUMF) Cand.models <- list(fm1, fm2, fm3, fm4) ##assign names to elements in list ##alternative to using 'modnames' argument names(Cand.models) <- c("fm1", "fm2", "fm3", "fm4") ##check GOF of global model and estimate c-hat mb.gof.test(fm4, nsim = 100) #nsim should be > 1000 ##check for high SE's in models lapply(Cand.models, checkParms, simplify = FALSE) ##compute table print(aictab(cand.set = Cand.models, second.ord = TRUE), digits = 4) ##export as LaTeX table if(require(xtable)) { xtable(aictab(cand.set = Cand.models, second.ord = TRUE)) } ##compute evidence ratio evidence(aictab(cand.set = Cand.models)) ##evidence ratio between top model vs lowest-ranked model evidence(aictab(cand.set = Cand.models), model.high = "fm2", model.low = "fm3") ##compute confidence set based on 'raw' method confset(cand.set = Cand.models, second.ord = TRUE, method = "raw") ##compute importance value for "sitevar1" on occupancy ##same number of models with vs without variable importance(cand.set = Cand.models, parm = "sitevar1", parm.type = "psi") ##compute model-averaged estimate of "sitevar1" on occupancy ##(natural average) modavg(cand.set = Cand.models, parm = "sitevar1", parm.type = "psi") ##compute model-averaged estimate of "sitevar1" ##(shrinkage estimator) ##same number of models with vs without variable modavgShrink(cand.set = Cand.models, parm = "sitevar1", parm.type = "psi") ##compute model-average predictions ##check explanatory variables appearing in models extractX(Cand.models, parm.type = "psi") ##create a data set for predictions dat.pred <- data.frame(sitevar1 = seq(from = min(siteCovs(pferUMF)$sitevar1), to = max(siteCovs(pferUMF)$sitevar1), by = 0.5), sitevar2 = mean(siteCovs(pferUMF)$sitevar2)) ##model-averaged predictions of psi across range of values ##of sitevar1 and entire model set modavgPred(cand.set = Cand.models, newdata = dat.pred, parm.type = "psi") detach(package:unmarked) ## End(Not run) ## Not run: ##Example 3: example with user-supplied values of log-likelihoods and ##number of parameters ##vector with model LL's LL <- c(-38.8876, -35.1783, -64.8970) ##vector with number of parameters Ks <- c(7, 9, 4) ##create a vector of names to trace back models in set Modnames <- c("Cm1", "Cm2", "Cm3") ##generate AICc table aictabCustom(logL = LL, K = Ks, modnames = Modnames, nobs = 121, sort = TRUE) ##generate AIC table aictabCustom(logL = LL, K = Ks, modnames = Modnames, second.ord = FALSE, nobs = 121, sort = TRUE) ##model averaging parameter estimate ##vector of beta estimates for a parameter of interest model.ests <- c(0.0478, 0.0480, 0.0478) ##vector of SE's of beta estimates for a parameter of interest model.se.ests <- c(0.0028, 0.0028, 0.0034) ##compute model-averaged estimate and unconditional SE based on AICc modavgCustom(logL = LL, K = Ks, modnames = Modnames, estimate = model.ests, se = model.se.ests, nobs = 121) ##compute model-averaged estimate and unconditional SE based on BIC modavgCustom(logL = LL, K = Ks, modnames = Modnames, estimate = model.ests, se = model.se.ests, nobs = 121, useBIC = TRUE) ## End(Not run) ## Not run: ##Example 4: example with user-supplied values of information criterion ##model selection based on WAIC ##WAIC values waic <- c(105.74, 107.36, 108.24, 100.57) ##number of effective parameters effK <- c(7.45, 5.61, 6.14, 6.05) ##create a vector of names to trace back models in set Modnames <- c("global model", "interactive model", "additive model", "invertpred model") ##generate WAIC model selection table ictab(ic = waic, K = effK, modnames = Modnames, sort = TRUE, ic.name = "WAIC") ##compute model-averaged estimate ##vector of predictions Preds <- c(0.106, 0.137, 0.067, 0.050) ##vector of SE's for prediction Ses <- c(0.128, 0.159, 0.054, 0.039) ##compute model-averaged estimate and unconditional SE based on WAIC modavgIC(ic = waic, K = effK, modnames = Modnames, estimate = Preds, se = Ses, ic.name = "WAIC") ##export as LaTeX table if(require(xtable)) { ##model-averaged estimate and confidence interval xtable(modavgIC(ic = waic, K = effK, modnames = Modnames, estimate = Preds, se = Ses, ic.name = "WAIC")) ##model selection table with estimate and SE's from each model xtable(modavgIC(ic = waic, K = effK, modnames = Modnames, estimate = Preds, se = Ses, ic.name = "WAIC"), print.table = TRUE) } ## End(Not run)
Functions to compute Akaike's information criterion (AIC), the second-order AIC (AICc), as well as their quasi-likelihood counterparts (QAIC, QAICc).
AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'aov' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'betareg' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'clm' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'clmm' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'coxme' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'coxph' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'fitdist' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'fitdistr' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'glm' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'glmmTMB' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'gls' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'gnls' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'hurdle' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'lavaan' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'lm' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'lme' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'lmekin' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'maxlikeFit' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'mer' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'merMod' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'lmerModLmerTest' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'multinom' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'negbin' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'nlme' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'nls' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'polr' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'rlm' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'survreg' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'unmarkedFit' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'vglm' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'zeroinfl' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...)
AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'aov' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'betareg' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'clm' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'clmm' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'coxme' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'coxph' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'fitdist' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'fitdistr' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'glm' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'glmmTMB' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'gls' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'gnls' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'hurdle' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'lavaan' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'lm' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'lme' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'lmekin' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'maxlikeFit' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'mer' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'merMod' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'lmerModLmerTest' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'multinom' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'negbin' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'nlme' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'nls' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'polr' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'rlm' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'survreg' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'unmarkedFit' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'vglm' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'zeroinfl' AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...)
mod |
an object of class |
return.K |
logical. If |
second.ord |
logical. If |
nobs |
this argument allows to specify a numeric value other than total
sample size to compute the AICc (i.e., |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor) such
as that obtained from |
... |
additional arguments passed to the function. |
AICc
computes one of the following four information criteria:
Akaike's information criterion (AIC, Akaike 1973),
where the log-likelihood is the maximum log-likelihood of the model and K corresponds to the number of estimated parameters.
Second-order or small sample AIC (AICc, Sugiura 1978, Hurvich and Tsai 1989, 1991),
where n is the sample size of the data set.
Quasi-likelihood AIC (QAIC, Burnham and Anderson 2002),
where c-hat is the
overdispersion parameter specified by the user with the argument
c.hat
.
Quasi-likelihood AICc (QAICc, Burnham and Anderson 2002),
.
Note that AIC and AICc values are meaningful to select among
gls
or lme
models fit by maximum likelihood. AIC and
AICc based on REML are valid to select among different models that
only differ in their random effects (Pinheiro and Bates 2000).
AICc
returns the AIC, AICc, QAIC, or QAICc, or the number of
estimated parameters, depending on the values of the arguments.
The actual (Q)AIC(c) values are not really interesting in themselves, as they depend directly on the data, parameters estimated, and likelihood function. Furthermore, a single value does not tell much about model fit. Information criteria become relevant when compared to one another for a given data set and set of candidate models.
Marc J. Mazerolle
Akaike, H. (1973) Information theory as an extension of the maximum likelihood principle. In: Second International Symposium on Information Theory, pp. 267–281. Petrov, B.N., Csaki, F., Eds, Akademiai Kiado, Budapest.
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33, 261–304.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Hurvich, C. M., Tsai, C.-L. (1989) Regression and time series model selection in small samples. Biometrika 76, 297–307.
Hurvich, C. M., Tsai, C.-L. (1991) Bias of the corrected AIC criterion for underfitted regression and time series models. Biometrika 78, 499–509.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Pinheiro, J. C., Bates, D. M. (2000) Mixed-effect models in S and S-PLUS. Springer Verlag: New York.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
Sugiura, N. (1978) Further analysis of the data by Akaike's information criterion and the finite corrections. Communications in Statistics: Theory and Methods A7, 13–26.
AICcCustom
, aictab
, confset
,
importance
, evidence
, c_hat
,
modavg
, modavgShrink
,
modavgPred
, useBIC
,
##cement data from Burnham and Anderson (2002, p. 101) data(cement) ##run multiple regression - the global model in Table 3.2 glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement) ##compute AICc with full likelihood AICc(glob.mod, return.K = FALSE) ##compute AIC with full likelihood AICc(glob.mod, return.K = FALSE, second.ord = FALSE) ##note that Burnham and Anderson (2002) did not use full likelihood ##in Table 3.2 and that the MLE estimate of the variance was ##rounded to 2 digits after decimal point ##compute AICc for mixed model on Orthodont data set in Pinheiro and ##Bates (2000) ## Not run: require(nlme) m1 <- lme(distance ~ age, random = ~1 | Subject, data = Orthodont, method= "ML") AICc(m1, return.K = FALSE) ## End(Not run)
##cement data from Burnham and Anderson (2002, p. 101) data(cement) ##run multiple regression - the global model in Table 3.2 glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement) ##compute AICc with full likelihood AICc(glob.mod, return.K = FALSE) ##compute AIC with full likelihood AICc(glob.mod, return.K = FALSE, second.ord = FALSE) ##note that Burnham and Anderson (2002) did not use full likelihood ##in Table 3.2 and that the MLE estimate of the variance was ##rounded to 2 digits after decimal point ##compute AICc for mixed model on Orthodont data set in Pinheiro and ##Bates (2000) ## Not run: require(nlme) m1 <- lme(distance ~ age, random = ~1 | Subject, data = Orthodont, method= "ML") AICc(m1, return.K = FALSE) ## End(Not run)
This function computes Akaike's information criterion (AIC), the
second-order AIC (AICc), as well as their quasi-likelihood
counterparts (QAIC, QAICc) from user-supplied input instead of
extracting the values automatically from a model object. This
function is particularly useful for output imported from other
software or for model classes that are not currently supported by
AICc
.
AICcCustom(logL, K, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1)
AICcCustom(logL, K, return.K = FALSE, second.ord = TRUE, nobs = NULL, c.hat = 1)
logL |
the value of the model log-likelihood. |
K |
the number of estimated parameters in the model. |
return.K |
logical. If |
second.ord |
logical. If |
nobs |
the sample size required to compute the AICc or QAICc. |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor)
such as that obtained from |
AICcCustom
computes one of the following four information criteria:
Akaike's information criterion (AIC, Akaike 1973), the second-order or small sample AIC (AICc, Sugiura 1978, Hurvich and Tsai 1989, 1991), the quasi-likelihood AIC (QAIC, Burnham and Anderson 2002), and the quasi-likelihood AICc (QAICc, Burnham and Anderson 2002).
AICcCustom
returns the AIC, AICc, QAIC, or QAICc, or the number
of estimated parameters, depending on the values of the arguments.
The actual (Q)AIC(c) values are not really interesting in themselves, as they depend directly on the data, parameters estimated, and likelihood function. Furthermore, a single value does not tell much about model fit. Information criteria become relevant when compared to one another for a given data set and set of candidate models.
Marc J. Mazerolle
Akaike, H. (1973) Information theory as an extension of the maximum likelihood principle. In: Second International Symposium on Information Theory, pp. 267–281. Petrov, B.N., Csaki, F., Eds, Akademiai Kiado, Budapest.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Hurvich, C. M., Tsai, C.-L. (1989) Regression and time series model selection in small samples. Biometrika 76, 297–307.
Hurvich, C. M., Tsai, C.-L. (1991) Bias of the corrected AIC criterion for underfitted regression and time series models. Biometrika 78, 499–509.
Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case-studies. Ecological Monographs 62, 67–118.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
Sugiura, N. (1978) Further analysis of the data by Akaike's information criterion and the finite corrections. Communications in Statistics: Theory and Methods A7, 13–26.
AICc
, aictabCustom
, confset
,
evidence
, c_hat
, modavgCustom
##cement data from Burnham and Anderson (2002, p. 101) data(cement) ##run multiple regression - the global model in Table 3.2 glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement) ##extract log-likelihood LL <- logLik(glob.mod)[1] ##extract number of parameters K.mod <- coef(glob.mod) + 1 ##compute AICc with full likelihood AICcCustom(LL, K.mod, nobs = nrow(cement))
##cement data from Burnham and Anderson (2002, p. 101) data(cement) ##run multiple regression - the global model in Table 3.2 glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement) ##extract log-likelihood LL <- logLik(glob.mod)[1] ##extract number of parameters K.mod <- coef(glob.mod) + 1 ##compute AICc with full likelihood AICcCustom(LL, K.mod, nobs = nrow(cement))
The functions listed below have been removed from the
AICcmodavg
package.
AICc.mult(...) AICc.unmarked(...) extract.LL(...) extract.LL.coxph(...) extract.LL.unmarked(...) aictab.clm(...) aictab.clmm(...) aictab.coxph(...) aictab.glm(...) aictab.gls(...) aictab.lm(...) aictab.lme(...) aictab.mer(...) aictab.merMod(...) aictab.mult(...) aictab.nlme(...) aictab.nls(...) aictab.polr(...) aictab.rlm(...) aictab.unmarked(...) dictab.bugs(...) dictab.rjags(...) modavg.clm(...) modavg.clmm(...) modavg.coxph(...) modavg.glm(...) modavg.gls(...) modavg.lme(...) modavg.mer(...) modavg.merMod(...) modavg.mult(...) modavg.polr(...) modavg.rlm(...) modavg.unmarked(...) modavg.effect(...) modavg.effect.glm(...) modavg.effect.gls(...) modavg.effect.lme(...) modavg.effect.mer(...) modavg.effect.merMod(...) modavg.effect.rlm(...) modavg.effect.unmarked(...) modavg.shrink(...) modavg.shrink.clm(...) modavg.shrink.clmm(...) modavg.shrink.coxph(...) modavg.shrink.glm(...) modavg.shrink.gls(...) modavg.shrink.lme(...) modavg.shrink.mer(...) modavg.shrink.merMod(...) modavg.shrink.mult(...) modavg.shrink.polr(...) modavg.shrink.rlm(...) modavg.shrink.unmarked(...) modavgpred(...) modavgpred.glm(...) modavgpred.gls(...) modavgpred.lme(...) modavgpred.mer(...) modavgpred.merMod(...) modavgpred.rlm(...) modavgpred.unmarked(...) mult.comp(...) predictSE.zip(...)
AICc.mult(...) AICc.unmarked(...) extract.LL(...) extract.LL.coxph(...) extract.LL.unmarked(...) aictab.clm(...) aictab.clmm(...) aictab.coxph(...) aictab.glm(...) aictab.gls(...) aictab.lm(...) aictab.lme(...) aictab.mer(...) aictab.merMod(...) aictab.mult(...) aictab.nlme(...) aictab.nls(...) aictab.polr(...) aictab.rlm(...) aictab.unmarked(...) dictab.bugs(...) dictab.rjags(...) modavg.clm(...) modavg.clmm(...) modavg.coxph(...) modavg.glm(...) modavg.gls(...) modavg.lme(...) modavg.mer(...) modavg.merMod(...) modavg.mult(...) modavg.polr(...) modavg.rlm(...) modavg.unmarked(...) modavg.effect(...) modavg.effect.glm(...) modavg.effect.gls(...) modavg.effect.lme(...) modavg.effect.mer(...) modavg.effect.merMod(...) modavg.effect.rlm(...) modavg.effect.unmarked(...) modavg.shrink(...) modavg.shrink.clm(...) modavg.shrink.clmm(...) modavg.shrink.coxph(...) modavg.shrink.glm(...) modavg.shrink.gls(...) modavg.shrink.lme(...) modavg.shrink.mer(...) modavg.shrink.merMod(...) modavg.shrink.mult(...) modavg.shrink.polr(...) modavg.shrink.rlm(...) modavg.shrink.unmarked(...) modavgpred(...) modavgpred.glm(...) modavgpred.gls(...) modavgpred.lme(...) modavgpred.mer(...) modavgpred.merMod(...) modavgpred.rlm(...) modavgpred.unmarked(...) mult.comp(...) predictSE.zip(...)
... |
arguments passed to the function. |
AICc.mult
has been replaced by AICc.multinom
.
AICc.unmarked
has been replaced by AICc.unmarkedFit
.
extract.LL
has been replaced by extractLL
.
extract.LL.coxph
has been replaced by extractLL.coxph
.
extract.LL.unmarked
has been replaced by
extractLL.unmarkedFit
.
aictab.clm
has been replaced by aictab.AICsclm.clm
.
aictab.clmm
has been replaced by aictab.AICclmm
.
aictab.coxph
has been replaced by aictab.AICcoxph
.
aictab.glm
has been replaced by aictab.AICglm.lm
.
aictab.gls
has been replaced by aictab.AICgls
.
aictab.lm
has been replaced by aictab.AIClm
.
aictab.lme
has been replaced by aictab.AIClme
.
aictab.mer
has been replaced by aictab.AICmer
.
aictab.merMod
has been replaced by aictab.AIClmerMod
,
aictab.AICglmerMod
, or aictab.AICnlmerMod
,
depending on the class of the objects.
aictab.mult
has been replaced by
aictab.AICmultinom.nnet
.
aictab.nlme
has been replaced by aictab.AICnlme
.
aictab.nls
has been replaced by aictab.AICnls
.
aictab.polr
has been replaced by aictab.AICpolr
.
aictab.rlm
has been replaced by aictab.AICrlm.lm
.
aictab.unmarked
has been replaced by
aictab.AICunmarkedFitOccu
,
aictab.AICunmarkedFitColExt
,
aictab.AICunmarkedFitOccuRN
,
aictab.AICunmarkedFitPCount
,
aictab.AICunmarkedFitPCO
, aictab.AICunmarkedFitDS
,
aictab.AICunmarkedFitGDS
,
aictab.AICunmarkedFitOccuFP
,
aictab.AICunmarkedFitMPois
,
aictab.AICunmarkedFitGMM
, or
aictab.AICunmarkedFitGPC
, depending on the class of the
objects.
dictab.bugs
has been replaced by dictab.AICbugs
.
dictab.jags
has been replaced by dictab.AICjags
.
modavg.clm
has been replaced by modavg.AICsclm.clm
.
modavg.clmm
has been replaced by modavg.AICsclm.clm
.
modavg.coxph
has been replaced by modavg.AICcoxph
.
modavg.glm
has been replaced by modavg.AIClm
or
modavg.AICglm.lm
, depending on the class of the objects.
modavg.gls
has been replaced by modavg.AICgls
.
modavg.lme
has been replaced by modavg.AIClme
.
modavg.mer
has been replaced by modavg.AICmer
.
modavg.merMod
has been replaced by modavg.AIClmerMod
or
modavg.AICglmerMod
, depending on the class of the objects.
modavg.mult
has been replaced by modavg.AICmultinom.nnet
.
modavg.polr
has been replaced by modavg.AICpolr
.
modavg.rlm
has been replaced by modavg.AICrlm.lm
.
modavg.unmarked
has been replaced by
modavg.AICunmarkedFitOccu
,
modavg.AICunmarkedFitColExt
,
modavg.AICunmarkedFitOccuRN
,
modavg.AICunmarkedFitPCount
,
modavg.AICunmarkedFitPCO
, modavg.AICunmarkedFitDS
,
modavg.AICunmarkedFitGDS
,
modavg.AICunmarkedFitOccuFP
,
modavg.AICunmarkedFitMPois
,
modavg.AICunmarkedFitGMM
, or
modavg.AICunmarkedFitGPC
, depending on the class of the
objects.
modavg.effect
has been replaced by modavgEffect
.
modavg.effect.glm
has been replaced by
modavgEffect.AICglm.lm
or modavgEffect.AIClm
,
depending on the class of the objects.
modavg.effect.gls
has been replaced by
modavgEffect.AICgls
.
modavg.effect.lme
has been replaced by
modavgEffect.AIClme
.
modavg.effect.mer
has been replaced by
modavgEffect.AICmer
.
modavg.effect.merMod
has been replaced by
modavgEffect.AICglmerMod
or
modavgEffect.AIClmerMod
, depending on the class of the objects.
modavg.effect.rlm
has been replaced by
modavgEffect.AICrlm.lm
.
modavg.effect.unmarked
has been replaced by
modavgEffect.AICunmarkedFitOccu
,
modavgEffect.AICunmarkedFitColExt
,
modavgEffect.AICunmarkedFitOccuRN
,
modavgEffect.AICunmarkedFitPCount
,
modavgEffect.AICunmarkedFitPCO
,
modavgEffect.AICunmarkedFitDS
,
modavgEffect.AICunmarkedFitGDS
,
modavgEffect.AICunmarkedFitOccuFP
,
modavgEffect.AICunmarkedFitMPois
,
modavgEffect.AICunmarkedFitGMM
, or
modavgEffect.AICunmarkedFitGPC
, depending on the class of the
objects.
modavg.shrink
has been replaced by modavgShrink
.
modavg.shrink.clm
has been replaced by
modavgShrink.AICsclm.clm
.
modavg.shrink.clmm
has been replaced by
modavgShrink.AICclmm
.
modavg.shrink.coxph
has been replaced by
modavgShrink.AICcoxph
.
modavg.shrink.glm
has been replaced by
modavgShrink.AICglm.lm
or modavgShrink.AICglm.lm
,
depending on the class of the objects.
modavg.shrink.gls
has been replaced by
modavgShrink.AICgls
.
modavg.shrink.lme
has been replaced by
modavgShrink.AIClme
.
modavg.shrink.mer
has been replaced by
modavgShrink.AICmer
.
modavg.shrink.merMod
has been replaced by
modavgShrink.AICglmerMod
or
modavgShrink.AIClmerMod
, depending on the class of the
objects.
modavg.shrink.mult
has been replaced by
modavgShrink.AICmultinom.nnet
.
modavg.shrink.polr
has been replaced by
modavgShrink.AICpolr
.
modavg.shrink.rlm
has been replaced by
modavgShrink.AICrlm.lm
modavg.shrink.unmarked
has been replaced by
modavgShrink.AICunmarkedFitOccu
,
modavgShrink.AICunmarkedFitColExt
,
modavgShrink.AICunmarkedFitOccuRN
,
modavgShrink.AICunmarkedFitPCount
,
modavgShrink.AICunmarkedFitPCO
,
modavgShrink.AICunmarkedFitDS
,
modavgShrink.AICunmarkedFitGDS
,
modavgShrink.AICunmarkedFitOccuFP
,
modavgShrink.AICunmarkedFitMPois
,
modavgShrink.AICunmarkedFitGMM
, or
modavgShrink.AICunmarkedFitGPC
, depending on the class of
the objects.
modavgpred
has been replaced by modavgPred
.
modavgpred.glm
has been replaced by
modavgpred.AICglm.lm
or modavgPred.AIClm
,
depending on the class of the objects.
modavgpred.gls
has been replaced by modavgPred.AICgls
.
modavgpred.lme
has been replaced by modavgPred.AIClme
.
modavgpred.mer
has been replaced by modavgPred.AICmer
.
modavgpred.merMod
has been replaced by
modavgpred.AICglmerMod
or modavgPred.AIClmerMod
,
depending on the class of the objects.
modavgpred.rlm
has been replaced by
modavgPred.AICrlm.lm
.
modavgpred.unmarked
has been replaced by
modavgPred.AICunmarkedFitOccu
,
modavgPred.AICunmarkedFitColExt
,
modavgPred.AICunmarkedFitOccuRN
,
modavgPred.AICunmarkedFitPCount
,
modavgPred.AICunmarkedFitPCO
,
modavgPred.AICunmarkedFitDS
,
modavgPred.AICunmarkedFitGDS
,
modavgPred.AICunmarkedFitOccuFP
,
modavgPred.AICunmarkedFitMPois
,
modavgPred.AICunmarkedFitGMM
, or
modavgPred.AICunmarkedFitGPC
, depending on the class of
the objects.
mult.comp
has been replaced by multComp
.
predictSE.zip
has been replaced by predictSE
.
Marc J. Mazerolle
aictab
, confset
, dictab
,
importance
, evidence
,
extractLL
, c_hat
,
modavg
, modavgEffect
,
modavgShrink
, modavgPred
,
multComp
, predictSE
This function creates a model selection table based on one of the
following information criteria: AIC, AICc, QAIC, QAICc. The table
ranks the models based on the selected information criteria and also
provides delta AIC and Akaike weights. aictab
selects the
appropriate function to create the model selection table based on the
object class. The current version works with lists containing objects
of aov
, betareg
, clm
, clmm
, clogit
,
coxme
, coxph
, fitdist
, fitdistr
, glm
,
glmmTMB
, gls
, gnls
, hurdle
, lavaan
,
lm
, lme
, lmekin
, maxlikeFit
, mer
,
merMod
, lmerModLmerTest
, multinom
, negbin
,
nlme
, nls
, polr
, rlm
, survreg
,
vglm
, and zeroinfl
classes as well as various models of
unmarkedFit
classes but does not yet allow mixing of different
classes.
aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICaov.lm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICbetareg' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICsclm.clm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICclmm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICclm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICcoxme' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICcoxph' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICfitdist' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICfitdistr' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICglm.lm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICglmmTMB' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICgls' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICgnls.gls' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIChurdle' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClavaan' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClme' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClmekin' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICmaxlikeFit.list' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICmer' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClmerMod' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClmerModLmerTest' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICglmerMod' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICnlmerMod' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICmultinom.nnet' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICnegbin.glm.lm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICnlme.lme' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICnls' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICpolr' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICrlm.lm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICsurvreg' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICunmarkedFitOccu' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitColExt' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuRN' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitPCount' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitPCO' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitDS' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitGDS' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuFP' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitMPois' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitGMM' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitGPC' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuMS' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitMMO' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitDSO' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICvglm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICzeroinfl' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...)
aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICaov.lm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICbetareg' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICsclm.clm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICclmm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICclm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICcoxme' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICcoxph' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICfitdist' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICfitdistr' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICglm.lm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICglmmTMB' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICgls' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICgnls.gls' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIChurdle' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClavaan' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClme' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClmekin' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICmaxlikeFit.list' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICmer' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClmerMod' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClmerModLmerTest' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICglmerMod' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICnlmerMod' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICmultinom.nnet' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICnegbin.glm.lm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICnlme.lme' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICnls' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICpolr' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICrlm.lm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICsurvreg' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICunmarkedFitOccu' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitColExt' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuRN' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitPCount' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitPCO' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitDS' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitGDS' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuFP' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitMPois' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitGMM' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitGPC' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuMS' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitMMO' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitDSO' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICvglm' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICzeroinfl' aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, ...)
cand.set |
a list storing each of the models in the candidate model set. |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
second.ord |
logical. If |
nobs |
this argument allows to specify a numeric value other than total sample
size to compute the AICc (i.e., |
sort |
logical. If |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor) such
as that obtained from |
... |
additional arguments passed to the function. |
aictab
internally creates a new class for the cand.set
list of candidate models, according to the contents of the list. The
current function is implemented for clogit
, coxme
,
coxph
, fitdist
, fitdistr
, glm
,
glmmTMB
, gls
, gnls
, hurdle
, lavaan
,
lm
, lme
, lmekin
, maxlikeFit
, mer
,
merMod
, lmerModLmerTest
, multinom
, negbin
,
nlme
, nls
, polr
, rlm
, survreg
,
vglm
, and zeroinfl
classes as well as various
unmarkedFit
classes.
The function constructs a model selection table based on one of the four information criteria: AIC, AICc, QAIC, and QAICc.
Ten guidelines for model selection:
1) Carefully construct your candidate model set. Each model should represent a specific (interesting) hypothesis to test.
2) Keep your candidate model set short. It is ill-advised to consider as many models as there are data.
3) Check model fit. Use your global model (most complex model) or subglobal models to determine if the assumptions are valid. If none of your models fit the data well, information criteria will only indicate the most parsimonious of the poor models.
4) Avoid data dredging (i.e., looking for patterns after an initial round of analysis).
5) Avoid overfitting models. You should not estimate too many parameters for the number of observations available in the sample.
6) Be careful of missing values. Remember that values that are missing only for certain variables change the data set and sample size, depending on which variable is included in any given model. I suggest to remove missing cases before starting model selection.
7) Use the same response variable for all models of the candidate model set. It is inappropriate to run some models with a transformed response variable and others with the untransformed variable. A workaround is to use a different link function for some models (e.g., identity vs log link).
8) When dealing with models with overdispersion, use the same value of c-hat for all models in the candidate model set. For binomial models with trials > 1 (i.e., success/trial or cbind(success, failure) syntax) or with Poisson GLM's, you should estimate the c-hat from the most complex model (global model). If c-hat > 1, you should use the same value for each model of the candidate model set (where appropriate) and include it in the count of parameters (K). Similarly, for negative binomial models, you should estimate the dispersion parameter from the global model and use the same value across all models.
9) Burnham and Anderson (2002) recommend to avoid mixing the information-theoretic approach and notions of significance (i.e., P values). It is best to provide estimates and a measure of their precision (standard error, confidence intervals).
10) Determining the ranking of the models is just the first step. Akaike weights sum to 1 for the entire model set and can be interpreted as the weight of evidence in favor of a given model being the best one given the candidate model set considered and the data at hand. Models with large Akaike weights have strong support. Evidence ratios, importance values, and confidence sets for the best model are all measures that assist in interpretation. In cases where the top ranking model has an Akaike weight > 0.9, one can base inference on this single most parsimonious model. When many models rank highly (i.e., delta (Q)AIC(c) < 4), one should model-average effect sizes for the parameters with most support across the entire set of models. Model averaging consists in making inference based on the whole set of candidate models, instead of basing conclusions on a single 'best' model. It is an elegant way of making inference based on the information contained in the entire model set.
aictab
creates an object of class aictab
with the
following components:
Modname |
the name of each model of the candidate model set. |
K |
the number of estimated parameters for each model. |
(Q)AIC(c) |
the information criterion requested for each model (AIC, AICc, QAIC, QAICc). |
Delta_(Q)AIC(c) |
the appropriate delta AIC component depending on the information criteria selected. |
ModelLik |
the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is not to be confused with the likelihood of the parameters given the data. The relative likelihood can then be normalized across all models to get the model probabilities. |
(Q)AIC(c)Wt |
the Akaike weights, also termed "model probabilities" sensu Burnham and Anderson (2002) and Anderson (2008). These measures indicate the level of support (i.e., weight of evidence) in favor of any given model being the most parsimonious among the candidate model set. |
Cum.Wt |
the cumulative Akaike weights. These are only meaningful
if results in table are sorted in decreasing order of Akaike weights
(i.e., |
c.hat |
if c.hat was specified as an argument, it is included in the table. |
LL |
if c.hat = 1 and parameters estimated by maximum likelihood, the log-likelihood of each model. |
Quasi.LL |
if c.hat > 1, the quasi log-likelihood of each model. |
Res.LL |
if parameters are estimated by restricted maximum-likelihood (REML), the restricted log-likelihood of each model. |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33, 261–304.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
AICc
, aictabCustom
, bictab
,
confset
, c_hat
, evidence
,
importance
, modavg
,
modavgEffect
, modavgShrink
,
modavgPred
##Mazerolle (2006) frog water loss example data(dry.frog) ##setup a subset of models of Table 1 Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) ##create a vector of names to trace back models in set Modnames <- paste("mod", 1:length(Cand.models), sep = " ") ##generate AICc table aictab(cand.set = Cand.models, modnames = Modnames, sort = TRUE) ##round to 4 digits after decimal point and give log-likelihood print(aictab(cand.set = Cand.models, modnames = Modnames, sort = TRUE), digits = 4, LL = TRUE) ## Not run: ##Burnham and Anderson (2002) flour beetle data data(beetle) ##models as suggested by Burnham and Anderson p. 198 Cand.set <- list( ) Cand.set[[1]] <- glm(Mortality_rate ~ Dose, family = binomial(link = "logit"), weights = Number_tested, data = beetle) Cand.set[[2]] <- glm(Mortality_rate ~ Dose, family = binomial(link = "probit"), weights = Number_tested, data = beetle) Cand.set[[3]] <- glm(Mortality_rate ~ Dose, family = binomial(link ="cloglog"), weights = Number_tested, data = beetle) ##check c-hat c_hat(Cand.set[[1]]) c_hat(Cand.set[[2]]) c_hat(Cand.set[[3]]) ##lowest value of c-hat < 1 for these non-nested models, thus use ##c.hat = 1 ##set up named list names(Cand.set) <- c("logit", "probit", "cloglog") ##compare models ##model names will be taken from the list if modnames is not specified res.table <- aictab(cand.set = Cand.set, second.ord = FALSE) ##note that delta AIC and Akaike weights are identical to Table 4.7 print(res.table, digits = 2, LL = TRUE) #print table with 2 digits and ##print log-likelihood in table print(res.table, digits = 4, LL = FALSE) #print table with 4 digits and ##do not print log-likelihood ## End(Not run) ##two-way ANOVA with interaction data(iron) ##full model m1 <- lm(Iron ~ Pot + Food + Pot:Food, data = iron) ##additive model m2 <- lm(Iron ~ Pot + Food, data = iron) ##null model m3 <- lm(Iron ~ 1, data = iron) ##candidate models Cand.aov <- list(m1, m2, m3) Cand.names <- c("full", "additive", "null") aictab(Cand.aov, Cand.names) ##single-season occupancy model example modified from ?occu ## Not run: require(unmarked) ##single season example modified from ?occu data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ##add fake covariates siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = runif(numSites(pferUMF))) ##observation covariates obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) ##set up candidate model set fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF) fm2 <- occu(~ 1 ~ sitevar1, pferUMF) fm3 <- occu(~ obsvar1 ~ sitevar2, pferUMF) fm4 <- occu(~ 1 ~ sitevar2, pferUMF) ##assemble models in named list (alternative to using 'modnames' argument) Cand.mods <- list("fm1" = fm1, "fm2" = fm2, "fm3" = fm3, "fm4" = fm4) ##compute table aictab(cand.set = Cand.mods, second.ord = TRUE) detach(package:unmarked) ## End(Not run)
##Mazerolle (2006) frog water loss example data(dry.frog) ##setup a subset of models of Table 1 Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) ##create a vector of names to trace back models in set Modnames <- paste("mod", 1:length(Cand.models), sep = " ") ##generate AICc table aictab(cand.set = Cand.models, modnames = Modnames, sort = TRUE) ##round to 4 digits after decimal point and give log-likelihood print(aictab(cand.set = Cand.models, modnames = Modnames, sort = TRUE), digits = 4, LL = TRUE) ## Not run: ##Burnham and Anderson (2002) flour beetle data data(beetle) ##models as suggested by Burnham and Anderson p. 198 Cand.set <- list( ) Cand.set[[1]] <- glm(Mortality_rate ~ Dose, family = binomial(link = "logit"), weights = Number_tested, data = beetle) Cand.set[[2]] <- glm(Mortality_rate ~ Dose, family = binomial(link = "probit"), weights = Number_tested, data = beetle) Cand.set[[3]] <- glm(Mortality_rate ~ Dose, family = binomial(link ="cloglog"), weights = Number_tested, data = beetle) ##check c-hat c_hat(Cand.set[[1]]) c_hat(Cand.set[[2]]) c_hat(Cand.set[[3]]) ##lowest value of c-hat < 1 for these non-nested models, thus use ##c.hat = 1 ##set up named list names(Cand.set) <- c("logit", "probit", "cloglog") ##compare models ##model names will be taken from the list if modnames is not specified res.table <- aictab(cand.set = Cand.set, second.ord = FALSE) ##note that delta AIC and Akaike weights are identical to Table 4.7 print(res.table, digits = 2, LL = TRUE) #print table with 2 digits and ##print log-likelihood in table print(res.table, digits = 4, LL = FALSE) #print table with 4 digits and ##do not print log-likelihood ## End(Not run) ##two-way ANOVA with interaction data(iron) ##full model m1 <- lm(Iron ~ Pot + Food + Pot:Food, data = iron) ##additive model m2 <- lm(Iron ~ Pot + Food, data = iron) ##null model m3 <- lm(Iron ~ 1, data = iron) ##candidate models Cand.aov <- list(m1, m2, m3) Cand.names <- c("full", "additive", "null") aictab(Cand.aov, Cand.names) ##single-season occupancy model example modified from ?occu ## Not run: require(unmarked) ##single season example modified from ?occu data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ##add fake covariates siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = runif(numSites(pferUMF))) ##observation covariates obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) ##set up candidate model set fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF) fm2 <- occu(~ 1 ~ sitevar1, pferUMF) fm3 <- occu(~ obsvar1 ~ sitevar2, pferUMF) fm4 <- occu(~ 1 ~ sitevar2, pferUMF) ##assemble models in named list (alternative to using 'modnames' argument) Cand.mods <- list("fm1" = fm1, "fm2" = fm2, "fm3" = fm3, "fm4" = fm4) ##compute table aictab(cand.set = Cand.mods, second.ord = TRUE) detach(package:unmarked) ## End(Not run)
This function creates a model selection table from model input (log-likelihood, number of estimated parameters) supplied by the user instead of extracting the values automatically from a list of candidate models. The models are ranked based on one of the following information criteria: AIC, AICc, QAIC, QAICc. The table ranks the models based on the selected information criteria and also provides delta AIC and Akaike weights.
aictabCustom(logL, K, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1)
aictabCustom(logL, K, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1)
logL |
a vector of log-likelihood values for the models in the candidate model set. |
K |
a vector containing the number of estimated parameters for each model in the candidate model set. |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
second.ord |
logical. If |
nobs |
the sample size required to compute the AICc or QAICc. |
sort |
logical. If |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor)
such as that obtained from |
aictabCustom
constructs a model selection table based on one of
the four information criteria: AIC, AICc, QAIC, and QAICc. This
function is most useful when model input is imported into R from other
software (e.g., Program MARK, PRESENCE) or for model classes that are
not yet supported by aictab
.
aictabCustom
creates an object of class aictab
with the
following components:
Modname |
the name of each model of the candidate model set. |
K |
the number of estimated parameters for each model. |
(Q)AIC(c) |
the information criteria requested for each model (AICc, AICc, QAIC, QAICc). |
Delta_(Q)AIC(c) |
the appropriate delta AIC component depending on the information criteria selected. |
ModelLik |
the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is not to be confused with the likelihood of the parameters given the data. The relative likelihood can then be normalized across all models to get the model probabilities. |
(Q)AIC(c)Wt |
the Akaike weights, also termed "model probabilities" sensu Burnham and Anderson (2002) and Anderson (2008). These measures indicate the level of support (i.e., weight of evidence) in favor of any given model being the most parsimonious among the candidate model set. |
Cum.Wt |
the cumulative Akaike weights. These are only meaningful if results in table are sorted in decreasing order of Akaike weights (i.e., sort = TRUE). |
c.hat |
if c.hat was specified as an argument, it is included in the table. |
LL |
if c.hat = 1 and parameters estimated by maximum likelihood, the log-likelihood of each model. |
Quasi.LL |
if c.hat > 1, the quasi log-likelihood of each model. |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case-studies. Ecological Monographs 62, 67–118.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
AICcCustom
, bictabCustom
,
confset
, c_hat
, evidence
,
ictab
, modavgCustom
##vector with model LL's LL <- c(-38.8876, -35.1783, -64.8970) ##vector with number of parameters Ks <- c(7, 9, 4) ##create a vector of names to trace back models in set Modnames <- c("Cm1", "Cm2", "Cm3") ##generate AICc table aictabCustom(logL = LL, K = Ks, modnames = Modnames, nobs = 121, sort = TRUE)
##vector with model LL's LL <- c(-38.8876, -35.1783, -64.8970) ##vector with number of parameters Ks <- c(7, 9, 4) ##create a vector of names to trace back models in set Modnames <- c("Cm1", "Cm2", "Cm3") ##generate AICc table aictabCustom(logL = LL, K = Ks, modnames = Modnames, nobs = 121, sort = TRUE)
Compute likelihood-ratio test between a given model and a simpler model.
anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'glm' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitOccu' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitColExt' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitOccuRN' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitPCount' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitPCO' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitDS' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitGDS' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitOccuFP' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitMPois' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitGMM' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitGPC' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitOccuMS' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitOccuTTD' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitMMO' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitDSO' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'glmerMod' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'maxlikeFit' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'multinom' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'vglm' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...)
anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'glm' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitOccu' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitColExt' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitOccuRN' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitPCount' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitPCO' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitDS' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitGDS' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitOccuFP' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitMPois' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitGMM' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitGPC' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitOccuMS' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitOccuTTD' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitMMO' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'unmarkedFitDSO' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'glmerMod' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'maxlikeFit' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'multinom' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...) ## S3 method for class 'vglm' anovaOD(mod.simple, mod.complex, c.hat = 1, nobs = NULL, ...)
mod.simple |
an object of class |
mod.complex |
an object of the same class as |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor)
such as that obtained from |
nobs |
the number of observations used in the analysis. If |
... |
additional arguments passed to the function. |
This function applies a correction for overdispersion on the
likelihood-ratio test between a model and its simpler counterpart.
The simpler model must be nested within the more complex model,
typically as the result of deleting terms. You should supply the
c.hat
value of the most complex of the two models you are
comparing.
When , the likelihood-ratio test is computed
as:
where LL.simple and LL.complex are the log-likelihoods
of the simple and complex models, respectively, and where
K.complex and K.simple are the number of estimated
parameters in each model. The test statistic is approximately
distributed as , where
n is the number of observations (i.e.,
nobs
) used in the
analysis (Venables and Ripley 2002).
When nobs = NULL
, the number of observations is based on the
number of rows of the data frame used in the analysis. For mixed
models or various models of unmarkedFit
, sample size is less
straightforward, and nobs
could be based on the total number of
observations or on the number of independent clusters (e.g., sites),
among other choices.
When c.hat = 1
, the likelihood-ratio test simplifies to:
where in this case the test statistic is distributed as a
(McCullagh and Nelder 1989).
The function supports different model types such as Poisson GLM's and GLMM's, single-season and dynamic occupancy models (MacKenzie et al. 2002, 2003), and various N-mixture models (Royle 2004, Dail and Madsen 2011).
anovaOD
returns an object of class anovaOD
as a list with
the following components:
form.simple |
a character string of the parameters estimated in |
form.complex |
a character string of the parameters estimated in |
c.hat |
the |
devMat |
a matrix storing as columns the number of parameters
estimated ( |
Marc J. Mazerolle
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
McCullagh, P., Nelder, J. A. (1989) Generalized Linear Models. Second edition. Chapman and Hall: New York.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
Venables, W. N., Ripley, B. D. (2002) Modern Applied Statistics with S. Second edition. Springer-Verlag: New York.
c_hat
, mb.gof.test
,
Nmix.gof.test
, summaryOD
##anuran larvae example from Mazerolle (2006) data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##run model m1 <- glm(Num_anura ~ Type + log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) ##null model m0 <- glm(Num_anura ~ 1, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model c_hat(m1) #uses Pearson's chi-square/df ##likelihood ratio test corrected for overdispersion anovaOD(mod.simple = m0, mod.complex = m1, c.hat = c_hat(m1)) ##compare without overdispersion correction anovaOD(mod.simple = m0, mod.complex = m1) ##example with occupancy model ## Not run: ##load unmarked package if(require(unmarked)){ data(bullfrog) ##detection data detections <- bullfrog[, 3:9] ##assemble in unmarkedFrameOccu bfrog <- unmarkedFrameOccu(y = detections) ##run model fm <- occu(~ 1 ~ Reed.presence, data = bfrog) ##null model fm0 <- occu(~ 1 ~ 1, data = bfrog) ##check GOF ##GOF <- mb.gof.test(fm, nsim = 1000) ##estimate of c-hat: 1.89 ##display results after overdispersion adjustment anovaOD(fm0, fm, c.hat = 1.89) detach(package:unmarked) } ## End(Not run)
##anuran larvae example from Mazerolle (2006) data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##run model m1 <- glm(Num_anura ~ Type + log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) ##null model m0 <- glm(Num_anura ~ 1, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model c_hat(m1) #uses Pearson's chi-square/df ##likelihood ratio test corrected for overdispersion anovaOD(mod.simple = m0, mod.complex = m1, c.hat = c_hat(m1)) ##compare without overdispersion correction anovaOD(mod.simple = m0, mod.complex = m1) ##example with occupancy model ## Not run: ##load unmarked package if(require(unmarked)){ data(bullfrog) ##detection data detections <- bullfrog[, 3:9] ##assemble in unmarkedFrameOccu bfrog <- unmarkedFrameOccu(y = detections) ##run model fm <- occu(~ 1 ~ Reed.presence, data = bfrog) ##null model fm0 <- occu(~ 1 ~ 1, data = bfrog) ##check GOF ##GOF <- mb.gof.test(fm, nsim = 1000) ##estimate of c-hat: 1.89 ##display results after overdispersion adjustment anovaOD(fm0, fm, c.hat = 1.89) detach(package:unmarked) } ## End(Not run)
This data set illustrates the acute mortality of flour beetles (Tribolium confusum) following 5 hour exposure to carbon disulfide gas.
data(beetle)
data(beetle)
A data frame with 8 rows and 4 variables.
Dose
dose of carbon disulfide in mg/L.
Number_tested
number of beetles exposed to given dose of carbon disulfide.
Number_killed
number of beetles dead after 5 hour exposure to given dose of carbon disulfide.
Mortality_rate
proportion of total beetles found dead after 5 hour exposure.
Burnham and Anderson (2002, p. 195) use this data set originally from Young and Young (1998) to show model selection for binomial models with different link functions (logit, probit, cloglog).
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Young, L. J., Young, J. H. (1998) Statistical Ecology. Kluwer Academic Publishers: London.
data(beetle) ## maybe str(beetle) ; plot(beetle) ...
data(beetle) ## maybe str(beetle) ; plot(beetle) ...
This function creates a model selection table based on the Bayesian
information criterion (Schwarz 1978, Burnham and Anderson 2002). The
table ranks the models based on the BIC and also provides delta BIC and
BIC model weights. The function adjusts for overdispersion in model
selection by using the QBIC when c.hat > 1
. bictab
selects the appropriate function to create the model selection table
based on the object class. The current version works with lists
containing objects of aov
, betareg
, clm
,
clmm
, clogit
, coxme
, coxph
, fitdist
,
fitdistr
, glm
, glmmTMB
, gls
, gnls
,
hurdle
, lavaan
, lm
, lme
, lmekin
,
maxlikeFit
, mer
, merMod
, lmerModLmerTest
,
multinom
, nlme
, nls
, polr
, rlm
,
survreg
, vglm
, and zeroinfl
classes as well as
various models of unmarkedFit
classes but does not yet allow
mixing of different classes.
bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICaov.lm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICbetareg' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICsclm.clm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICclmm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICclm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICcoxme' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICcoxph' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICfitdist' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICfitdistr' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICglm.lm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICglmmTMB' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICgls' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICgnls.gls' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIChurdle' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClavaan' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClme' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClmekin' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICmaxlikeFit.list' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICmer' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClmerMod' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClmerModLmerTest' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICglmerMod' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICnlmerMod' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICmultinom.nnet' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICnlme.lme' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICnls' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICpolr' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICrlm.lm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICsurvreg' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICunmarkedFitOccu' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitColExt' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuRN' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitPCount' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitPCO' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitDS' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitGDS' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuFP' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitMPois' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitGMM' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitGPC' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuMS' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitMMO' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitDSO' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICvglm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICzeroinfl' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...)
bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICaov.lm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICbetareg' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICsclm.clm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICclmm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICclm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICcoxme' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICcoxph' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICfitdist' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICfitdistr' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICglm.lm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICglmmTMB' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICgls' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICgnls.gls' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIChurdle' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClavaan' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClme' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClmekin' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICmaxlikeFit.list' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICmer' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClmerMod' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AIClmerModLmerTest' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICglmerMod' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICnlmerMod' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICmultinom.nnet' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICnlme.lme' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICnls' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICpolr' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICrlm.lm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICsurvreg' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...) ## S3 method for class 'AICunmarkedFitOccu' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitColExt' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuRN' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitPCount' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitPCO' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitDS' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitGDS' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuFP' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitMPois' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitGMM' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitGPC' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuMS' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitMMO' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICunmarkedFitDSO' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICvglm' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1, ...) ## S3 method for class 'AICzeroinfl' bictab(cand.set, modnames = NULL, nobs = NULL, sort = TRUE, ...)
cand.set |
a list storing each of the models in the candidate model set. |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
nobs |
this argument allows to specify a numeric value other than total sample
size to compute the BIC (i.e., |
sort |
logical. If |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor) such
as that obtained from |
... |
additional arguments passed to the function. |
BIC tends to favor simpler models than AIC whenever n > 8 (Schwarz 1978, Link and Barker 2006, Anderson 2008). BIC assigns uniform prior probabilities across all models (i.e., equal 1/R), whereas in AIC and AICc, prior probabilities increase with sample size (Burnham and Anderson 2004, Link and Barker 2010). Some authors argue that BIC requires the true model to be included in the model set, whereas AIC or AICc does not (Burnham and Anderson 2002). However, Link and Barker (2006, 2010) consider both as assuming that a model in the model set approximates truth.
bictab
internally creates a new class for the cand.set
list of candidate models, according to the contents of the list. The
current function is implemented for clogit
, coxme
,
coxph
, fitdist
, fitdistr
, glm
,
glmmTMB
, gls
, gnls
, hurdle
, lavaan
,
lm
, lme
, lmekin
, maxlikeFit
, mer
,
merMod
, lmerModLmerTest
, multinom
, nlme
,
nls
, polr
, rlm
, survreg
, vglm
, and
zeroinfl
classes as well as various unmarkedFit
classes.
The function constructs a model selection table based on BIC.
bictab
creates an object of class bictab
with the
following components:
Modname |
the name of each model of the candidate model set. |
K |
the number of estimated parameters for each model. |
(Q)BIC |
the Bayesian information criterion for each model. |
Delta_(Q)BIC |
the delta BIC component. |
ModelLik |
the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is not to be confused with the likelihood of the parameters given the data. The relative likelihood can then be normalized across all models to get the model probabilities. |
(Q)BICWt |
the BIC model weights, also termed "model probabilities" (Burnham and Anderson 2002, Link and Barker 2006, Anderson 2008). These measures indicate the level of support (i.e., weight of evidence) in favor of any given model being the most parsimonious among the candidate model set. |
Cum.Wt |
the cumulative BIC weights. These are only meaningful
if results in table are sorted in decreasing order of BIC weights (i.e.,
|
c.hat |
if c.hat was specified as an argument, it is included in the table. |
LL |
the log-likelihood of each model. |
Res.LL |
if parameters are estimated by restricted maximum-likelihood (REML), the restricted log-likelihood of each model. |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33, 261–304.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Link, W. A., Barker, R. J. (2006) Model weights and the foundations of multimodel inference. Ecology 87, 2626–2635.
Link, W. A., Barker, R. J. (2010) Bayesian Inference with Ecological Applications. Academic Press: Boston.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics 6, 461–464.
aictab
, bictabCustom
, confset
,
evidence
, importance
, useBIC
,
##Mazerolle (2006) frog water loss example data(dry.frog) ##setup a subset of models of Table 1 Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) ##create a vector of names to trace back models in set Modnames <- paste("mod", 1:length(Cand.models), sep = " ") ##generate BIC table bictab(cand.set = Cand.models, modnames = Modnames, sort = TRUE) ##round to 4 digits after decimal point and give log-likelihood print(bictab(cand.set = Cand.models, modnames = Modnames, sort = TRUE), digits = 4, LL = TRUE) ## Not run: ##Burnham and Anderson (2002) flour beetle data data(beetle) ##models as suggested by Burnham and Anderson p. 198 Cand.set <- list( ) Cand.set[[1]] <- glm(Mortality_rate ~ Dose, family = binomial(link = "logit"), weights = Number_tested, data = beetle) Cand.set[[2]] <- glm(Mortality_rate ~ Dose, family = binomial(link = "probit"), weights = Number_tested, data = beetle) Cand.set[[3]] <- glm(Mortality_rate ~ Dose, family = binomial(link ="cloglog"), weights = Number_tested, data = beetle) ##set up named list names(Cand.set) <- c("logit", "probit", "cloglog") ##compare models ##model names will be taken from the list if modnames is not specified bictab(cand.set = Cand.set) ## End(Not run) ##two-way ANOVA with interaction data(iron) ##full model m1 <- lm(Iron ~ Pot + Food + Pot:Food, data = iron) ##additive model m2 <- lm(Iron ~ Pot + Food, data = iron) ##null model m3 <- lm(Iron ~ 1, data = iron) ##candidate models Cand.aov <- list(m1, m2, m3) Cand.names <- c("full", "additive", "null") bictab(Cand.aov, Cand.names) ##single-season occupancy model example modified from ?occu ## Not run: require(unmarked) ##single season example modified from ?occu data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ##add fake covariates siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = runif(numSites(pferUMF))) ##observation covariates obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) ##set up candidate model set fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF) fm2 <- occu(~ 1 ~ sitevar1, pferUMF) fm3 <- occu(~ obsvar1 ~ sitevar2, pferUMF) fm4 <- occu(~ 1 ~ sitevar2, pferUMF) ##assemble models in named list (alternative to using 'modnames' argument) Cand.mods <- list("fm1" = fm1, "fm2" = fm2, "fm3" = fm3, "fm4" = fm4) ##compute table based on QBIC that accounts for c.hat bictab(cand.set = Cand.mods, c.hat = 3.9) detach(package:unmarked) ## End(Not run)
##Mazerolle (2006) frog water loss example data(dry.frog) ##setup a subset of models of Table 1 Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) ##create a vector of names to trace back models in set Modnames <- paste("mod", 1:length(Cand.models), sep = " ") ##generate BIC table bictab(cand.set = Cand.models, modnames = Modnames, sort = TRUE) ##round to 4 digits after decimal point and give log-likelihood print(bictab(cand.set = Cand.models, modnames = Modnames, sort = TRUE), digits = 4, LL = TRUE) ## Not run: ##Burnham and Anderson (2002) flour beetle data data(beetle) ##models as suggested by Burnham and Anderson p. 198 Cand.set <- list( ) Cand.set[[1]] <- glm(Mortality_rate ~ Dose, family = binomial(link = "logit"), weights = Number_tested, data = beetle) Cand.set[[2]] <- glm(Mortality_rate ~ Dose, family = binomial(link = "probit"), weights = Number_tested, data = beetle) Cand.set[[3]] <- glm(Mortality_rate ~ Dose, family = binomial(link ="cloglog"), weights = Number_tested, data = beetle) ##set up named list names(Cand.set) <- c("logit", "probit", "cloglog") ##compare models ##model names will be taken from the list if modnames is not specified bictab(cand.set = Cand.set) ## End(Not run) ##two-way ANOVA with interaction data(iron) ##full model m1 <- lm(Iron ~ Pot + Food + Pot:Food, data = iron) ##additive model m2 <- lm(Iron ~ Pot + Food, data = iron) ##null model m3 <- lm(Iron ~ 1, data = iron) ##candidate models Cand.aov <- list(m1, m2, m3) Cand.names <- c("full", "additive", "null") bictab(Cand.aov, Cand.names) ##single-season occupancy model example modified from ?occu ## Not run: require(unmarked) ##single season example modified from ?occu data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ##add fake covariates siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = runif(numSites(pferUMF))) ##observation covariates obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) ##set up candidate model set fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF) fm2 <- occu(~ 1 ~ sitevar1, pferUMF) fm3 <- occu(~ obsvar1 ~ sitevar2, pferUMF) fm4 <- occu(~ 1 ~ sitevar2, pferUMF) ##assemble models in named list (alternative to using 'modnames' argument) Cand.mods <- list("fm1" = fm1, "fm2" = fm2, "fm3" = fm3, "fm4" = fm4) ##compute table based on QBIC that accounts for c.hat bictab(cand.set = Cand.mods, c.hat = 3.9) detach(package:unmarked) ## End(Not run)
This function creates a model selection table from model input (log-likelihood, number of estimated parameters) supplied by the user instead of extracting the values automatically from a list of candidate models. The models are ranked based on the BIC (Schwarz 1978) or on a quasi-likelihood analogue (QBIC) corrected for overdispersion. The table ranks the models based on the selected information criteria and also provides delta BIC and BIC weights.
bictabCustom(logL, K, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1)
bictabCustom(logL, K, modnames = NULL, nobs = NULL, sort = TRUE, c.hat = 1)
logL |
a vector of log-likelihood values for the models in the candidate model set. |
K |
a vector containing the number of estimated parameters for each model in the candidate model set. |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
nobs |
the sample size required to compute the AICc or QAICc. |
sort |
logical. If |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor)
such as that obtained from |
bictabCustom
constructs a model selection table based on BIC or
QBIC. This function is most useful when model input is imported into
R from other software (e.g., Program MARK, PRESENCE) or for model
classes that are not yet supported by bictab
.
bictabCustom
creates an object of class bictab
with the
following components:
Modname |
the name of each model of the candidate model set. |
K |
the number of estimated parameters for each model. |
(Q)BIC |
the information criteria requested for each model (BIC, QBIC). |
Delta_(Q)BIC |
the appropriate delta BIC component depending on the information criteria selected. |
ModelLik |
the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is not to be confused with the likelihood of the parameters given the data. The relative likelihood can then be normalized across all models to get the model probabilities. |
(Q)BICWt |
the BIC weights, also termed "model probabilities" sensu Burnham and Anderson (2002) and Anderson (2008). These measures indicate the level of support (i.e., weight of evidence) in favor of any given model being the most parsimonious among the candidate model set. |
Cum.Wt |
the cumulative BIC weights. These are only meaningful if results in table are sorted in decreasing order of BIC weights (i.e., sort = TRUE). |
c.hat |
if c.hat was specified as an argument, it is included in the table. |
LL |
if c.hat = 1 and parameters estimated by maximum likelihood, the log-likelihood of each model. |
Quasi.LL |
if c.hat > 1, the quasi log-likelihood of each model. |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case-studies. Ecological Monographs 62, 67–118.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics 6, 461–464.
AICcCustom
, aictabCustom
,
confset
, c_hat
, evidence
,
ictab
, modavgCustom
##vector with model LL's LL <- c(-38.8876, -35.1783, -64.8970) ##vector with number of parameters Ks <- c(7, 9, 4) ##create a vector of names to trace back models in set Modnames <- c("Cm1", "Cm2", "Cm3") ##generate BIC table bictabCustom(logL = LL, K = Ks, modnames = Modnames, nobs = 121, sort = TRUE)
##vector with model LL's LL <- c(-38.8876, -35.1783, -64.8970) ##vector with number of parameters Ks <- c(7, 9, 4) ##create a vector of names to trace back models in set Modnames <- c("Cm1", "Cm2", "Cm3") ##generate BIC table bictabCustom(logL = LL, K = Ks, modnames = Modnames, nobs = 121, sort = TRUE)
This function computes the model selection relative frequencies based on
the nonparametric bootstrap (Burnham and Anderson 2002). Models are
ranked based on the AIC, AICc, QAIC, or QAICc. The function currently
supports objects of aov
, betareg
, clm
, glm
,
hurdle
, lm
, multinom
, polr
, rlm
,
survreg
, vglm
, and zeroinfl
classes.
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICaov.lm' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICsurvreg' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICsclm.clm' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICglm.lm' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, c.hat = 1, ...) ## S3 method for class 'AIChurdle' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AIClm' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICmultinom.nnet' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, c.hat = 1, ...) ## S3 method for class 'AICpolr' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICrlm.lm' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICsurvreg' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICvglm' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, c.hat = 1, ...) ## S3 method for class 'AICzeroinfl' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...)
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICaov.lm' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICsurvreg' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICsclm.clm' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICglm.lm' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, c.hat = 1, ...) ## S3 method for class 'AIChurdle' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AIClm' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICmultinom.nnet' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, c.hat = 1, ...) ## S3 method for class 'AICpolr' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICrlm.lm' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICsurvreg' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...) ## S3 method for class 'AICvglm' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, c.hat = 1, ...) ## S3 method for class 'AICzeroinfl' boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE, nsim = 100, ...)
cand.set |
a list storing each of the models in the candidate model set. |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
second.ord |
logical. If |
nobs |
this argument allows to specify a numeric value other than total sample
size to compute the AICc (i.e., |
sort |
logical. If |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor) such
as that obtained from |
nsim |
the number of bootstrap iterations. Burnham and Anderson (2002) recommend at least 1000 and up to 10 000 iterations for certain problems. |
... |
additional arguments passed to the function. |
boot.wt
is implemented for aov
, betareg
,
glm
, hurdle
, lm
, multinom
, polr
,
rlm
, survreg
, vglm
, and zeroinfl
classes.
During each bootstrap iteration, the data are resampled with
replacement, all the models specified in cand.set
are updated
with the new data set, and the top-ranked model is saved. When all
iterations are completed, the relative frequency of selection is
computed for each model appearing in the candidate model set.
Relative frequencies of the models are often similar to Akaike
weights, and the latter are often preferred due to their link with
a Bayesian perspective (Burnham and Anderson 2002). boot.wt
is
most useful for teaching purposes of sampling-theory based relative
frequencies of model selection. The current implementation is only
appropriate with completely randomized designs. For more complex data
structures (e.g., blocks or random effects), the bootstrap should be
modified accordingly.
boot.wt
creates an object of class boot.wt
with the
following components:
Modname |
the names of each model of the candidate model set. |
K |
the number of estimated parameters for each model. |
(Q)AIC(c) |
the information criteria requested for each model (AICc, AICc, QAIC, QAICc). |
Delta_(Q)AIC(c) |
the appropriate delta AIC component depending on the information criteria selected. |
ModelLik |
the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is not to be confused with the likelihood of the parameters given the data. The relative likelihood can then be normalized across all models to get the model probabilities. |
(Q)AIC(c)Wt |
the Akaike weights, also termed "model probabilities" sensu Burnham and Anderson (2002) and Anderson (2008). These measures indicate the level of support (i.e., weight of evidence) in favor of any given model being the most parsimonious among the candidate model set. |
PiWt |
the relative frequencies of model selection from the bootstrap. |
c.hat |
if c.hat was specified as an argument, it is included in the table. |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33, 261–304.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
AICc
, confset
, c_hat
,
evidence
, importance
, modavg
,
modavgShrink
, modavgPred
##Mazerolle (2006) frog water loss example data(dry.frog) ##setup a subset of models of Table 1 Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) ##create a vector of names to trace back models in set Modnames <- paste("mod", 1:length(Cand.models), sep = " ") ##generate AICc table with bootstrapped relative ##frequencies of model selection boot.wt(cand.set = Cand.models, modnames = Modnames, sort = TRUE, nsim = 10) #number of iterations should be much higher ##Burnham and Anderson (2002) flour beetle data ## Not run: data(beetle) ##models as suggested by Burnham and Anderson p. 198 Cand.set <- list( ) Cand.set[[1]] <- glm(Mortality_rate ~ Dose, family = binomial(link = "logit"), weights = Number_tested, data = beetle) Cand.set[[2]] <- glm(Mortality_rate ~ Dose, family = binomial(link = "probit"), weights = Number_tested, data = beetle) Cand.set[[3]] <- glm(Mortality_rate ~ Dose, family = binomial(link ="cloglog"), weights = Number_tested, data = beetle) ##create a vector of names to trace back models in set Modnames <- paste("Mod", 1:length(Cand.set), sep = " ") ##model selection table with bootstrapped ##relative frequencies boot.wt(cand.set = Cand.set, modnames = Modnames) ## End(Not run)
##Mazerolle (2006) frog water loss example data(dry.frog) ##setup a subset of models of Table 1 Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) ##create a vector of names to trace back models in set Modnames <- paste("mod", 1:length(Cand.models), sep = " ") ##generate AICc table with bootstrapped relative ##frequencies of model selection boot.wt(cand.set = Cand.models, modnames = Modnames, sort = TRUE, nsim = 10) #number of iterations should be much higher ##Burnham and Anderson (2002) flour beetle data ## Not run: data(beetle) ##models as suggested by Burnham and Anderson p. 198 Cand.set <- list( ) Cand.set[[1]] <- glm(Mortality_rate ~ Dose, family = binomial(link = "logit"), weights = Number_tested, data = beetle) Cand.set[[2]] <- glm(Mortality_rate ~ Dose, family = binomial(link = "probit"), weights = Number_tested, data = beetle) Cand.set[[3]] <- glm(Mortality_rate ~ Dose, family = binomial(link ="cloglog"), weights = Number_tested, data = beetle) ##create a vector of names to trace back models in set Modnames <- paste("Mod", 1:length(Cand.set), sep = " ") ##model selection table with bootstrapped ##relative frequencies boot.wt(cand.set = Cand.set, modnames = Modnames) ## End(Not run)
This is a data set from Mazerolle et al. (2014) on the occupancy of Bullfrogs (Lithobates catesbeianus) in 50 wetlands sampled in 2009 in the area of Montreal, QC.
data(bullfrog)
data(bullfrog)
A data frame with 50 observations on the following 23 variables.
Location
a factor with a unique identifier for each wetland.
Reed.presence
a binary variable, either 1 (reed present) or 0 (reed absent).
V1
a binary variable for detection (1) or non detection (0) of bullfrogs during the first survey.
V2
a binary variable for detection (1) or non detection (0) of bullfrogs during the second survey.
V3
a binary variable for detection (1) or non detection (0) of bullfrogs during the third survey.
V4
a binary variable for detection (1) or non detection (0) of bullfrogs during the fourth survey.
V5
a binary variable for detection (1) or non detection (0) of bullfrogs during the fifth survey.
V6
a binary variable for detection (1) or non detection (0) of bullfrogs during the sixth survey.
V7
a binary variable for detection (1) or non detection (0) of bullfrogs during the seventh survey.
Effort1
a numeric variable for the centered number of sampling stations during the first survey.
Effort2
a numeric variable for the centered number of sampling stations during the second survey.
Effort3
a numeric variable for the centered number of sampling stations during the third survey.
Effort4
a numeric variable for the centered number of sampling stations during the fourth survey.
Effort5
a numeric variable for the centered number of sampling stations during the fifth survey.
Effort6
a numeric variable for the centered number of sampling stations during the sixth survey.
Effort7
a numeric variable for the centered number of sampling stations during the seventh survey.
Type1
a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during the first sampling occasion.
Type2
a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during the second sampling occasion.
Type3
a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during the third sampling occasion.
Type4
a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during the fourth sampling occasion.
Type5
a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during the fifth sampling occasion.
Type6
a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during the sixth sampling occasion.
Type7
a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during the seventh sampling occasion.
This data set is used to illustrate single-species single-season
occupancy models (MacKenzie et al. 2002) in Mazerolle (2015). The
average number of sampling stations on each visit was 8.665714, and was
used to center Effort
on each visit.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
Mazerolle, M. J., Perez, A., Brisson, J. (2014) Common reed (Phragmites australis) invasion and amphibian distribution in freshwater wetlands. Wetlands Ecology and Management 22, 325–340.
Mazerolle, M. J. (2015) Estimating detectability and biological parameters of interest with the use of the R environment. Journal of Herpetology 49, 541–559.
data(bullfrog) str(bullfrog)
data(bullfrog) str(bullfrog)
Functions to compute an estimate of c-hat for binomial or Poisson GLM's and GLMM's using different estimators of overdispersion.
c_hat(mod, method = "pearson", ...) ## S3 method for class 'glm' c_hat(mod, method = "pearson", ...) ## S3 method for class 'glmmTMB' c_hat(mod, method = "pearson", ...) ## S3 method for class 'merMod' c_hat(mod, method = "pearson", ...) ## S3 method for class 'vglm' c_hat(mod, method = "pearson", ...)
c_hat(mod, method = "pearson", ...) ## S3 method for class 'glm' c_hat(mod, method = "pearson", ...) ## S3 method for class 'glmmTMB' c_hat(mod, method = "pearson", ...) ## S3 method for class 'merMod' c_hat(mod, method = "pearson", ...) ## S3 method for class 'vglm' c_hat(mod, method = "pearson", ...)
mod |
an object of class |
method |
this argument defines the estimator used. The default
|
... |
additional arguments passed to the function. |
Poisson and binomial GLM's do not have a parameter for the variance and
it is usually held fixed to 1 (i.e., mean = variance). However, one must
check whether this assumption is appropriate by estimating the
overdispersion parameter (c-hat). Though one can obtain an estimate of
c-hat by dividing the residual deviance by the residual degrees of
freedom (i.e., method = "deviance"
), McCullagh and Nelder (1989) and
Venables and Ripley (2002) recommend using Pearson's chi-square divided
by the residual degrees of freedom (method = "pearson"
). An
estimator based on Farrington (1996) is also implemented by the function
using the argument method = "farrington"
. Recent work by
Fletcher (2012) suggests that an alternative estimator performs better
than the above-mentioned methods in the presence of sparse data and is
now implemented with method = "fletcher"
. For GLMM's, only the
Pearson chi-square estimator of overdispersion is currently implemented.
Note that values of c-hat > 1 indicate overdispersion (variance > mean), but that values much higher than 1 (i.e., > 4) probably indicate lack-of-fit. In cases of moderate overdispersion, one usually multiplies the variance-covariance matrix of the estimates by c-hat. As a result, the SE's of the estimates are inflated (c-hat is also known as a variance inflation factor).
In model selection, c-hat should be estimated from the global model of the candidate model set and the same value of c-hat applied to the entire model set. Specifically, a global model is the most complex model which can be simplified to obtain all the other (nested) models of the set. When no single global model exists in the set of models considered, such as when sample size does not allow a complex model, one can estimate c-hat from 'subglobal' models. Here, 'subglobal' models denote models from which only a subset of the models of the candidate set can be derived. In such cases, one can use the smallest value of c-hat for model selection (Burnham and Anderson 2002).
Note that c-hat counts as an additional parameter estimated and should
be added to K. All functions in package AICcmodavg
automatically add 1 when the c.hat
argument > 1 and apply the
same value of c-hat for the entire model set. When c.hat > 1
,
functions compute quasi-likelihood information criteria (either QAICc or
QAIC, depending on the value of the second.ord
argument) by
scaling the log-likelihood of the model by c.hat
. The value of
c.hat
can influence the ranking of the models: as c-hat
increases, QAIC or QAICc will favor models with fewer parameters. As an
additional check against this potential problem, one can create several
model selection tables by incrementing values of c-hat to assess the
model selection uncertainty. If ranking changes little up to the c-hat
value observed, one can be confident in making inference.
In cases of underdispersion (c-hat < 1), it is recommended to keep the
value of c.hat
to 1. However, note that values of c-hat << 1 can
also indicate lack-of-fit and that an alternative model (and distribution)
should be investigated.
Note that c_hat
only supports the estimation of c-hat for
binomial models with trials > 1 (i.e., success/trial or cbind(success,
failure) syntax) or with Poisson GLM's or GLMM's.
c_hat
returns an object of class c_hat
with the estimated
c-hat value and an attribute for the type of estimator used.
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33, 261–304.
Farrington, C. P. (1996) On assessing goodness of fit of generalized linear models to sparse data. Journal of the Royal Statistical Society B 58, 349–360.
Fletcher, D. J. (2012) Estimating overdispersion when fitting a generalized linear model to sparse data. Biometrika 99, 230–237.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
McCullagh, P., Nelder, J. A. (1989) Generalized Linear Models. Second edition. Chapman and Hall: New York.
Venables, W. N., Ripley, B. D. (2002) Modern Applied Statistics with S. Second edition. Springer: New York.
AICc
, confset
, evidence
,
modavg
, importance
,
modavgPred
, mb.gof.test
,
Nmix.gof.test
, anovaOD
, summaryOD
#binomial glm example set.seed(seed = 10) resp <- rbinom(n = 60, size = 1, prob = 0.5) set.seed(seed = 10) treat <- as.factor(sample(c(rep(x = "m", times = 30), rep(x = "f", times = 30)))) age <- as.factor(c(rep("young", 20), rep("med", 20), rep("old", 20))) #each invidual has its own response (n = 1) mod1 <- glm(resp ~ treat + age, family = binomial) ## Not run: c_hat(mod1) #gives an error because model not appropriate for ##computation of c-hat ## End(Not run) ##computing table to summarize successes table(resp, treat, age) dat2 <- as.data.frame(table(resp, treat, age)) #not quite what we need data2 <- data.frame(success = c(9, 4, 2, 3, 5, 2), sex = c("f", "m", "f", "m", "f", "m"), age = c("med", "med", "old", "old", "young", "young"), total = c(13, 7, 10, 10, 7, 13)) data2$prop <- data2$success/data2$total data2$fail <- data2$total - data2$success ##run model with success/total syntax using weights argument mod2 <- glm(prop ~ sex + age, family = binomial, weights = total, data = data2) c_hat(mod2) ##run model with other syntax cbind(success, fail) mod3 <- glm(cbind(success, fail) ~ sex + age, family = binomial, data = data2) c_hat(mod3)
#binomial glm example set.seed(seed = 10) resp <- rbinom(n = 60, size = 1, prob = 0.5) set.seed(seed = 10) treat <- as.factor(sample(c(rep(x = "m", times = 30), rep(x = "f", times = 30)))) age <- as.factor(c(rep("young", 20), rep("med", 20), rep("old", 20))) #each invidual has its own response (n = 1) mod1 <- glm(resp ~ treat + age, family = binomial) ## Not run: c_hat(mod1) #gives an error because model not appropriate for ##computation of c-hat ## End(Not run) ##computing table to summarize successes table(resp, treat, age) dat2 <- as.data.frame(table(resp, treat, age)) #not quite what we need data2 <- data.frame(success = c(9, 4, 2, 3, 5, 2), sex = c("f", "m", "f", "m", "f", "m"), age = c("med", "med", "old", "old", "young", "young"), total = c(13, 7, 10, 10, 7, 13)) data2$prop <- data2$success/data2$total data2$fail <- data2$total - data2$success ##run model with success/total syntax using weights argument mod2 <- glm(prop ~ sex + age, family = binomial, weights = total, data = data2) c_hat(mod2) ##run model with other syntax cbind(success, fail) mod3 <- glm(cbind(success, fail) ~ sex + age, family = binomial, data = data2) c_hat(mod3)
This data set features calcium concentration in the plasma of birds of both sexes following a hormonal treatment.
data(calcium)
data(calcium)
A data frame with 20 rows and 3 variables.
Calcium
calcium concentration in mg/100 ml in the blood of birds.
Hormone
a factor with two levels indicating whether the bird received a hormonal treatment or not.
Sex
a factor with two levels coding for the sex of birds.
Zar (1984, p. 206) illustrates a two-way ANOVA with interaction with this data set.
Zar, J. H. (1984) Biostatistical analysis. Second edition. Prentice Hall: Englewood Cliffs, New Jersey.
data(calcium) str(calcium)
data(calcium) str(calcium)
This data set illustrates the heat expended (calories) from mixtures of four different ingredients of Portland cement expressed as a percentage by weight.
data(cement)
data(cement)
A data frame with 13 observations on the following 5 variables.
x1
calcium aluminate.
x2
tricalcium silicate.
x3
tetracalcium alumino ferrite.
x4
dicalcium silicate.
y
calories of heat per gram of cement following 180 days of hardening.
Burnham and Anderson (2002, p. 101) use this data set originally from Woods et al. (1932) to select among a set of multiple regression models.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Woods, H., Steinour, H. H., Starke, H. R. (1932) Effect of composition of Portland cement on heat evolved during hardening. Industrial and Engineering Chemistry 24, 1207–1214.
data(cement) ## maybe str(cement) ; plot(cement) ...
data(cement) ## maybe str(cement) ; plot(cement) ...
This function checks the convergence information contained in models of various classes.
checkConv(mod, ...) ## S3 method for class 'betareg' checkConv(mod, ...) ## S3 method for class 'clm' checkConv(mod, ...) ## S3 method for class 'clmm' checkConv(mod, ...) ## S3 method for class 'glm' checkConv(mod, ...) ## S3 method for class 'glmmTMB' checkConv(mod, ...) ## S3 method for class 'hurdle' checkConv(mod, ...) ## S3 method for class 'lavaan' checkConv(mod, ...) ## S3 method for class 'maxlikeFit' checkConv(mod, ...) ## S3 method for class 'merMod' checkConv(mod, ...) ## S3 method for class 'lmerModLmerTest' checkConv(mod, ...) ## S3 method for class 'multinom' checkConv(mod, ...) ## S3 method for class 'nls' checkConv(mod, ...) ## S3 method for class 'polr' checkConv(mod, ...) ## S3 method for class 'unmarkedFit' checkConv(mod, ...) ## S3 method for class 'zeroinfl' checkConv(mod, ...)
checkConv(mod, ...) ## S3 method for class 'betareg' checkConv(mod, ...) ## S3 method for class 'clm' checkConv(mod, ...) ## S3 method for class 'clmm' checkConv(mod, ...) ## S3 method for class 'glm' checkConv(mod, ...) ## S3 method for class 'glmmTMB' checkConv(mod, ...) ## S3 method for class 'hurdle' checkConv(mod, ...) ## S3 method for class 'lavaan' checkConv(mod, ...) ## S3 method for class 'maxlikeFit' checkConv(mod, ...) ## S3 method for class 'merMod' checkConv(mod, ...) ## S3 method for class 'lmerModLmerTest' checkConv(mod, ...) ## S3 method for class 'multinom' checkConv(mod, ...) ## S3 method for class 'nls' checkConv(mod, ...) ## S3 method for class 'polr' checkConv(mod, ...) ## S3 method for class 'unmarkedFit' checkConv(mod, ...) ## S3 method for class 'zeroinfl' checkConv(mod, ...)
mod |
an object containing the output of a model of the classes mentioned above. |
... |
additional arguments passed to the function. |
This function checks the element of a model object that contains the
convergence information from the optimization function. The function
is currently implemented for models of classes betareg
,
clm
, clmm
, glm
, glmmTMB
, hurdle
,
lavaan
, maxlikeFit
, merMod
,
lmerModLmerTest
, multinom
, nls
, polr
,
unmarkedFit
, and zeroinfl
. The function is particularly
useful for functions with several groups of parameters, such as those
of the unmarked
package (Fiske and Chandler, 2011).
checkConv
returns a list with the following components:
converged |
a logical value indicating whether the algorithm converged or not. |
message |
a string containing the message from the optimization function. |
Marc J. Mazerolle
Fiske, I., Chandler, R. (2011) unmarked: An R Package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43, 1–23.
checkParms
, covDiag
,
mb.gof.test
, Nmix.gof.test
##example modified from ?pcount ## Not run: if(require(unmarked)){ ##Simulate data set.seed(3) nSites <- 100 nVisits <- 3 ##covariate x <- rnorm(nSites) beta0 <- 0 beta1 <- 1 ##expected counts lambda <- exp(beta0 + beta1*x) N <- rpois(nSites, lambda) y <- matrix(NA, nSites, nVisits) p <- c(0.3, 0.6, 0.8) for(j in 1:nVisits) { y[,j] <- rbinom(nSites, N, p[j]) } ## Organize data visitMat <- matrix(as.character(1:nVisits), nSites, nVisits, byrow=TRUE) umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x), obsCovs=list(visit=visitMat)) ## Fit model fm1 <- pcount(~ visit ~ 1, umf, K=50) checkConv(fm1) } ## End(Not run)
##example modified from ?pcount ## Not run: if(require(unmarked)){ ##Simulate data set.seed(3) nSites <- 100 nVisits <- 3 ##covariate x <- rnorm(nSites) beta0 <- 0 beta1 <- 1 ##expected counts lambda <- exp(beta0 + beta1*x) N <- rpois(nSites, lambda) y <- matrix(NA, nSites, nVisits) p <- c(0.3, 0.6, 0.8) for(j in 1:nVisits) { y[,j] <- rbinom(nSites, N, p[j]) } ## Organize data visitMat <- matrix(as.character(1:nVisits), nSites, nVisits, byrow=TRUE) umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x), obsCovs=list(visit=visitMat)) ## Fit model fm1 <- pcount(~ visit ~ 1, umf, K=50) checkConv(fm1) } ## End(Not run)
This function identifies parameter estimates with large standard errors
in a model. It is particularly useful for complex models with different
parameter types such as those of unmarkedFit
classes implemented
in package unmarked
(Fiske and Chandler, 2011), as well as other
types of regression models.
checkParms(mod, se.max = 25, simplify = TRUE, ...) ## S3 method for class 'betareg' checkParms(mod, se.max = 25, ...) ## S3 method for class 'clm' checkParms(mod, se.max = 25, ...) ## S3 method for class 'clmm' checkParms(mod, se.max = 25, ...) ## S3 method for class 'coxme' checkParms(mod, se.max = 25, ...) ## S3 method for class 'coxph' checkParms(mod, se.max = 25, ...) ## S3 method for class 'glm' checkParms(mod, se.max = 25, ...) ## S3 method for class 'glmmTMB' checkParms(mod, se.max = 25, ...) ## S3 method for class 'gls' checkParms(mod, se.max = 25, ...) ## S3 method for class 'gnls' checkParms(mod, se.max = 25, ...) ## S3 method for class 'hurdle' checkParms(mod, se.max = 25, ...) ## S3 method for class 'lm' checkParms(mod, se.max = 25, ...) ## S3 method for class 'lme' checkParms(mod, se.max = 25, ...) ## S3 method for class 'lmekin' checkParms(mod, se.max = 25, ...) ## S3 method for class 'maxlikeFit' checkParms(mod, se.max = 25, ...) ## S3 method for class 'merMod' checkParms(mod, se.max = 25, ...) ## S3 method for class 'lmerModLmerTest' checkParms(mod, se.max = 25, ...) ## S3 method for class 'multinom' checkParms(mod, se.max = 25, ...) ## S3 method for class 'nlme' checkParms(mod, se.max = 25, ...) ## S3 method for class 'nls' checkParms(mod, se.max = 25, ...) ## S3 method for class 'polr' checkParms(mod, se.max = 25, ...) ## S3 method for class 'rlm' checkParms(mod, se.max = 25, ...) ## S3 method for class 'survreg' checkParms(mod, se.max = 25, ...) ## S3 method for class 'unmarkedFit' checkParms(mod, se.max = 25, simplify = TRUE, ...) ## S3 method for class 'vglm' checkParms(mod, se.max = 25, ...) ## S3 method for class 'zeroinfl' checkParms(mod, se.max = 25, ...)
checkParms(mod, se.max = 25, simplify = TRUE, ...) ## S3 method for class 'betareg' checkParms(mod, se.max = 25, ...) ## S3 method for class 'clm' checkParms(mod, se.max = 25, ...) ## S3 method for class 'clmm' checkParms(mod, se.max = 25, ...) ## S3 method for class 'coxme' checkParms(mod, se.max = 25, ...) ## S3 method for class 'coxph' checkParms(mod, se.max = 25, ...) ## S3 method for class 'glm' checkParms(mod, se.max = 25, ...) ## S3 method for class 'glmmTMB' checkParms(mod, se.max = 25, ...) ## S3 method for class 'gls' checkParms(mod, se.max = 25, ...) ## S3 method for class 'gnls' checkParms(mod, se.max = 25, ...) ## S3 method for class 'hurdle' checkParms(mod, se.max = 25, ...) ## S3 method for class 'lm' checkParms(mod, se.max = 25, ...) ## S3 method for class 'lme' checkParms(mod, se.max = 25, ...) ## S3 method for class 'lmekin' checkParms(mod, se.max = 25, ...) ## S3 method for class 'maxlikeFit' checkParms(mod, se.max = 25, ...) ## S3 method for class 'merMod' checkParms(mod, se.max = 25, ...) ## S3 method for class 'lmerModLmerTest' checkParms(mod, se.max = 25, ...) ## S3 method for class 'multinom' checkParms(mod, se.max = 25, ...) ## S3 method for class 'nlme' checkParms(mod, se.max = 25, ...) ## S3 method for class 'nls' checkParms(mod, se.max = 25, ...) ## S3 method for class 'polr' checkParms(mod, se.max = 25, ...) ## S3 method for class 'rlm' checkParms(mod, se.max = 25, ...) ## S3 method for class 'survreg' checkParms(mod, se.max = 25, ...) ## S3 method for class 'unmarkedFit' checkParms(mod, se.max = 25, simplify = TRUE, ...) ## S3 method for class 'vglm' checkParms(mod, se.max = 25, ...) ## S3 method for class 'zeroinfl' checkParms(mod, se.max = 25, ...)
mod |
a model of |
se.max |
specifies the value beyond which standard errors are deemed high for
the model at hand. The function will determine the number of
estimates with standard errors that exceed |
simplify |
this argument is only valid for models of |
... |
additional arguments passed to the function. |
In some complex models such as certain hierarchical models (Royle and
Dorazio 2008, Kéry and Royle 2015), issues in estimating parameters and
their standard errors can occur. Large standard errors can be
indicative of problems in estimating certain parameters due to sparse
data, parameters on the boundary, or model misspecification. The
checkParms
function computes the number of parameter estimates
with standard errors larger than se.max
and identifies the
parameter estimate with the largest standard error across all parameter
types (simplify = TRUE
) or for each parameter type
(simplify = FALSE
).
To help identify large standard errors, users can standardize numeric
explanatory variables to zero mean and unit variance. The
checkParms
function can also be useful to identify boundary
estimates in classic generalized models or their extensions (Venables
and Ripley 2002).
checkParms
returns a list of class checkParms
with the
following components:
model.class |
the class of the model for which diagnostics are requested. |
se.max |
the value of SE used as a threshold in diagnostics. The function reports the number of parameter estimates with SE > se.max. |
result |
a matrix consisting of three columns, namely, the
identity of the parameter estimate with the highest SE
( |
Marc J. Mazerolle
Agresti, A. (2002) Categorical data analysis. John Wiley and Sons, Inc.: Hoboken.
Fiske, I., Chandler, R. (2011) unmarked: An R Package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43, 1–23.
Kéry, M., Royle, J. A. (2015) Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness in R and BUGS. Academic Press, New York, USA.
Royle, J. A., Dorazio, R. M. (2008) Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities. Academic Press: New York.
Venables, W. N., Ripley, B. D. (2002) Modern applied statistics with S, 2nd edition. Springer-Verlag: New York.
c_hat
, detHist
, checkConv
,
countDist
, countHist
,
extractCN
, mb.gof.test
,
Nmix.gof.test
, parboot
##example with multiple-season occupancy model modified from ?colext ## Not run: require(unmarked) data(frogs) umf <- formatMult(masspcru) obsCovs(umf) <- scale(obsCovs(umf)) siteCovs(umf) <- rnorm(numSites(umf)) yearlySiteCovs(umf) <- data.frame(year = factor(rep(1:7, numSites(umf)))) ##model with with year-dependent transition rates fm.yearly <- colext(psiformula = ~ 1, gammaformula = ~ year, epsilonformula = ~ year, pformula = ~ JulianDate + I(JulianDate^2), data = umf) ##check for high SE's and report highest ##across all parameter types checkParms(fm.yearly, simplify = TRUE) ##check for high SE's and report highest ##for each parameter type checkParms(fm.yearly, simplify = FALSE) detach(package:unmarked) ## End(Not run) ##example from Agresti 2002 of logistic regression ##with parameters estimated at the boundary (complete separation) ## Not run: x <- c(10, 20, 30, 40, 60, 70, 80, 90) y <- c(0, 0, 0, 0, 1, 1, 1, 1) m1 <- glm(y ~ x, family = binomial) checkParms(m1) ## End(Not run)
##example with multiple-season occupancy model modified from ?colext ## Not run: require(unmarked) data(frogs) umf <- formatMult(masspcru) obsCovs(umf) <- scale(obsCovs(umf)) siteCovs(umf) <- rnorm(numSites(umf)) yearlySiteCovs(umf) <- data.frame(year = factor(rep(1:7, numSites(umf)))) ##model with with year-dependent transition rates fm.yearly <- colext(psiformula = ~ 1, gammaformula = ~ year, epsilonformula = ~ year, pformula = ~ JulianDate + I(JulianDate^2), data = umf) ##check for high SE's and report highest ##across all parameter types checkParms(fm.yearly, simplify = TRUE) ##check for high SE's and report highest ##for each parameter type checkParms(fm.yearly, simplify = FALSE) detach(package:unmarked) ## End(Not run) ##example from Agresti 2002 of logistic regression ##with parameters estimated at the boundary (complete separation) ## Not run: x <- c(10, 20, 30, 40, 60, 70, 80, 90) y <- c(0, 0, 0, 0, 1, 1, 1, 1) m1 <- glm(y ~ x, family = binomial) checkParms(m1) ## End(Not run)
This function computes the confidence set on the best model given
the data and model set. confset
implements three different
methods proposed by Burnham and Anderson (2002).
confset(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, method = "raw", level = 0.95, delta = 6, c.hat = 1)
confset(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, method = "raw", level = 0.95, delta = 6, c.hat = 1)
cand.set |
a list storing each of the models in the candidate model set. |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
second.ord |
logical. If |
nobs |
this argument allows to specify a numeric value other than total sample
size to compute the AICc (i.e., |
method |
a character value, either as |
level |
the level of confidence (i.e., sum of model probabilities) used to
determine the confidence set on the best model when using the |
delta |
the delta (Q)AIC(c) value associated with the cutoff point to determine
the confidence set for the best model. Note that the argument is only
used when |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor) such
as that obtained from |
The first and simplest (method = 'raw'
), relies on summing the
Akaike weights (i.e., model probabilities) of the ranked models until we
reach a given cutpoint (e.g., 0.95 for a 95 percent set).
The second method (method = 'ordinal'
) suggested is based on the
classification of the models on an ordinal scale based on the delta
(Q)AIC(c). The models are grouped in different classes based on their
weight of support as determined by the delta (Q)AIC(c) values:
substantial support (delta (Q)AIC(c) <= 2), some support (2 < delta
(Q)AIC(c) <= 7), little support (7 < delta (Q)AIC(c) <= 10), no support
(delta (Q)AIC(c) > 10).
The third method (method = 'ratio'
) is based on identifying the
ratios of model likelihoods (i.e., exp(-delta_(Q)AIC(c)/2) ) that exceed
a cutpoint, similar to the building of profile likelihood intervals. An
evidence ratio of each model relative to the top-ranked model is
computed and the ratios exceeding the cutpoint determine which models
are included in the confidence set. Note here that small cutoff points
are suggested (e.g., 0.125, 0.050). The cutoff point is linked to delta
(Q)AIC(c) by the following relationship: .
confset
returns an object of class confset
as a list with
the following components, depending on which method is used:
when method = 'raw'
:
method |
identifies the method of determining the confidence set on the best model. |
level |
the confidence level used to determine the confidence set on the best model. |
table |
a reduced table with the models included in the confidence set. |
when method = 'ordinal'
:
method |
identifies the method of determining the confidence set on the best model. |
substantial |
a reduced table with the models included in the confidence set for which delta (Q)AIC(c) <= 2. |
some |
a reduced table with the models included in the confidence set for which 2 < delta (Q)AIC(c) <= 7. |
little |
a reduced table with the models included in the confidence set for which 7 < delta (Q)AIC(c) <= 10. |
none |
a reduced table with the models included in the confidence set for which delta (Q)AIC(c) > 10. |
when method = 'ratio'
:
method |
identifies the method of determining the confidence set on the best model. |
cutoff |
the cutoff value for the ratios used to determine the confidence set on the best model. |
delta |
the delta (Q)AIC(c) used to compute the cutoff value for ratios to determine the confidence set on the best model. |
table |
a reduced table with the models included in the confidence set. |
Marc J. Mazerolle
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
AICc
, aictab
, c_hat
,
evidence
, importance
, modavg
,
modavgShrink
, modavgPred
##anuran larvae example from Mazerolle (2006) data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##set up candidate models Cand.mod <- list() ##global model Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[2]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[3]] <- glm(Num_anura ~ Type + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[4]] <- glm(Num_anura ~ Type, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[5]] <- glm(Num_anura ~ log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[6]] <- glm(Num_anura ~ log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[7]] <- glm(Num_anura ~ Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[8]] <- glm(Num_anura ~ 1, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model c_hat(Cand.mod[[1]]) #uses Pearson's chi-square/df ##note the very low overdispersion: in this case, the analysis could be ##conducted without correcting for c-hat as its value is reasonably close ##to 1 ##assign names to each model Modnames <- c("type + logperim + invertpred", "type + logperim", "type + invertpred", "type", "logperim + invertpred", "logperim", "invertpred", "intercept only") ##compute confidence set based on 'raw' method confset(cand.set = Cand.mod, modnames = Modnames, second.ord = TRUE, method = "raw") ##example with linear mixed model ## Not run: require(nlme) ##set up candidate model list for Orthodont data set shown in Pinheiro ##and Bates (2000: Mixed-effect models in S and S-PLUS. Springer Verlag: ##New York.) Cand.models <- list() Cand.models[[1]] <- lme(distance ~ age, random = ~age | Subject, data = Orthodont, method = "ML") Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1 | Subject, method = "ML") Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont, random = ~ 1 | Subject, method = "ML") ##create a vector of model names Modnames <- paste("mod", 1:length(Cand.models), sep = "") ##compute confidence set based on 'raw' method confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, method = "raw") ##round to 4 digits after decimal point print(confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, method = "raw"), digits = 4) confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, level = 0.9, method = "raw") ##compute confidence set based on 'ordinal' method confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, method = "ordinal") ##compute confidence set based on 'ratio' method confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, method = "ratio", delta = 4) confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, method = "ratio", delta = 8) detach(package:nlme) ## End(Not run)
##anuran larvae example from Mazerolle (2006) data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##set up candidate models Cand.mod <- list() ##global model Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[2]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[3]] <- glm(Num_anura ~ Type + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[4]] <- glm(Num_anura ~ Type, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[5]] <- glm(Num_anura ~ log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[6]] <- glm(Num_anura ~ log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[7]] <- glm(Num_anura ~ Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[8]] <- glm(Num_anura ~ 1, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model c_hat(Cand.mod[[1]]) #uses Pearson's chi-square/df ##note the very low overdispersion: in this case, the analysis could be ##conducted without correcting for c-hat as its value is reasonably close ##to 1 ##assign names to each model Modnames <- c("type + logperim + invertpred", "type + logperim", "type + invertpred", "type", "logperim + invertpred", "logperim", "invertpred", "intercept only") ##compute confidence set based on 'raw' method confset(cand.set = Cand.mod, modnames = Modnames, second.ord = TRUE, method = "raw") ##example with linear mixed model ## Not run: require(nlme) ##set up candidate model list for Orthodont data set shown in Pinheiro ##and Bates (2000: Mixed-effect models in S and S-PLUS. Springer Verlag: ##New York.) Cand.models <- list() Cand.models[[1]] <- lme(distance ~ age, random = ~age | Subject, data = Orthodont, method = "ML") Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1 | Subject, method = "ML") Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont, random = ~ 1 | Subject, method = "ML") ##create a vector of model names Modnames <- paste("mod", 1:length(Cand.models), sep = "") ##compute confidence set based on 'raw' method confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, method = "raw") ##round to 4 digits after decimal point print(confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, method = "raw"), digits = 4) confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, level = 0.9, method = "raw") ##compute confidence set based on 'ordinal' method confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, method = "ordinal") ##compute confidence set based on 'ratio' method confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, method = "ratio", delta = 4) confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, method = "ratio", delta = 8) detach(package:nlme) ## End(Not run)
This function extracts various summary statistics from distance sampling
data of various unmarkedFrame
and unmarkedFit
classes.
countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFrameDS' countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFitDS' countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFrameGDS' countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFitGDS' countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFrameDSO' countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFitDSO' countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...)
countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFrameDS' countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFitDS' countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFrameGDS' countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFitGDS' countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFrameDSO' countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFitDSO' countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...)
object |
an object of various |
plot.freq |
logical. Specifies if the count data (pooled across seasons and distance classes) should be plotted. |
plot.distance |
logical. Specifies if the counts in each distance class (pooled across seasons) should be plotted. |
cex.axis |
expansion factor influencing the size of axis annotations on plots produced by the function. |
cex.lab |
expansion factor influencing the size of axis labels on plots produced by the function. |
cex.main |
expansion factor influencing the size of the main title above plots produced by the function. |
plot.seasons |
logical. Specifies if the count data should be plotted for each distance class and season separately. This argument is only relevant for data collected across more than a single season. |
... |
additional arguments passed to the function. |
This function computes a number of summary statistics in data sets used for the distance sampling models of Royle et al. (2004), Chandler et al. (2011), and distance-sampling versions of models of Dail and Madsen (2011) and Hostetler and Chandler (2015) based on Sollmann et al. (2015).
countDist
can take data frames of the
unmarkedFrameDS
, unmarkedFrameGDS
,
unmarkedFrameDSO
classes as input. For convenience, the
function can also extract the raw data from model objects of classes
unmarkedFitDS
, unmarkedFitGDS
, and
unmarkedFitDSO
. Note that different model objects using the
same data set will have identical values.
countDist
returns a list with the following components:
count.table.full |
a table with the frequency of each observed count pooled across distances classes. |
count.table.seasons |
a list of tables with the frequency of each season-specific count pooled across distance classes. |
dist.sums.full |
a table with the frequency of counts in each distance class across the entire sampling seasons. |
dist.table.seasons |
a list of tables with the frequency of counts in each distance class for each primary period. |
dist.names |
a character string of labels for the distance classes. |
n.dist.classes |
the number of distance classes. |
out.freqs |
a matrix where the rows correspond to each sampling
season and where columns consist of the number of sites sampled in
season |
out.props |
a matrix where the rows correspond to each sampling
season and where columns consist of the proportion of sites in
season t with at least one detection ( |
n.seasons |
the number of seasons (primary periods) in the data set. |
n.visits.season |
the maximum number of visits per season in the data set. |
missing.seasons |
logical vector indicating whether data were
collected or not during a given season (primary period), where
|
Marc J. Mazerolle
Chandler, R. B., Royle, J. A., King, D. I. (2011) Inference about density and temporary emigration in unmarked populations. Ecology 92, 1429–1435.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Hostetler, J. A., Chandler, R. B. (2015) Improved state-space models for inference about spatial and temporal variation in abundance from count data. Ecology 96, 1713–1723.
Royle, J. A., Dawson, D. K., Bates, S. (2004) Modeling abundance effects in distance sampling. Ecology 85, 1591–1597.
Sollmann, R., Gardner, B., Chandler, R. B., Royle, J. A., Sillett, T. S. (2015) An open-population hierarchical distance sampling model. Ecology 96, 325–331.
covDiag
, detHist
, detTime
,
countHist
, Nmix.chisq
,
Nmix.gof.test
##modified example from ?distsamp ## Not run: if(require(unmarked)){ data(linetran) ##format data ltUMF <- with(linetran, { unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), siteCovs = data.frame(Length, area, habitat), dist.breaks = c(0, 5, 10, 15, 20), tlength = linetran$Length * 1000, survey = "line", unitsIn = "m") }) ##compute descriptive stats from data object countDist(ltUMF) ##Half-normal detection function fm1 <- distsamp(~ 1 ~ 1, ltUMF) ##compute descriptive stats from model object countDist(fm1) } ## End(Not run)
##modified example from ?distsamp ## Not run: if(require(unmarked)){ data(linetran) ##format data ltUMF <- with(linetran, { unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), siteCovs = data.frame(Length, area, habitat), dist.breaks = c(0, 5, 10, 15, 20), tlength = linetran$Length * 1000, survey = "line", unitsIn = "m") }) ##compute descriptive stats from data object countDist(ltUMF) ##Half-normal detection function fm1 <- distsamp(~ 1 ~ 1, ltUMF) ##compute descriptive stats from model object countDist(fm1) } ## End(Not run)
This function extracts various summary statistics from count data of
various unmarkedFrame
and unmarkedFit
classes.
countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFramePCount' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFitPCount' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFrameGPC' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFitGPC' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFrameMPois' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFitMPois' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFramePCO' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFitPCO' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFrameGMM' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFitGMM' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFrameMMO' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFitMMO' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...)
countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFramePCount' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFitPCount' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFrameGPC' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFitGPC' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFrameMPois' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFitMPois' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFramePCO' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFitPCO' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFrameGMM' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFitGMM' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFrameMMO' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFitMMO' countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1, cex.main = 1, plot.seasons = FALSE, ...)
object |
an object of various |
plot.freq |
logical. Specifies if the count data (pooled across seasons) should be plotted. |
cex.axis |
expansion factor influencing the size of axis annotations on plots produced by the function. |
cex.lab |
expansion factor influencing the size of axis labels on plots produced by the function. |
cex.main |
expansion factor influencing the size of the main title above plots produced by the function. |
plot.seasons |
logical. Specifies if the count data should be plotted for each season separately. This argument is only relevant for data collected across more than a single season. |
... |
additional arguments passed to the function. |
This function computes a number of summary statistics in data sets used for various N-mixture models including those of Royle (2004a, b), Dail and Madsen (2011), and Chandler et al. (2011).
countHist
can take data frames of the
unmarkedFramePCount
, unmarkedFrameGPC
,
unmarkedFrameMPois
, unmarkedFramePCO
,
unmarkedFrameGMM
, unmarkedFrameMMO
classes as input.
For convenience, the function can also extract the raw data from model
objects of classes unmarkedFitPCount
, unmarkedFitGPC
,
unmarkedFitMPois
, unmarkedFitPCO
, unmarkedFitGMM
,
and unmarkedFitMMO
. Note that different model objects using the
same data set will have identical values.
countHist
returns a list with the following components:
count.table.full |
a table with the frequency of each observed count. |
count.table.seasons |
a list of tables with the frequency of each season-specific count. |
hist.table.full |
a table with the frequency of each count history across the entire sampling period. |
hist.table.seasons |
a list of tables with the frequency of each count history for each primary period (season). |
out.freqs |
a matrix where the rows correspond to each sampling
season and where columns consist of the number of sites sampled in
season |
out.props |
a matrix where the rows correspond to each sampling
season and where columns consist of the proportion of sites in
season t with at least one detection ( |
n.seasons |
the number of seasons (primary periods) in the data set. |
n.visits.season |
the maximum number of visits per season in the data set. |
missing.seasons |
logical vector indicating whether data were
collected or not during a given season (primary period), where
|
Marc J. Mazerolle
Chandler, R. B., Royle, J. A., King, D. I. (2011) Inference about density and temporary emigration in unmarked populations. Ecology 92, 1429–1435.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Royle, J. A. (2004a) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
Royle, J. A. (2004b) Generalized estimators of avian abundance from count survey data. Animal Biodiversity and Conservation 27, 375–386.
covDiag
, detHist
, detTime
,
countDist
, Nmix.chisq
,
Nmix.gof.test
##modified example from ?pcount ## Not run: if(require(unmarked)){ data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##compute descriptive stats from data object countHist(mallardUMF) ##run single season model fm.mallard <- pcount(~ ivel+ date + I(date^2) ~ length + elev + forest, mallardUMF, K=30) ##compute descriptive stats from model object countHist(fm.mallard) } ## End(Not run)
##modified example from ?pcount ## Not run: if(require(unmarked)){ data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##compute descriptive stats from data object countHist(mallardUMF) ##run single season model fm.mallard <- pcount(~ ivel+ date + I(date^2) ~ length + elev + forest, mallardUMF, K=30) ##compute descriptive stats from model object countHist(fm.mallard) } ## End(Not run)
This function extracts the covariance diagnostic of Dennis et al. (2015)
for lambda in N-mixture models (Royle 2004) of the
unmarkedFitPCount
class as well as in data frames of the
unmarkedFramePcount
class.
covDiag(object, ...) ## S3 method for class 'unmarkedFitPCount' covDiag(object, ...) ## S3 method for class 'unmarkedFramePCount' covDiag(object, ...)
covDiag(object, ...) ## S3 method for class 'unmarkedFitPCount' covDiag(object, ...) ## S3 method for class 'unmarkedFramePCount' covDiag(object, ...)
object |
an object of class |
... |
additional arguments passed to the function. |
This function extracts the covariance diagnostic developed by Dennis
et al. (2015) for lambda in N-mixture models. Values <= 0
suggest sparse data and potential problems during model fitting.
covDiag
can take data frames of the unmarkedFramePcount
class as input. For convenience, the function also takes the repeated
count model object as input, extracts the raw data, and computes the
covariance diagnostic. Thus, different models on the same data set
will have identical values for this covariance diagnostic.
covDiag
returns a list with the following components:
cov.diag |
the value of the covariance diagnostic. |
message |
a string indicating whether a warning was issued (i.e.,
|
Marc J. Mazerolle
Dennis, E. B., Morgan, B. J. T., Ridout, M. S. (2015) Computational aspects of N-mixture models. Biometrics 71, 237–246.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
modavg
, modavgPred
,
Nmix.chisq
, Nmix.gof.test
,
predictSE
, pcount
##modified example from ?pcount ## Not run: if(require(unmarked)){ ##Simulate data set.seed(3) nSites <- 100 nVisits <- 3 ##covariate x <- rnorm(nSites) beta0 <- 0 beta1 <- 1 ##expected counts lambda <- exp(beta0 + beta1*x) N <- rpois(nSites, lambda) y <- matrix(NA, nSites, nVisits) p <- c(0.3, 0.6, 0.8) for(j in 1:nVisits) { y[,j] <- rbinom(nSites, N, p[j]) } ## Organize data visitMat <- matrix(as.character(1:nVisits), nSites, nVisits, byrow=TRUE) umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x), obsCovs=list(visit=visitMat)) ## Fit model fm1 <- pcount(~ visit ~ 1, umf, K=50) covDiag(fm1) ##sparser data p <- c(0.01, 0.001, 0.01) for(j in 1:nVisits) { y[,j] <- rbinom(nSites, N, p[j]) } ## Organize data visitMat <- matrix(as.character(1:nVisits), nSites, nVisits, byrow=TRUE) umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x), obsCovs=list(visit=visitMat)) ## Fit model fm.sparse <- pcount(~ visit ~ 1, umf, K=50) covDiag(fm.sparse) } ## End(Not run)
##modified example from ?pcount ## Not run: if(require(unmarked)){ ##Simulate data set.seed(3) nSites <- 100 nVisits <- 3 ##covariate x <- rnorm(nSites) beta0 <- 0 beta1 <- 1 ##expected counts lambda <- exp(beta0 + beta1*x) N <- rpois(nSites, lambda) y <- matrix(NA, nSites, nVisits) p <- c(0.3, 0.6, 0.8) for(j in 1:nVisits) { y[,j] <- rbinom(nSites, N, p[j]) } ## Organize data visitMat <- matrix(as.character(1:nVisits), nSites, nVisits, byrow=TRUE) umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x), obsCovs=list(visit=visitMat)) ## Fit model fm1 <- pcount(~ visit ~ 1, umf, K=50) covDiag(fm1) ##sparser data p <- c(0.01, 0.001, 0.01) for(j in 1:nVisits) { y[,j] <- rbinom(nSites, N, p[j]) } ## Organize data visitMat <- matrix(as.character(1:nVisits), nSites, nVisits, byrow=TRUE) umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x), obsCovs=list(visit=visitMat)) ## Fit model fm.sparse <- pcount(~ visit ~ 1, umf, K=50) covDiag(fm.sparse) } ## End(Not run)
This function extracts various summary statistics from detection history
data of various unmarkedFrame
and unmarkedFit
classes.
detHist(object, ...) ## S3 method for class 'unmarkedFitColExt' detHist(object, ...) ## S3 method for class 'unmarkedFitOccu' detHist(object, ...) ## S3 method for class 'unmarkedFitOccuFP' detHist(object, ...) ## S3 method for class 'unmarkedFitOccuRN' detHist(object, ...) ## S3 method for class 'unmarkedFitOccuMulti' detHist(object, ...) ## S3 method for class 'unmarkedFitOccuMS' detHist(object, ...) ## S3 method for class 'unmarkedFrameOccu' detHist(object, ...) ## S3 method for class 'unmarkedFrameOccuFP' detHist(object, ...) ## S3 method for class 'unmarkedMultFrame' detHist(object, ...) ## S3 method for class 'unmarkedFrameOccuMulti' detHist(object, ...) ## S3 method for class 'unmarkedFrameOccuMS' detHist(object, ...)
detHist(object, ...) ## S3 method for class 'unmarkedFitColExt' detHist(object, ...) ## S3 method for class 'unmarkedFitOccu' detHist(object, ...) ## S3 method for class 'unmarkedFitOccuFP' detHist(object, ...) ## S3 method for class 'unmarkedFitOccuRN' detHist(object, ...) ## S3 method for class 'unmarkedFitOccuMulti' detHist(object, ...) ## S3 method for class 'unmarkedFitOccuMS' detHist(object, ...) ## S3 method for class 'unmarkedFrameOccu' detHist(object, ...) ## S3 method for class 'unmarkedFrameOccuFP' detHist(object, ...) ## S3 method for class 'unmarkedMultFrame' detHist(object, ...) ## S3 method for class 'unmarkedFrameOccuMulti' detHist(object, ...) ## S3 method for class 'unmarkedFrameOccuMS' detHist(object, ...)
object |
an object of various |
... |
additional arguments passed to the function. |
This function computes a number of summary statistics in data sets used for single-season occupancy models (MacKenzie et al. 2002), dynamic occupancy models (MacKenzie et al. 2003), Royle-Nichols models (Royle and Nichols 2003), false-positive occupancy models (Royle and Link 2006, Miller et al. 2011), multispecies occupancy models (Rota et al. 2016), and multistate occupancy models (Nichols et al. 2007, MacKenzie et al. 2009).
detHist
can take data frames of the unmarkedFrameOccu
,
unmarkedFrameOccuFP
, unmarkedMultFrame
,
unmarkedFrameOccuMulti
, unmarkedFrameOccuMS
classes as
input. For convenience, the function can also extract the raw data
from model objects of classes unmarkedFitColExt
,
unmarkedFitOccu
, unmarkedFitOccuFP
,
unmarkedFitOccuRN
, unmarkedFrameOccuMulti
, and
unmarkedFrameOccuMS
. Note that different model objects using
the same data set will have identical values.
For objects of classes unmarkedFitOccu
, unmarkedFitOccuRN
,
unmarkedFitOccuFP
, unmarkedFitColExt
,
unmarkedFitOccuMS
, unmarkedFrameOccu
,
unmarkedFrameOccuFP
, unmarkedMultFrame
, and
unmarkedFrameOccuMS
, detHist
returns a list with the
following components:
hist.table.full |
a table with the frequency of each observed detection history. |
hist.table.seasons |
a list of tables with the frequency of each season-specific detection history. |
out.freqs |
a matrix where the rows correspond to each sampling
season and where columns consist of the number of sites sampled in
season |
out.props |
a matrix where the rows correspond to each sampling
season and where columns consist of the proportion of sites in
season t with at least one detection ( |
n.seasons |
the number of seasons (primary periods) in the data set. |
n.visits.season |
the maximum number of visits per season in the data set. |
n.species |
the number of species in the data set. |
missing.seasons |
logical vector indicating whether data were
collected or not during a given season (primary period), where
|
For objects of classes unmarkedFitOccuMulti
and
unmarkedFrameOccuMulti
, detHist
returns a list with the
following components:
hist.table.full |
a table with the frequency of each observed detection history. The species are coded with letters and follow the same order of presentation as in the other parts of the output. |
hist.table.species |
a list of tables with the frequency of
each species-specific detection history. The last element of
|
out.freqs |
a matrix where the rows correspond to each species
and where columns consist of the number of sites sampled during the
season ( |
out.props |
a matrix where the rows correspond to each species
and where columns consist of the proportion of sites with at least
one detection during the season ( |
n.seasons |
the number of seasons (primary periods) in the data set. |
n.visits.season |
the maximum number of visits per season in the data set. |
n.species |
the number of species in the data set. |
missing.seasons |
logical vector indicating whether data were
collected or not during a given season (primary period), where
|
Marc J. Mazerolle
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
MacKenzie, D. I., Nichols, J. D., Seamans, M. E., Gutierrez, R. J. (2009) Modeling species occurrence dynamics with multiple states and imperfect detection. Ecology 90, 823–835.
Mazerolle, M. J. (2015) Estimating detectability and biological parameters of interest with the use of the R environment. Journal of Herpetology 49, 541–559.
Miller, D. A. W., Nichols, J. D., McClintock, B. T., Campbell Grant, E. H., Bailey, L. L. (2011) Improving occupancy estimation when two types of observational error occur: non-detection and species misidentification. Ecology 92, 1422–1428.
Nichols, J. D., Hines, J. E., Mackenzie, D. I., Seamans, M. E., Gutierrez, R. J. (2007) Occupancy estimation and modeling with multiple states and state uncertainty. Ecology 88, 1395–1400.
Rota, C. T., Ferreira, M. A. R., Kays, R. W., Forrester, T. D., Kalies, E. L., McShea, W. J., Parsons, A. W., Millspaugh, J. J. (2016) A multispecies occupancy model for two or more interacting species. Methods in Ecology and Evolution 7, 1164–1173.
Royle, J. A., Link, W. A. (2006) Generalized site occupancy models allowing for false positive and false negative errors. Ecology 87, 835–841.
Royle, J. A., Nichols, J. D. (2003) Estimating abundance from repeated presence-absence data or point counts. Ecology 84, 777–790.
covDiag
, countHist
, countDist
,
detTime
, mb.chisq
, mb.gof.test
##data from Mazerolle (2015) ## Not run: data(bullfrog) ##detection data detections <- bullfrog[, 3:9] ##load unmarked package if(require(unmarked)){ ##assemble in unmarkedFrameOccu bfrog <- unmarkedFrameOccu(y = detections) ##compute descriptive stats from data object detHist(bfrog) ##run model fm <- occu(~ 1 ~ 1, data = bfrog) ##compute descriptive stats from model object detHist(fm) } ## End(Not run)
##data from Mazerolle (2015) ## Not run: data(bullfrog) ##detection data detections <- bullfrog[, 3:9] ##load unmarked package if(require(unmarked)){ ##assemble in unmarkedFrameOccu bfrog <- unmarkedFrameOccu(y = detections) ##compute descriptive stats from data object detHist(bfrog) ##run model fm <- occu(~ 1 ~ 1, data = bfrog) ##compute descriptive stats from model object detHist(fm) } ## End(Not run)
This function extracts various summary statistics from time to detection
data of various unmarkedFrame
and unmarkedFit
classes.
detTime(object, plot.time = TRUE, plot.seasons = FALSE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFrameOccuTTD' detTime(object, plot.time = TRUE, plot.seasons = FALSE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFitOccuTTD' detTime(object, plot.time = TRUE, plot.seasons = FALSE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...)
detTime(object, plot.time = TRUE, plot.seasons = FALSE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFrameOccuTTD' detTime(object, plot.time = TRUE, plot.seasons = FALSE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...) ## S3 method for class 'unmarkedFitOccuTTD' detTime(object, plot.time = TRUE, plot.seasons = FALSE, cex.axis = 1, cex.lab = 1, cex.main = 1, ...)
object |
an object of various |
plot.time |
logical. Specifies if the time to detection data (pooled across seasons) should be plotted. |
plot.seasons |
logical. Specifies if the time to detection data should be plotted for each season separately. This argument is only relevant for data collected across more than a single season. |
cex.axis |
expansion factor influencing the size of axis annotations on plots produced by the function. |
cex.lab |
expansion factor influencing the size of axis labels on plots produced by the function. |
cex.main |
expansion factor influencing the size of the main title above plots produced by the function. |
... |
additional arguments passed to the function. |
This function computes a number of summary statistics in data sets used for the time to detection models of Garrard et al. (2008, 2013).
detTime
can take data frames of the unmarkedFrameOccuTTD
class as input, or can also extract the raw data from model objects of
the unmarkedFitOccuTTD
class. Note that different model
objects using the same data set will have identical values.
detTime
returns a list with the following components:
time.table.full |
a table with the quantiles of time to detection data pooled across seasons, but excluding censored observations. |
time.table.seasons |
a list of tables with the quantiles of season-specific time to detection data, but excluding censored observations. |
out.freqs |
a matrix where the rows correspond to each sampling
season and where columns consist of the number of sites sampled in
season |
out.props |
a matrix where the rows correspond to each sampling
season and where columns consist of the proportion of sites in
season t with at least one detection ( |
n.seasons |
the number of seasons (primary periods) in the data set. |
n.visits.season |
the maximum number of visits per season in the data set. |
missing.seasons |
logical vector indicating whether data were
collected or not during a given season (primary period), where
|
Marc J. Mazerolle
Garrard, G. E., Bekessy, S. A., McCarthy, M. A., Wintle, B. A. (2008) When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecology 33, 986–998.
Garrard, G. E., McCarthy, M. A., Williams, N. S., Bekessy, S. A., Wintle, B. A. (2013) A general model of detectability using species traits. Methods in Ecology and Evolution 4, 45–52.
countDist
, countHist
, detHist
,
Nmix.chisq
, Nmix.gof.test
##example from ?occuTTD ## Not run: if(require(unmarked)){ N <- 500; J <- 1 ##Simulate occupancy scovs <- data.frame(elev=c(scale(runif(N, 0,100))), forest=runif(N,0,1), wind=runif(N,0,1)) beta_psi <- c(-0.69, 0.71, -0.5) psi <- plogis(cbind(1, scovs$elev, scovs$forest) z <- rbinom(N, 1, psi) ##Simulate detection Tmax <- 10 #Same survey length for all observations beta_lam <- c(-2, -0.2, 0.7) rate <- exp(cbind(1, scovs$elev, scovs$wind) ttd <- rexp(N, rate) ttd[z==0] <- Tmax #Censor unoccupied sites ttd[ttd>Tmax] <- Tmax #Censor when ttd was greater than survey length ##Build unmarkedFrame umf <- unmarkedFrameOccuTTD(y=ttd, surveyLength=Tmax, siteCovs=scovs) ##compute descriptive stats from data object detTime(umf) ##Fit model fit.occuTTD <- occuTTD(psiformula=~elev+forest, detformula=~elev+wind, data=umf) ##extract info from model object detTime(fit.occuTTD) } ## End(Not run)
##example from ?occuTTD ## Not run: if(require(unmarked)){ N <- 500; J <- 1 ##Simulate occupancy scovs <- data.frame(elev=c(scale(runif(N, 0,100))), forest=runif(N,0,1), wind=runif(N,0,1)) beta_psi <- c(-0.69, 0.71, -0.5) psi <- plogis(cbind(1, scovs$elev, scovs$forest) z <- rbinom(N, 1, psi) ##Simulate detection Tmax <- 10 #Same survey length for all observations beta_lam <- c(-2, -0.2, 0.7) rate <- exp(cbind(1, scovs$elev, scovs$wind) ttd <- rexp(N, rate) ttd[z==0] <- Tmax #Censor unoccupied sites ttd[ttd>Tmax] <- Tmax #Censor when ttd was greater than survey length ##Build unmarkedFrame umf <- unmarkedFrameOccuTTD(y=ttd, surveyLength=Tmax, siteCovs=scovs) ##compute descriptive stats from data object detTime(umf) ##Fit model fit.occuTTD <- occuTTD(psiformula=~elev+forest, detformula=~elev+wind, data=umf) ##extract info from model object detTime(fit.occuTTD) } ## End(Not run)
Functions to extract deviance information criterion (DIC).
DIC(mod, return.pD = FALSE, ...) ## S3 method for class 'bugs' DIC(mod, return.pD = FALSE, ...) ## S3 method for class 'rjags' DIC(mod, return.pD = FALSE, ...) ## S3 method for class 'jagsUI' DIC(mod, return.pD = FALSE, ...)
DIC(mod, return.pD = FALSE, ...) ## S3 method for class 'bugs' DIC(mod, return.pD = FALSE, ...) ## S3 method for class 'rjags' DIC(mod, return.pD = FALSE, ...) ## S3 method for class 'jagsUI' DIC(mod, return.pD = FALSE, ...)
mod |
an object of class |
return.pD |
logical. If |
... |
additional arguments passed to the function. |
DIC
is implemented for bugs
, rjags
, and
jagsUI
classes. The function extracts the deviance
information criterion (DIC, Spiegelhalter et al. 2002) or the
effective number of parameters (pD).
DIC
the DIC or pD depending on the values of the arguments.
The actual DIC values are not really interesting in themselves, as they depend directly on the data, parameters estimated, and likelihood function. Furthermore, a single value does not tell much about model fit. Information criteria become relevant when compared to Yone another for a given data set and set of candidate models. Model selection with hierarchical models is problematic as the classic DIC is not appropriate for such types of models (Millar 2009).
Marc J. Mazerolle
Millar, R. B. (2009) Comparison of hierarchical Bayesian models for overdispersed count data using DIC and Bayes' factors. Biometrics, 65, 962–969.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., van der Linde, A. (2002). Bayesian measures of complexity and fit. Journal of the Royal Statistical Society, Series B 64, 583–639.
AICcCustom
, aictab
, dictab
,
confset
, evidence
##from ?jags example in R2jags package ## Not run: require(R2jags) ##example model file model.file <- system.file(package="R2jags", "model", "schools.txt") file.show(model.file) ##data J <- 8.0 y <- c(28.4,7.9,-2.8,6.8,-0.6,0.6,18.0,12.2) sd <- c(14.9,10.2,16.3,11.0,9.4,11.4,10.4,17.6) ##arrange data in list jags.data <- list (J = J, y = y, sd = sd) ##initial values jags.inits <- function(){ list(theta=rnorm(J, 0, 100), mu=rnorm(1, 0, 100), sigma=runif(1, 0, 100)) } ##parameters to be monitored jags.parameters <- c("theta", "mu", "sigma") ##run model schools.sim <- jags(data = jags.data, inits = jags.inits, parameters = jags.parameters, model.file = model.file, n.chains = 3, n.iter = 10) ##note that n.iter should be higher ##extract DIC DIC(schools.sim) ##extract pD DIC(schools.sim, return.pD = TRUE) detach(package:R2jags) ## End(Not run)
##from ?jags example in R2jags package ## Not run: require(R2jags) ##example model file model.file <- system.file(package="R2jags", "model", "schools.txt") file.show(model.file) ##data J <- 8.0 y <- c(28.4,7.9,-2.8,6.8,-0.6,0.6,18.0,12.2) sd <- c(14.9,10.2,16.3,11.0,9.4,11.4,10.4,17.6) ##arrange data in list jags.data <- list (J = J, y = y, sd = sd) ##initial values jags.inits <- function(){ list(theta=rnorm(J, 0, 100), mu=rnorm(1, 0, 100), sigma=runif(1, 0, 100)) } ##parameters to be monitored jags.parameters <- c("theta", "mu", "sigma") ##run model schools.sim <- jags(data = jags.data, inits = jags.inits, parameters = jags.parameters, model.file = model.file, n.chains = 3, n.iter = 10) ##note that n.iter should be higher ##extract DIC DIC(schools.sim) ##extract pD DIC(schools.sim, return.pD = TRUE) detach(package:R2jags) ## End(Not run)
This function creates a model selection table based on the deviance
information criterion (DIC). The table ranks the models based on the
DIC and also provides delta DIC and DIC weights. dictab
selects
the appropriate function to create the model selection table based on
the object class. The current version works with objects of bugs
,
rjags
, jagsUI
classes.
dictab(cand.set, modnames = NULL, sort = TRUE, ...) ## S3 method for class 'AICbugs' dictab(cand.set, modnames = NULL, sort = TRUE, ...) ## S3 method for class 'AICrjags' dictab(cand.set, modnames = NULL, sort = TRUE, ...) ## S3 method for class 'AICjagsUI' dictab(cand.set, modnames = NULL, sort = TRUE, ...)
dictab(cand.set, modnames = NULL, sort = TRUE, ...) ## S3 method for class 'AICbugs' dictab(cand.set, modnames = NULL, sort = TRUE, ...) ## S3 method for class 'AICrjags' dictab(cand.set, modnames = NULL, sort = TRUE, ...) ## S3 method for class 'AICjagsUI' dictab(cand.set, modnames = NULL, sort = TRUE, ...)
cand.set |
a list storing each of the models in the candidate model set. |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
sort |
logical. If |
... |
additional arguments passed to the function. |
dictab
internally creates a new class for the cand.set
list of candidate models, according to the contents of the list. The
current function is implemented for bugs
, jags
,
jagsUI
classes. The function constructs a model selection table
based on the DIC (Spiegelhalter et al. 2002). Note that DIC might not
be appropriate to select among a set of hierarchical models and that
modifications to the information criterion have been proposed (Millar
2009).
dictab
creates an object of class dictab
with the
following components:
Modname |
the name of each model of the candidate model set. |
pD |
the effective number of estimated parameters for each model. |
DIC |
the deviance information criterion for each model. |
Delta_DIC |
the delta DIC of each model, measuring the difference in DIC between each model and the top-ranked model. |
ModelLik |
the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is not to be confused with the likelihood of the parameters given the data. The relative likelihood can then be normalized across all models to get the model probabilities. |
DICWt |
the DIC weights, sensu Burnham and Anderson (2002) and Anderson (2008). These measures indicate the level of support (i.e., weight of evidence) in favor of any given model being the most parsimonious among the candidate model set. |
Cum.Wt |
the cumulative DIC weights. These are only meaningful
if results in table are sorted in decreasing order of DIC weights
(i.e., |
Deviance |
the deviance of each model. |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., van der Linde, A. (2002). Bayesian measures of complexity and fit. Journal of the Royal Statistical Society, Series B 64, 583–639.
aictabCustom
, aictab
, confset
,
DIC
, evidence
##from ?jags example in R2jags package ## Not run: require(R2jags) model.file <- system.file(package="R2jags", "model", "schools.txt") file.show(model.file) ##data J <- 8.0 y <- c(28.4,7.9,-2.8,6.8,-0.6,0.6,18.0,12.2) sd <- c(14.9,10.2,16.3,11.0,9.4,11.4,10.4,17.6) jags.data <- list (J = J, y = y, sd = sd) jags.inits <- function(){ list(theta=rnorm(J, 0, 100), mu=rnorm(1, 0, 100), sigma=runif(1, 0, 100)) } jags.parameters <- c("theta", "mu", "sigma") ##run model schools.sim <- jags(data = jags.data, inits = jags.inits, parameters = jags.parameters, model.file = model.file, n.chains = 3, n.iter = 10) #note that n.iter should be higher ##set up in list Cand.mods <- list(schools.sim) Model.names <- "hierarchical model" ##other models can be added to Cand.mods ##to compare them to the top model ##model selection table dictab(cand.set = Cand.mods, modnames = Model.names) detach(package:R2jags) ## End(Not run)
##from ?jags example in R2jags package ## Not run: require(R2jags) model.file <- system.file(package="R2jags", "model", "schools.txt") file.show(model.file) ##data J <- 8.0 y <- c(28.4,7.9,-2.8,6.8,-0.6,0.6,18.0,12.2) sd <- c(14.9,10.2,16.3,11.0,9.4,11.4,10.4,17.6) jags.data <- list (J = J, y = y, sd = sd) jags.inits <- function(){ list(theta=rnorm(J, 0, 100), mu=rnorm(1, 0, 100), sigma=runif(1, 0, 100)) } jags.parameters <- c("theta", "mu", "sigma") ##run model schools.sim <- jags(data = jags.data, inits = jags.inits, parameters = jags.parameters, model.file = model.file, n.chains = 3, n.iter = 10) #note that n.iter should be higher ##set up in list Cand.mods <- list(schools.sim) Model.names <- "hierarchical model" ##other models can be added to Cand.mods ##to compare them to the top model ##model selection table dictab(cand.set = Cand.mods, modnames = Model.names) detach(package:R2jags) ## End(Not run)
This is a data set modified from Mazerolle and Desrochers (2005) on the mass lost by frogs after spending two hours on one of three substrates that are encountered in some landscape types.
data(dry.frog)
data(dry.frog)
A data frame with 121 observations on the following 16 variables.
Individual
a numeric identifier unique to each individual.
Species
a factor with levels Racla
.
Shade
a numeric vector, either 1 (shade) or 0 (no shade).
SVL
the snout-vent length of the individual.
Substrate
the substrate type, a factor with levels
PEAT
, SOIL
, and SPHAGNUM
.
Initial_mass
the initial mass of individuals.
Mass_lost
the mass lost in g.
Airtemp
the air temperature in degrees C.
Wind_cat
the wind intensity, either 0 (no wind), 1 (low wind), 2 (moderate wind), or 3 (strong wind).
Cloud
cloud cover expressed as a percentage.
cent_Initial_mass
centered inital mass.
Initial_mass2
initial mass squared.
cent_Air
centered air temperature.
Perc.cloud
proportion of cloud cover
Wind
wind intensity, either 1 (no or low wind) or 1 (moderate to strong wind).
log_Mass_lost
log of mass lost.
Note that the original analysis in Mazerolle and Desrochers (2005) consisted of generalized estimating equations for three mass measurements: mass at time 0, 1 hour, and 2 hours following exposure on the substrate.
Mazerolle, M. J., Desrochers, A. (2005) Landscape resistance to frog movements. Canadian Journal of Zoology 83, 455–464.
data(dry.frog) ## maybe str(dry.frog) ; plot(dry.frog) ...
data(dry.frog) ## maybe str(dry.frog) ; plot(dry.frog) ...
This function compares two models of a candidate model set based on
their evidence ratio (i.e., ratio of model weights). The default
computes the evidence ratio of the model weights between the top-ranked
model and the second-ranked model. You must supply a model selection
table of class aictab
, bictab
, boot.wt
,
dictab
, ictab
as the first argument.
evidence(aic.table, model.high = "top", model.low = "second.ranked")
evidence(aic.table, model.high = "top", model.low = "second.ranked")
aic.table |
a model selection table of class |
model.high |
the top-ranked model (default), or alternatively, the name of another model as it appears in the model selection table. |
model.low |
the second-ranked model (default), or alternatively, the name of a lower-ranked model such as it appears in the model selection table. |
The default compares the model weights of the top-ranked model to
the second-ranked model in the candidate model set. The evidence ratio
can be interpreted as the number of times a given model is more
parsimonious than a lower-ranked model. If one desires an evidence
ratio that does not involve a comparison with the top-ranking model, the
label of the required model must be specified in the model.high
argument as it appears in the model selection table.
evidence
produces an object of class evidence
with the
following components:
Model.high |
the model specified in |
Model.low |
the model specified in |
Ev.ratio |
the evidence ratio between the two models compared. |
Marc J. Mazerolle
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
AICc
, aictab
, bictab
,
c_hat
, confset
, importance
,
modavg
, modavgShrink
,
modavgPred
##run example from Burnham and Anderson (2002, p. 183) with two ##non-nested models data(pine) Cand.set <- list( ) Cand.set[[1]] <- lm(y ~ x, data = pine) Cand.set[[2]] <- lm(y ~ z, data = pine) ##assign model names Modnames <- c("raw density", "density corrected for resin content") ##compute model selection table aicctable.out <- aictab(cand.set = Cand.set, modnames = Modnames) ##compute evidence ratio evidence(aic.table = aicctable.out, model.low = "raw density") evidence(aic.table = aicctable.out) #gives the same answer ##round to 4 digits after decimal point print(evidence(aic.table = aicctable.out, model.low = "raw density"), digits = 4) ##example with bictab ## Not run: ##compute model selection table bictable.out <- bictab(cand.set = Cand.set, modnames = Modnames) ##compute evidence ratio evidence(bictable.out, model.low = "raw density") ## End(Not run) ##run models for the Orthodont data set in nlme package ## Not run: require(nlme) ##set up candidate model list Cand.models <- list() Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method = "ML") ##random is ~ age | Subject Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1, method = "ML") Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont, random = ~ 1, method = "ML") ##create a vector of model names Modnames <- paste("mod", 1:length(Cand.models), sep = " ") ##compute AICc table aic.table.1 <- aictab(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE) ##compute evidence ratio between best model and second-ranked model evidence(aic.table = aic.table.1) ##compute the same value but from an unsorted model selection table evidence(aic.table = aictab(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, sort = FALSE)) ##compute evidence ratio between second-best model and third-ranked ##model evidence(aic.table = aic.table.1, model.high = "mod1", model.low = "mod3") detach(package:nlme) ## End(Not run)
##run example from Burnham and Anderson (2002, p. 183) with two ##non-nested models data(pine) Cand.set <- list( ) Cand.set[[1]] <- lm(y ~ x, data = pine) Cand.set[[2]] <- lm(y ~ z, data = pine) ##assign model names Modnames <- c("raw density", "density corrected for resin content") ##compute model selection table aicctable.out <- aictab(cand.set = Cand.set, modnames = Modnames) ##compute evidence ratio evidence(aic.table = aicctable.out, model.low = "raw density") evidence(aic.table = aicctable.out) #gives the same answer ##round to 4 digits after decimal point print(evidence(aic.table = aicctable.out, model.low = "raw density"), digits = 4) ##example with bictab ## Not run: ##compute model selection table bictable.out <- bictab(cand.set = Cand.set, modnames = Modnames) ##compute evidence ratio evidence(bictable.out, model.low = "raw density") ## End(Not run) ##run models for the Orthodont data set in nlme package ## Not run: require(nlme) ##set up candidate model list Cand.models <- list() Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method = "ML") ##random is ~ age | Subject Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1, method = "ML") Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont, random = ~ 1, method = "ML") ##create a vector of model names Modnames <- paste("mod", 1:length(Cand.models), sep = " ") ##compute AICc table aic.table.1 <- aictab(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE) ##compute evidence ratio between best model and second-ranked model evidence(aic.table = aic.table.1) ##compute the same value but from an unsorted model selection table evidence(aic.table = aictab(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE, sort = FALSE)) ##compute evidence ratio between second-best model and third-ranked ##model evidence(aic.table = aic.table.1, model.high = "mod1", model.low = "mod3") detach(package:nlme) ## End(Not run)
This function computes the condition number for models of
unmarkedFit
classes as the ratio of the largest eigenvalue of the
Hessian matrix to the smallest eigenvalue of the Hessian matrix.
extractCN(mod, method = "svd", ...) ## S3 method for class 'unmarkedFit' extractCN(mod, method = "svd", ...)
extractCN(mod, method = "svd", ...) ## S3 method for class 'unmarkedFit' extractCN(mod, method = "svd", ...)
mod |
a model of one the |
method |
specifies the method used to extract the singular values or
eigenvalues from the Hessian matrix using singular value decomposition
( |
... |
additional arguments passed to the function. |
The condition number () is a measure of the transfer of
error to the solution in response to small changes in the input (Cheney
and Kincaid 2008). In this implementation, the condition number is
computed on the Hessian matrix of models of
unmarkedFit
classes
from the optim
results stored in the model object. The condition
number is defined as the ratio of the largest to the smallest
non-negative singular values of a given matrix (Cline et al. 1979, Dixon
1983). In the special case of positive semi-definite matrices, the
singular values are equal to the eigenvalues (Ruhe 1975).
Large values of the condition number may indicate problems in estimating
parameters or their variance (ill-conditioning), possibly due to a model
having too many parameters for the given data set. Cheney and Ward
(2008) suggest using the of the condition number as
a crude estimate of the number of digits of precision lost.
extractCN
returns a list of class extractCN
with the
following components:
CN |
the condition number ( |
log10 |
the log base 10 of the condition number. |
method |
the method used to extract the singular values or eigenvalues. |
Marc J. Mazerolle
Cheney, W., Kincaid, D. (2008) Numerical mathematics and computing. Sixth edition. Thomson Brooks/Cole: Belmont.
Cline, A. K., Moler, C. B., Stewart, G. W., Wilkinson, J. H. (1979) An estimate for the condition number of a matrix. SIAM Journal on Numerical Analysis 16, 368–375.
Dixon, J. D. (1983) Estimating extremal eigenvalues and condition numbers of matrices. SIAM Journal on Numerical Analysis 20, 812–814.
Ruhe, A. (1975) On the closeness of eigenvalues and singular values for almost normal matrices. Linear Algebra and its Applications 11, 87–94.
c_hat
, mb.gof.test
,
Nmix.gof.test
, parboot
,
kappa
, rcond
##N-mixture model example modified from ?pcount ## Not run: require(unmarked) ##single season data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##run model fm.mallard <- pcount(~ ivel+ date + I(date^2) ~ length + elev + forest, mallardUMF, K=30) ##compute condition number extractCN(fm.mallard) ##compare against 'kappa' kappa(fm.mallard@opt$hessian, exact = TRUE) detach(package:unmarked) ## End(Not run)
##N-mixture model example modified from ?pcount ## Not run: require(unmarked) ##single season data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##run model fm.mallard <- pcount(~ ivel+ date + I(date^2) ~ length + elev + forest, mallardUMF, K=30) ##compute condition number extractCN(fm.mallard) ##compare against 'kappa' kappa(fm.mallard@opt$hessian, exact = TRUE) detach(package:unmarked) ## End(Not run)
This function extracts the log-likelihood from an object of coxme
,
coxph
, lmekin
, maxlikeFit
, vglm
, or various
unmarkedFit
classes.
extractLL(mod, ...) ## S3 method for class 'coxme' extractLL(mod, type = "Integrated", ...) ## S3 method for class 'coxph' extractLL(mod, ...) ## S3 method for class 'lmekin' extractLL(mod, ...) ## S3 method for class 'maxlikeFit' extractLL(mod, ...) ## S3 method for class 'unmarkedFit' extractLL(mod, ...) ## S3 method for class 'vglm' extractLL(mod, ...)
extractLL(mod, ...) ## S3 method for class 'coxme' extractLL(mod, type = "Integrated", ...) ## S3 method for class 'coxph' extractLL(mod, ...) ## S3 method for class 'lmekin' extractLL(mod, ...) ## S3 method for class 'maxlikeFit' extractLL(mod, ...) ## S3 method for class 'unmarkedFit' extractLL(mod, ...) ## S3 method for class 'vglm' extractLL(mod, ...)
mod |
an object of |
... |
additional arguments passed to the function. |
type |
a character string indicating whether the integrated partial
likelihood ("Integrated") or penalized likelihood ("Penalized") is to
be used for a |
This utility function extracts the information from a coxme
,
coxph
, lmekin
, maxlikeFit
, vglm
, or
unmarkedFit
object resulting from distsamp
,
gdistsamp
, gmultmix
, multinomPois
,
gpcount
, occu
, occuRN
, colext
,
pcount
, or pcountOpen
.
These functions return the value of the log-likelihood of the model and associated degrees of freedom.
Marc J. Mazerolle
AICc
, aictab
, coxme
,
coxph
, lmekin
,
maxlike
, distsamp
,
gdistsamp
, occu
,
occuRN
, colext
,
pcount
, pcountOpen
##single-season occupancy model example modified from ?occu ## Not run: require(unmarked) ##single season data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ## add some fake covariates for illustration siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = rnorm(numSites(pferUMF))) ## observation covariates are in site-major, observation-minor order obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) ##run model set fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF) ##extract log-likelihood extractLL(fm1) detach(package:unmarked) ## End(Not run)
##single-season occupancy model example modified from ?occu ## Not run: require(unmarked) ##single season data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ## add some fake covariates for illustration siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = rnorm(numSites(pferUMF))) ## observation covariates are in site-major, observation-minor order obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) ##run model set fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF) ##extract log-likelihood extractLL(fm1) detach(package:unmarked) ## End(Not run)
This function extracts the standard errors (SE) of the fixed effects of
a mixed model fit with coxme
, glmer
, lmer
,
lmerModLmerTest
, and lmekin
and adds the appropriate labels.
extractSE(mod, ...) ## S3 method for class 'coxme' extractSE(mod, ...) ## S3 method for class 'lmekin' extractSE(mod, ...) ## S3 method for class 'mer' extractSE(mod, ...) ## S3 method for class 'merMod' extractSE(mod, ...) ## S3 method for class 'lmerModLmerTest' extractSE(mod, ...)
extractSE(mod, ...) ## S3 method for class 'coxme' extractSE(mod, ...) ## S3 method for class 'lmekin' extractSE(mod, ...) ## S3 method for class 'mer' extractSE(mod, ...) ## S3 method for class 'merMod' extractSE(mod, ...) ## S3 method for class 'lmerModLmerTest' extractSE(mod, ...)
mod |
an object of |
... |
additional arguments passed to the function. |
These extractor functions use vcov.coxme
, vcov.lmekin
,
vcov.mer
, and vcov.merMod
. Some of these functions are
called by modavg
and modavgShrink
, depending on the
class of the objects.
Returns the SE's of the fixed effects with the appropriate labels for each.
Marc J. Mazerolle
modavg
, glmer
,
lmer
, coxme
,
lmekin
##modified example from ?glmer ## Not run: if(require(lme4)) { ##create proportion of incidence cbpp$prop <- cbpp$incidence/cbpp$size gm1 <- glmer(prop ~ period + (1 | herd), family = binomial, weights = size, data = cbpp) ##print summary summary(gm1) ##extract variance-covariance matrix of fixed effects vcov(gm1) ##extract SE's of fixed effects - no labels sqrt(diag(vcov(gm1))) #no labels extractSE(gm1) #with labels detach(package:lme4) } ## End(Not run)
##modified example from ?glmer ## Not run: if(require(lme4)) { ##create proportion of incidence cbpp$prop <- cbpp$incidence/cbpp$size gm1 <- glmer(prop ~ period + (1 | herd), family = binomial, weights = size, data = cbpp) ##print summary summary(gm1) ##extract variance-covariance matrix of fixed effects vcov(gm1) ##extract SE's of fixed effects - no labels sqrt(diag(vcov(gm1))) #no labels extractSE(gm1) #with labels detach(package:lme4) } ## End(Not run)
This function extracts the predictors used in candidate models. The
function is currently implemented for glm
, glmmTMB
,
gls
, lm
, lme
, merMod
,
lmerModLmerTest
, rlm
, survreg
object classes that
are stored in a list as well as various models of unmarkedFit
classes.
extractX(cand.set, ...) ## S3 method for class 'AICaov.lm' extractX(cand.set, ...) ## S3 method for class 'AICglm.lm' extractX(cand.set, ...) ## S3 method for class 'AICglmmTMB' extractX(cand.set, ...) ## S3 method for class 'AIClm' extractX(cand.set, ...) ## S3 method for class 'AICgls' extractX(cand.set, ...) ## S3 method for class 'AIClme' extractX(cand.set, ...) ## S3 method for class 'AICglmerMod' extractX(cand.set, ...) ## S3 method for class 'AIClmerMod' extractX(cand.set, ...) ## S3 method for class 'AIClmerModLmerTest' extractX(cand.set, ...) ## S3 method for class 'AICrlm.lm' extractX(cand.set, ...) ## S3 method for class 'AICsurvreg' extractX(cand.set, ...) ## S3 method for class 'AICunmarkedFitOccu' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' extractX(cand.set, parm.type = NULL, ...)
extractX(cand.set, ...) ## S3 method for class 'AICaov.lm' extractX(cand.set, ...) ## S3 method for class 'AICglm.lm' extractX(cand.set, ...) ## S3 method for class 'AICglmmTMB' extractX(cand.set, ...) ## S3 method for class 'AIClm' extractX(cand.set, ...) ## S3 method for class 'AICgls' extractX(cand.set, ...) ## S3 method for class 'AIClme' extractX(cand.set, ...) ## S3 method for class 'AICglmerMod' extractX(cand.set, ...) ## S3 method for class 'AIClmerMod' extractX(cand.set, ...) ## S3 method for class 'AIClmerModLmerTest' extractX(cand.set, ...) ## S3 method for class 'AICrlm.lm' extractX(cand.set, ...) ## S3 method for class 'AICsurvreg' extractX(cand.set, ...) ## S3 method for class 'AICunmarkedFitOccu' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' extractX(cand.set, parm.type = NULL, ...)
cand.set |
a list storing each of the models in the candidate model set. |
parm.type |
this argument specifies the parameter type on which
the predictors will be extracted and is only relevant for models of
|
... |
additional arguments passed to the function. |
The candidate models must be stored in a list. The results of
extractX
are useful in preparing a newdata
data frame to use in computing model-averaged predictions with
modavgPred
or differences between groups with
modavgEffect
(Burnham and Anderson 2002, Anderson 2008, Burnham
et al. 2011).
extractX
returns an object of class extractX
with the
following components:
predictors |
a character vector of the names of the predictors included in the model, excluding the intercept term. |
data |
a data frame or, in the case of |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R., Huyvaert, K. P. (2011) AIC model selection and multimodel inference in behaviorial ecology: some background, observations and comparisons. Behavioral Ecology and Sociobiology 65, 23–25.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
Pinheiro, J. C., Bates, D. M. (2000). Mixed-effects Models in S and S-PLUS. Springer Verlag: New York.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
extractCN
, extractSE
,
modavgPred
, modavgCustom
,
modavgEffect
, predict
,
predictSE
##example from subset of models in Table 1 in Mazerolle (2006) data(dry.frog) Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) ##assign names names(Cand.models) <- paste(1:length(Cand.models)) ##extract predictors from candidate model set orig.data <- extractX(cand.set = Cand.models) orig.data str(orig.data) ## Not run: ##model-averaged prediction with original variables modavgPred(Cand.models, newdata = orig.data$data) ## End(Not run) ##example of model-averaged predictions from N-mixture model (e.g., Royle 2004) ##modified from ?pcount ##each variable appears twice on lambda in the models ## Not run: require(unmarked) data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##set up models so that each variable on abundance appears twice fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF, K = 30) fm.mall.two <- pcount(~ ivel + date ~ elev + forest, mallardUMF, K = 30) fm.mall.three <- pcount(~ ivel + date ~ length + elev, mallardUMF, K = 30) fm.mall.four <- pcount(~ ivel + date ~ 1, mallardUMF, K = 30) ##model list Cands <- list(fm.mall.one, fm.mall.two, fm.mall.three, fm.mall.four) names(Cands) <- c("length + forest", "elev + forest", "length + elev", "null") ##extract predictors on lambda lam.dat <- extractX(cand.set = Cands, parm.type = "lambda") lam.dat str(lam.dat) ##extract predictors on detectability extractX(cand.set = Cands, parm.type = "detect") ##model-averaged predictions on lambda ##extract data siteCovs <- lam.dat$data$siteCovs ##create vector of forest values forest <- seq(min(siteCovs$forest), max(siteCovs$forest), length.out = 40) dframe <- data.frame(forest = forest, length = mean(siteCovs$length), elev = mean(siteCovs$elev)) modavgPred(Cands, parm.type = "lambda", newdata = dframe) detach(package:unmarked) ## End(Not run) ##example of model-averaged abundance from distance model ## Not run: require(unmarked) data(linetran) #example from ?distsamp ltUMF <- with(linetran, { unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), siteCovs = data.frame(Length, area, habitat), dist.breaks = c(0, 5, 10, 15, 20), tlength = linetran$Length * 1000, survey = "line", unitsIn = "m") }) ## Half-normal detection function. Density output (log scale). No covariates. fm1 <- distsamp(~ 1 ~ 1, ltUMF) ## Halfnormal. Covariates affecting both density and and detection. fm2 <- distsamp(~area + habitat ~ habitat, ltUMF) ## Hazard function. Covariates affecting both density and and detection. fm3 <- distsamp(~area + habitat ~ habitat, ltUMF, keyfun="hazard") ##assemble model list Cands <- list(fm1, fm2, fm3) ##model-average predictions on abundance extractX(cand.set = Cands, parm.type = "lambda") detach(package:unmarked) ## End(Not run) ##example using Orthodont data set from Pinheiro and Bates (2000) ## Not run: require(nlme) ##set up candidate models m1 <- gls(distance ~ age, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject), data = Orthodont, method = "ML") m2 <- gls(distance ~ 1, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject), data = Orthodont, method = "ML") ##assemble in list Cand.models <- list("age effect" = m1, "null model" = m2) ##model-averaged predictions extractX(cand.set = Cand.models) detach(package:nlme) ## End(Not run)
##example from subset of models in Table 1 in Mazerolle (2006) data(dry.frog) Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) ##assign names names(Cand.models) <- paste(1:length(Cand.models)) ##extract predictors from candidate model set orig.data <- extractX(cand.set = Cand.models) orig.data str(orig.data) ## Not run: ##model-averaged prediction with original variables modavgPred(Cand.models, newdata = orig.data$data) ## End(Not run) ##example of model-averaged predictions from N-mixture model (e.g., Royle 2004) ##modified from ?pcount ##each variable appears twice on lambda in the models ## Not run: require(unmarked) data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##set up models so that each variable on abundance appears twice fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF, K = 30) fm.mall.two <- pcount(~ ivel + date ~ elev + forest, mallardUMF, K = 30) fm.mall.three <- pcount(~ ivel + date ~ length + elev, mallardUMF, K = 30) fm.mall.four <- pcount(~ ivel + date ~ 1, mallardUMF, K = 30) ##model list Cands <- list(fm.mall.one, fm.mall.two, fm.mall.three, fm.mall.four) names(Cands) <- c("length + forest", "elev + forest", "length + elev", "null") ##extract predictors on lambda lam.dat <- extractX(cand.set = Cands, parm.type = "lambda") lam.dat str(lam.dat) ##extract predictors on detectability extractX(cand.set = Cands, parm.type = "detect") ##model-averaged predictions on lambda ##extract data siteCovs <- lam.dat$data$siteCovs ##create vector of forest values forest <- seq(min(siteCovs$forest), max(siteCovs$forest), length.out = 40) dframe <- data.frame(forest = forest, length = mean(siteCovs$length), elev = mean(siteCovs$elev)) modavgPred(Cands, parm.type = "lambda", newdata = dframe) detach(package:unmarked) ## End(Not run) ##example of model-averaged abundance from distance model ## Not run: require(unmarked) data(linetran) #example from ?distsamp ltUMF <- with(linetran, { unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), siteCovs = data.frame(Length, area, habitat), dist.breaks = c(0, 5, 10, 15, 20), tlength = linetran$Length * 1000, survey = "line", unitsIn = "m") }) ## Half-normal detection function. Density output (log scale). No covariates. fm1 <- distsamp(~ 1 ~ 1, ltUMF) ## Halfnormal. Covariates affecting both density and and detection. fm2 <- distsamp(~area + habitat ~ habitat, ltUMF) ## Hazard function. Covariates affecting both density and and detection. fm3 <- distsamp(~area + habitat ~ habitat, ltUMF, keyfun="hazard") ##assemble model list Cands <- list(fm1, fm2, fm3) ##model-average predictions on abundance extractX(cand.set = Cands, parm.type = "lambda") detach(package:unmarked) ## End(Not run) ##example using Orthodont data set from Pinheiro and Bates (2000) ## Not run: require(nlme) ##set up candidate models m1 <- gls(distance ~ age, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject), data = Orthodont, method = "ML") m2 <- gls(distance ~ 1, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject), data = Orthodont, method = "ML") ##assemble in list Cand.models <- list("age effect" = m1, "null model" = m2) ##model-averaged predictions extractX(cand.set = Cand.models) detach(package:nlme) ## End(Not run)
This function extracts the distribution family and link function of a
generalized linear mixed model fit with glmer
or lmer
.
fam.link.mer(mod)
fam.link.mer(mod)
mod |
an object of |
This utility function extracts the information from an mer
or
merMod
object resulting from glmer
or lmer
. The
function is called by modavg
, modavgEffect
,
modavgPred
, and predictSE
.
fam.link.mer
returns a list with the following components:
family |
the family of the distribution of the model. |
link |
the link function of the model. |
supp.link |
a character value indicating whether the link
function used is supported by |
Marc J. Mazerolle
modavg
, modavgPred
,
predictSE
, glmer
, lmer
##modified example from ?glmer ## Not run: if(require(lme4)){ ##create proportion of incidence cbpp$prop <- cbpp$incidence/cbpp$size gm1 <- glmer(prop ~ period + (1 | herd), family = binomial, weights = size, data = cbpp) fam.link.mer(gm1) gm2 <- glmer(prop ~ period + (1 | herd), family = binomial(link = "cloglog"), weights = size, data = cbpp) fam.link.mer(gm2) } ## End(Not run) ##example with linear mixed model with Orthodont data from ##Pinheiro and Bates (2000) ## Not run: data(Orthodont, package = "nlme") m1 <- lmer(distance ~ Sex + (1 | Subject), data = Orthodont, REML = FALSE) fam.link.mer(m1) m2 <- glmer(distance ~ Sex + (1 | Subject), family = gaussian(link = "log"), data = Orthodont, REML = FALSE) fam.link.mer(m2) detach(package:lme4) ## End(Not run)
##modified example from ?glmer ## Not run: if(require(lme4)){ ##create proportion of incidence cbpp$prop <- cbpp$incidence/cbpp$size gm1 <- glmer(prop ~ period + (1 | herd), family = binomial, weights = size, data = cbpp) fam.link.mer(gm1) gm2 <- glmer(prop ~ period + (1 | herd), family = binomial(link = "cloglog"), weights = size, data = cbpp) fam.link.mer(gm2) } ## End(Not run) ##example with linear mixed model with Orthodont data from ##Pinheiro and Bates (2000) ## Not run: data(Orthodont, package = "nlme") m1 <- lmer(distance ~ Sex + (1 | Subject), data = Orthodont, REML = FALSE) fam.link.mer(m1) m2 <- glmer(distance ~ Sex + (1 | Subject), family = gaussian(link = "log"), data = Orthodont, REML = FALSE) fam.link.mer(m2) detach(package:lme4) ## End(Not run)
This data set illustrates the relationship between body measurements and body fat in 252 males aged between 21 and 81 years.
data(fat)
data(fat)
A data frame with 252 rows and 26 variables.
Obs
observation number.
Perc.body.fat.Brozek
percent body fat using Brozek's
equation, i.e., .
Perc.body.fat.Siri
percent body fat using Siri's
equation, i.e., .
Density
density ().
Age
age (years).
Weight
weight (lbs).
Height
height (inches).
Adiposity.index
adiposity index computed as (
).
Fat.free.weight
fat free weight computed as (lbs).
Neck.circ
neck circumference (cm).
Chest.circ
chest circumference (cm).
Abdomen.circ
abdomen circumference (cm) measured at the umbilicus and level with the iliac crest.
Hip.circ
hip circumference (cm).
Thigh.circ
thigh circumference (cm).
Knee.circ
knee circumference (cm).
Ankle.circ
ankle circumference (cm).
Biceps.circ
extended biceps circumference (cm).
Forearm.circ
forearm circumference (cm).
Wrist.circ
wrist circumference (cm).
inv.Density
inverse of density ().
z1
log of weight divided by log of height (allometric measure).
z2
abdomen circumference divided by chest circumference (beer gut factor).
z3
index based on knee, wrist, and ankle circumference
relative to height ().
z4
fleshiness index based on biceps, thigh, forearm,
knee, wrist, and ankle circumference ().
z5
age standardized to zero mean and unit variance.
z6
square of standardized age.
Burnham and Anderson (2002, p. 268) use this data set to show model selection uncertainty in the context of all possible combinations of explanatory variables. The data are originally from Penrose et al. (1985) who used only the first 143 cases of the 252 observations in the data set. Johnson (1996) later used these data as an example of multiple regression. Note that observation number 42 originally had an erroneous height of 29.5 inches and that this value was changed to 69.5 inches.
Burnham and Anderson (2002, p. 274) created six indices based on the
original measurements (i.e., z1 – z6). Although Burnham and Anderson
(2002) indicate that the fleshiness index (z4
) involved the cubic
root in the equation, the result table for the full model on p. 276
suggests that the index did not include the cubic root for z4
.
The latter is the version of z4
used in the data set here.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Johnson, J. W. (1996). Fitting percentage of body fat to simple body measurements. Journal of Statistics Education 4 [online].
Penrose, K., Nelson, A., Fisher, A. (1985) Generalized body composition prediction equation for men using simple measurement techniques Medicine and Science in Sports and Exercise 17, 189.
data(fat) str(fat)
data(fat) str(fat)
This data set features the first-year college GPA and four standardized tests conducted before matriculation.
data(gpa)
data(gpa)
A data frame with 20 rows and 5 variables.
gpa.y
first-year GPA.
sat.math.x1
SAT math score.
sat.verb.x2
SAT verbal score.
hs.math.x3
high school math score.
hs.engl.x4
high school English score.
Burnham and Anderson (2002, p. 225) use this data set originally from Graybill and Iyer (1994) to show model selection for all subsets regression.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Graybill, F. A., Iyer, H. K. (1994) Regression analysis: concepts and applications. Duxbury Press: Belmont.
data(gpa) str(gpa)
data(gpa) str(gpa)
This function creates a model selection table from information criterion values supplied by the user. The table ranks the models based on the values of the information criterion and also displays delta values and information criterion weights.
ictab(ic, K, modnames = NULL, sort = TRUE, ic.name = NULL)
ictab(ic, K, modnames = NULL, sort = TRUE, ic.name = NULL)
ic |
a vector of information criterion values for each model in the candidate model set. |
K |
a vector containing the number of estimated parameters for each model in the candidate model set. |
modnames |
a character vector of model names to identify each model in the
model selection table. If |
sort |
logical. If |
ic.name |
a character string denoting the name of the information criterion input by the user. This character string will appear in certain column labels of the model selection table. |
ictab
constructs a model selection table based on the
information criterion values supplied by the user. This function is
most useful for information criterion other than AIC, AICc, QAIC, and
QAICc (e.g., WAIC: Watanabe 2010) or for classes not supported by
aictab
or bictab
.
ictab
creates an object of class ictab
with the
following components:
Modname |
the name of each model of the candidate model set. |
K |
the number of estimated parameters for each model. |
IC |
the values of the information criterion input by the
user. If a value for |
Delta_IC |
the delta information criterion component comparing each model to the top-ranked model. |
ModelLik |
the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is not to be confused with the likelihood of the parameters given the data. The relative likelihood can then be normalized across all models to get the model probabilities. |
ICWt |
the information criterion weights, also termed "model probabilities" sensu Burnham and Anderson (2002) and Anderson (2008). These measures indicate the level of support (i.e., weight of evidence) in favor of any given model being the most parsimonious among the candidate model set. |
Cum.Wt |
the cumulative information criterion weights. These
are only meaningful if results in table are sorted in decreasing
order of Akaike weights (i.e., |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Watanabe, S. (2010) Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research 11, 3571–3594.
aictabCustom
, confset
, evidence
,
modavgCustom
, modavgIC
##create a vector of names to trace back models in set Modnames <- c("global model", "interactive model", "additive model", "invertpred model") ##WAIC values waic <- c(105.74, 107.36, 108.24, 100.57) ##number of effective parameters effK <- c(7.45, 5.61, 6.14, 6.05) ##generate WAIC table ictab(ic = waic, K = effK, modnames = Modnames, sort = TRUE, ic.name = "WAIC")
##create a vector of names to trace back models in set Modnames <- c("global model", "interactive model", "additive model", "invertpred model") ##WAIC values waic <- c(105.74, 107.36, 108.24, 100.57) ##number of effective parameters effK <- c(7.45, 5.61, 6.14, 6.05) ##generate WAIC table ictab(ic = waic, K = effK, modnames = Modnames, sort = TRUE, ic.name = "WAIC")
This function calculates the relative importance of variables (w+) based on the sum of Akaike weights (model probabilities) of the models that include the variable. Note that this measure of evidence is only appropriate when the variable appears in the same number of models as those that do not include the variable.
importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICaov.lm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICbetareg' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICsclm.clm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICclm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICclmm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICclogit.coxph' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICcoxme' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICcoxph' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICglm.lm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'AICglmerMod' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AIClmerModLmerTest' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICglmmTMB' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'AICgls' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AIClm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AIClme' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AIClmekin' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICmaxlikeFit.list' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'AICmer' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICmultinom.nnet' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'AICnegbin.glm.lm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICnlmerMod' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICpolr' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICrlm.lm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICsurvreg' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccu' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICvglm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'AICzeroinfl' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...)
importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICaov.lm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICbetareg' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICsclm.clm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICclm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICclmm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICclogit.coxph' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICcoxme' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICcoxph' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICglm.lm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'AICglmerMod' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AIClmerModLmerTest' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICglmmTMB' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'AICgls' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AIClm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AIClme' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AIClmekin' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICmaxlikeFit.list' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'AICmer' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICmultinom.nnet' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'AICnegbin.glm.lm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICnlmerMod' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICpolr' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICrlm.lm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICsurvreg' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccu' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICvglm' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'AICzeroinfl' importance(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, ...)
cand.set |
a list storing each of the models in the candidate model set. |
parm |
the parameter of interest for which a measure of relative importance is required. |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
second.ord |
logical. If |
nobs |
this argument allows to specify a numeric value other than total sample
size to compute the AICc (i.e., |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor) such
as that obtained from |
parm.type |
this argument specifies the parameter type on which
the variable of interest will be extracted and is only relevant for
models of |
... |
additional arguments passed to the function. |
importance
returns an object of class importance
consisting of the following components:
parm |
the parameter for which an importance value is required. |
w.plus |
the sum of Akaike weights for the models that include the parameter of interest. |
w.minus |
the sum of Akaike weights for the models that exclude the parameter of interest. |
Marc J. Mazerolle
Burnham, K. P., and Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
AICc
, aictab
, c_hat
,
confset
, evidence
, modavg
,
modavgShrink
, modavgPred
##example on Orthodont data set in nlme ## Not run: require(nlme) ##set up candidate model list Cand.models <- list( ) Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method = "ML") ##random is ~ age | Subject Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1, method = "ML") Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont, random = ~ 1, method = "ML") Cand.models[[4]] <- lme(distance ~ Sex, data = Orthodont, random = ~ 1, method = "ML") ##create a vector of model names Modnames <- paste("mod", 1:length(Cand.models), sep = "") importance(cand.set = Cand.models, parm = "age", modnames = Modnames, second.ord = TRUE, nobs = NULL) ##round to 4 digits after decimal point print(importance(cand.set = Cand.models, parm = "age", modnames = Modnames, second.ord = TRUE, nobs = NULL), digits = 4) detach(package:nlme) ## End(Not run) ##single-season occupancy model example modified from ?occu ## Not run: require(unmarked) ##single season data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ## add some fake covariates for illustration siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = rnorm(numSites(pferUMF))) ## observation covariates are in site-major, observation-minor order obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) ##set up candidate model set fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF) fm2 <- occu(~ 1 ~ sitevar1, pferUMF) fm3 <- occu(~ obsvar1 ~ sitevar2, pferUMF) fm4 <- occu(~ 1 ~ sitevar2, pferUMF) Cand.mods <- list(fm1, fm2, fm3, fm4) Modnames <- c("fm1", "fm2", "fm3", "fm4") ##compute importance value for 'sitevar1' on occupancy importance(cand.set = Cand.mods, modnames = Modnames, parm = "sitevar1", parm.type = "psi") ##compute importance value for 'obsvar1' on detectability importance(cand.set = Cand.mods, modnames = Modnames, parm = "obsvar1", parm.type = "detect") ##example with multispecies occupancy modify from ?occuMulti ##Simulate 3 species data N <- 80 nspecies <- 3 J <- 4 occ_covs <- as.data.frame(matrix(rnorm(N * 10),ncol=10)) names(occ_covs) <- paste('par',1:10,sep='') det_covs <- list() for (i in 1:nspecies){ det_covs[[i]] <- matrix(rnorm(N*J),nrow=N) } names(det_covs) <- paste('par',1:nspecies,sep='') ##True vals beta <- c(0.5,0.2,0.4,0.5,-0.1,-0.3,0.2,0.1,-1,0.1) f1 <- beta[1] + beta[2]*occ_covs$par1 f2 <- beta[3] + beta[4]*occ_covs$par2 f3 <- beta[5] + beta[6]*occ_covs$par3 f4 <- beta[7] f5 <- beta[8] f6 <- beta[9] f7 <- beta[10] f <- cbind(f1,f2,f3,f4,f5,f6,f7) z <- expand.grid(rep(list(1:0),nspecies))[,nspecies:1] colnames(z) <- paste('sp',1:nspecies,sep='') dm <- model.matrix(as.formula(paste0("~.^",nspecies,"-1")),z) psi <- exp(f psi <- psi/rowSums(psi) ##True state ztruth <- matrix(NA,nrow=N,ncol=nspecies) for (i in 1:N){ ztruth[i,] <- as.matrix(z[sample(8,1,prob=psi[i,]),]) } p_true <- c(0.6,0.7,0.5) ## fake y data y <- list() for (i in 1:nspecies){ y[[i]] <- matrix(NA,N,J) for (j in 1:N){ for (k in 1:J){ y[[i]][j,k] <- rbinom(1,1,ztruth[j,i]*p_true[i]) } } } names(y) <- c('coyote','tiger','bear') ##Create the unmarked data object data <- unmarkedFrameOccuMulti(y=y,siteCovs=occ_covs,obsCovs=det_covs) ## Formulas for state and detection processes ## Length should match number/order of columns in fDesign occFormulas <- c('~par1 + par2','~par2','~par3','~1','~1','~1','~1') occFormulas2 <- c('~par1 + par3','~par1 + par2','~par1 + par2 + par3', "~ 1", "~1", "~ 1", "~1") ##Length should match number/order of species in data@ylist detFormulas <- c('~1','~1','~1') fit <- occuMulti(detFormulas,occFormulas,data) fit2 <- occuMulti(detFormulas,occFormulas2,data) ##importance importance(cand.set = list(fit, fit2), parm = "[coyote] par2", parm.type = "psi") detach(package:unmarked) ## End(Not run)
##example on Orthodont data set in nlme ## Not run: require(nlme) ##set up candidate model list Cand.models <- list( ) Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method = "ML") ##random is ~ age | Subject Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1, method = "ML") Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont, random = ~ 1, method = "ML") Cand.models[[4]] <- lme(distance ~ Sex, data = Orthodont, random = ~ 1, method = "ML") ##create a vector of model names Modnames <- paste("mod", 1:length(Cand.models), sep = "") importance(cand.set = Cand.models, parm = "age", modnames = Modnames, second.ord = TRUE, nobs = NULL) ##round to 4 digits after decimal point print(importance(cand.set = Cand.models, parm = "age", modnames = Modnames, second.ord = TRUE, nobs = NULL), digits = 4) detach(package:nlme) ## End(Not run) ##single-season occupancy model example modified from ?occu ## Not run: require(unmarked) ##single season data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ## add some fake covariates for illustration siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = rnorm(numSites(pferUMF))) ## observation covariates are in site-major, observation-minor order obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) ##set up candidate model set fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF) fm2 <- occu(~ 1 ~ sitevar1, pferUMF) fm3 <- occu(~ obsvar1 ~ sitevar2, pferUMF) fm4 <- occu(~ 1 ~ sitevar2, pferUMF) Cand.mods <- list(fm1, fm2, fm3, fm4) Modnames <- c("fm1", "fm2", "fm3", "fm4") ##compute importance value for 'sitevar1' on occupancy importance(cand.set = Cand.mods, modnames = Modnames, parm = "sitevar1", parm.type = "psi") ##compute importance value for 'obsvar1' on detectability importance(cand.set = Cand.mods, modnames = Modnames, parm = "obsvar1", parm.type = "detect") ##example with multispecies occupancy modify from ?occuMulti ##Simulate 3 species data N <- 80 nspecies <- 3 J <- 4 occ_covs <- as.data.frame(matrix(rnorm(N * 10),ncol=10)) names(occ_covs) <- paste('par',1:10,sep='') det_covs <- list() for (i in 1:nspecies){ det_covs[[i]] <- matrix(rnorm(N*J),nrow=N) } names(det_covs) <- paste('par',1:nspecies,sep='') ##True vals beta <- c(0.5,0.2,0.4,0.5,-0.1,-0.3,0.2,0.1,-1,0.1) f1 <- beta[1] + beta[2]*occ_covs$par1 f2 <- beta[3] + beta[4]*occ_covs$par2 f3 <- beta[5] + beta[6]*occ_covs$par3 f4 <- beta[7] f5 <- beta[8] f6 <- beta[9] f7 <- beta[10] f <- cbind(f1,f2,f3,f4,f5,f6,f7) z <- expand.grid(rep(list(1:0),nspecies))[,nspecies:1] colnames(z) <- paste('sp',1:nspecies,sep='') dm <- model.matrix(as.formula(paste0("~.^",nspecies,"-1")),z) psi <- exp(f psi <- psi/rowSums(psi) ##True state ztruth <- matrix(NA,nrow=N,ncol=nspecies) for (i in 1:N){ ztruth[i,] <- as.matrix(z[sample(8,1,prob=psi[i,]),]) } p_true <- c(0.6,0.7,0.5) ## fake y data y <- list() for (i in 1:nspecies){ y[[i]] <- matrix(NA,N,J) for (j in 1:N){ for (k in 1:J){ y[[i]][j,k] <- rbinom(1,1,ztruth[j,i]*p_true[i]) } } } names(y) <- c('coyote','tiger','bear') ##Create the unmarked data object data <- unmarkedFrameOccuMulti(y=y,siteCovs=occ_covs,obsCovs=det_covs) ## Formulas for state and detection processes ## Length should match number/order of columns in fDesign occFormulas <- c('~par1 + par2','~par2','~par3','~1','~1','~1','~1') occFormulas2 <- c('~par1 + par3','~par1 + par2','~par1 + par2 + par3', "~ 1", "~1", "~ 1", "~1") ##Length should match number/order of species in data@ylist detFormulas <- c('~1','~1','~1') fit <- occuMulti(detFormulas,occFormulas,data) fit2 <- occuMulti(detFormulas,occFormulas2,data) ##importance importance(cand.set = list(fit, fit2), parm = "[coyote] par2", parm.type = "psi") detach(package:unmarked) ## End(Not run)
This data set, originally from Adish et al. (1999), describes the iron content of food cooked in different pot types.
data(iron)
data(iron)
A data frame with 36 rows and 3 variables.
Pot
pot type, one of "aluminium", "clay", or "iron".
Food
food type, one of "legumes", "meat", or "vegetables".
Iron
iron content measured in mg/100 g of food.
Heiberger and Holland (2004, p. 378) use these data as an exercise on two-way ANOVA with interaction.
Heiberger, R. M., Holland, B. (2004) Statistical Analysis and Data Display: an intermediate course with examples in S-Plus, R, and SAS. Springer: New York.
Adish, A. A., Esrey, S. A., Gyorkos, T. W., Jean-Baptiste, J., Rojhani, A. (1999) Effect of consumption of food cooked in iron pots on iron status and growth of young children: a randomised trial. The Lancet 353, 712–716.
data(iron) str(iron)
data(iron) str(iron)
This data set describes the habitat preference of two species of lizards, Anolis grahami and A. opalinus, on the island of Jamaica and is originally from Schoener (1970). McCullagh and Nelder (1989) and Burnham and Anderson (2002) reanalyzed the data. Note that a typo occurs in table 3.11 of Burnham and Anderson (2002).
data(lizards)
data(lizards)
A data frame with 48 rows and 6 variables.
Insolation
position of perch, either shaded
or
sunny
.
Diameter
diameter of the perch, either < 2 in
or >= 2 in
.
Height
perch height, either < 5
or
>= 5
.
Time
time of day, either morning
,
midday
, or afternoon
.
Species
species observed, either grahami
or
opalinus
.
Counts
number of individuals observed.
Burnham and Anderson (2002, p. 137) use this data set originally from Schoener (1970) to illustrate model selection for log-linear models.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
McCullagh, P., Nelder, J. A. (1989) Generalized Linear Models. Second edition. Chapman and Hall: New York.
Schoener, T. W. (1970) Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51, 408–418.
data(lizards) ## Not run: ##log-linear model as in Burnham and Anderson 2002, p. 137 ##main effects m1 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species, family = poisson, data = lizards) ##main effects and all second order interactions = base m2 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Time + Diameter:Species + Height:Time + Height:Species + Time:Species, family = poisson, data = lizards) ##base - DT m3 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Species + Height:Time + Height:Species + Time:Species, family = poisson, data = lizards) ##base + HDI + HDT + HDS m4 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Time + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Diameter:Insolation + Height:Diameter:Time + Height:Diameter:Species, family = poisson, data = lizards) ##base + HDI + HDS + HIT + HIS + HTS + ITS m5 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Time + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Diameter:Insolation + Height:Diameter:Species + Height:Insolation:Time + Height:Insolation:Species + Height:Time:Species + Insolation:Time:Species, family = poisson, data = lizards) ##base + HIT + HIS + HTS + ITS m6 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Time + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Insolation:Time + Height:Insolation:Species + Height:Time:Species + Insolation:Time:Species, family = poisson, data = lizards) ##base + HIS + HTS + ITS m7 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Time + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Insolation:Species + Height:Time:Species + Insolation:Time:Species, family = poisson, data = lizards) ##base + HIT + HIS + HTS + ITS - DT m8 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Insolation:Time + Height:Insolation:Species + Height:Time:Species + Insolation:Time:Species, family = poisson, data = lizards) ##base + HIT + HIS + ITS - DT m9 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Insolation:Time + Height:Insolation:Species + Insolation:Time:Species, family = poisson, data = lizards) ##base + HIT + HIS - DT m10 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Insolation:Time + Height:Insolation:Species, family = poisson, data = lizards) ##set up in list Cands <- list(m1, m2, m3, m4, m5, m6, m7, m8, m9, m10) Modnames <- paste("m", 1:length(Cands), sep = "") ##model selection library(AICcmodavg) aictab(Cands, Modnames) ## End(Not run)
data(lizards) ## Not run: ##log-linear model as in Burnham and Anderson 2002, p. 137 ##main effects m1 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species, family = poisson, data = lizards) ##main effects and all second order interactions = base m2 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Time + Diameter:Species + Height:Time + Height:Species + Time:Species, family = poisson, data = lizards) ##base - DT m3 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Species + Height:Time + Height:Species + Time:Species, family = poisson, data = lizards) ##base + HDI + HDT + HDS m4 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Time + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Diameter:Insolation + Height:Diameter:Time + Height:Diameter:Species, family = poisson, data = lizards) ##base + HDI + HDS + HIT + HIS + HTS + ITS m5 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Time + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Diameter:Insolation + Height:Diameter:Species + Height:Insolation:Time + Height:Insolation:Species + Height:Time:Species + Insolation:Time:Species, family = poisson, data = lizards) ##base + HIT + HIS + HTS + ITS m6 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Time + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Insolation:Time + Height:Insolation:Species + Height:Time:Species + Insolation:Time:Species, family = poisson, data = lizards) ##base + HIS + HTS + ITS m7 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Time + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Insolation:Species + Height:Time:Species + Insolation:Time:Species, family = poisson, data = lizards) ##base + HIT + HIS + HTS + ITS - DT m8 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Insolation:Time + Height:Insolation:Species + Height:Time:Species + Insolation:Time:Species, family = poisson, data = lizards) ##base + HIT + HIS + ITS - DT m9 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Insolation:Time + Height:Insolation:Species + Insolation:Time:Species, family = poisson, data = lizards) ##base + HIT + HIS - DT m10 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species + Insolation:Diameter + Insolation:Height + Insolation:Time + Insolation:Species + Diameter:Height + Diameter:Species + Height:Time + Height:Species + Time:Species + Height:Insolation:Time + Height:Insolation:Species, family = poisson, data = lizards) ##set up in list Cands <- list(m1, m2, m3, m4, m5, m6, m7, m8, m9, m10) Modnames <- paste("m", 1:length(Cands), sep = "") ##model selection library(AICcmodavg) aictab(Cands, Modnames) ## End(Not run)
These functions compute the MacKenzie and Bailey (2004) goodness-of-fit test for single season occupancy models based on Pearson's chi-square and extend it to dynamic (multiple season) and Royle-Nichols (2003) occupancy models.
mb.chisq(mod, print.table = TRUE, ...) ## S3 method for class 'unmarkedFitOccu' mb.chisq(mod, print.table = TRUE, ...) ## S3 method for class 'unmarkedFitColExt' mb.chisq(mod, print.table = TRUE, ...) ## S3 method for class 'unmarkedFitOccuRN' mb.chisq(mod, print.table = TRUE, maxK = NULL, ...) mb.gof.test(mod, nsim = 5, plot.hist = TRUE, report = NULL, parallel = TRUE, ncores, cex.axis = 1, cex.lab = 1, cex.main = 1, lwd = 1, ...) ## S3 method for class 'unmarkedFitOccu' mb.gof.test(mod, nsim = 5, plot.hist = TRUE, report = NULL, parallel = TRUE, ncores, cex.axis = 1, cex.lab = 1, cex.main = 1, lwd = 1, ...) ## S3 method for class 'unmarkedFitColExt' mb.gof.test(mod, nsim = 5, plot.hist = TRUE, report = NULL, parallel = TRUE, ncores, cex.axis = 1, cex.lab = 1, cex.main = 1, lwd = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFitOccuRN' mb.gof.test(mod, nsim = 5, plot.hist = TRUE, report = NULL, parallel = TRUE, ncores, cex.axis = 1, cex.lab = 1, cex.main = 1, lwd = 1, maxK = NULL, ...)
mb.chisq(mod, print.table = TRUE, ...) ## S3 method for class 'unmarkedFitOccu' mb.chisq(mod, print.table = TRUE, ...) ## S3 method for class 'unmarkedFitColExt' mb.chisq(mod, print.table = TRUE, ...) ## S3 method for class 'unmarkedFitOccuRN' mb.chisq(mod, print.table = TRUE, maxK = NULL, ...) mb.gof.test(mod, nsim = 5, plot.hist = TRUE, report = NULL, parallel = TRUE, ncores, cex.axis = 1, cex.lab = 1, cex.main = 1, lwd = 1, ...) ## S3 method for class 'unmarkedFitOccu' mb.gof.test(mod, nsim = 5, plot.hist = TRUE, report = NULL, parallel = TRUE, ncores, cex.axis = 1, cex.lab = 1, cex.main = 1, lwd = 1, ...) ## S3 method for class 'unmarkedFitColExt' mb.gof.test(mod, nsim = 5, plot.hist = TRUE, report = NULL, parallel = TRUE, ncores, cex.axis = 1, cex.lab = 1, cex.main = 1, lwd = 1, plot.seasons = FALSE, ...) ## S3 method for class 'unmarkedFitOccuRN' mb.gof.test(mod, nsim = 5, plot.hist = TRUE, report = NULL, parallel = TRUE, ncores, cex.axis = 1, cex.lab = 1, cex.main = 1, lwd = 1, maxK = NULL, ...)
mod |
the model for which a goodness-of-fit test is required. |
print.table |
logical. Specifies if the detailed table of observed and expected values is to be included in the output. |
nsim |
the number of bootstrapped samples. |
plot.hist |
logical. Specifies that a histogram of the bootstrapped test statistic is to be included in the output. For dynamic occupancy models, this produces a histogram of the sum of the season-specific chi-squares for each bootstrap sample. |
report |
If |
parallel |
logical. If |
ncores |
integer indicating the number of cores to use when
bootstrapping in parallel during the analysis of simulated data sets.
If |
cex.axis |
expansion factor influencing the size of axis annotations on plots produced by the function. |
cex.lab |
expansion factor influencing the size of axis labels on plots produced by the function. |
cex.main |
expansion factor influencing the size of the main title above plots produced by the function. |
lwd |
expansion factor of line width on plots produced by the function. |
plot.seasons |
logical. For dynamic occupancy models, specifies that a histogram of the bootstrapped test statistic for each primary period (season) is to be included in the output. |
maxK |
the number of support points used as the summation index in
the likelihood of the Royle-Nichols model (2003). If |
... |
additional arguments passed to the function. |
MacKenzie and Bailey (2004) and MacKenzie et al. (2006) suggest using
the Pearson chi-square to assess the fit of single season occupancy
models (MacKenzie et al. 2002). Given low expected frequencies, the
chi-square statistic will deviate from the theoretical distribution and
it is recommended to use a parametric bootstrap approach to obtain
P-values with the parboot
function of the unmarked
package. mb.chisq
computes the table of observed and expected
values based on the detection histories and single season occupancy
model used. mb.gof.test
calls internally mb.chisq
and
parboot
to generate simulated data sets based on the model and
compute the MacKenzie and Bailey test statistic. Missing values are
accomodated by creating cohorts for each pattern of missing values.
It is also possible to obtain an estimate of the overdispersion parameter (c-hat) for the model at hand by dividing the observed chi-square statistic by the mean of the statistics obtained from simulation.
This test is extended to dynamic occupancy models of MacKenzie et al. (2003) by using the occupancy estimates for each season obtained from the model. These estimates are then used to compute the predicted and observed frequencies separately within each season. The chi-squares are then summed to be used as the test statistic for the dynamic occupancy model.
Note that values of c-hat > 1 indicate overdispersion (variance > mean), but that values much higher than 1 (i.e., > 4) probably indicate lack-of-fit. In cases of moderate overdispersion, one usually multiplies the variance-covariance matrix of the estimates by c-hat. As a result, the SE's of the estimates are inflated (c-hat is also known as a variance inflation factor).
In model selection, c-hat should be estimated from the global model and the same value of c-hat applied to the entire model set. Specifically, a global model is the most complex model from which all the other models of the set are simpler versions (nested). When no single global model exists in the set of models considered, such as when sample size does not allow a complex model, one can estimate c-hat from 'subglobal' models. Here, 'subglobal' models denote models from which only a subset of the models of the candidate set can be derived. In such cases, one can use the smallest value of c-hat for model selection (Burnham and Anderson 2002).
Note that c-hat counts as an additional parameter estimated and should
be added to K. All functions in package AICcmodavg
automatically
add 1 when the c.hat
argument > 1 and apply the same value of
c-hat for the entire model set. When c-hat > 1, functions compute
quasi-likelihood information criteria (either QAICc or QAIC, depending
on the value of the second.ord
argument) by scaling the
log-likelihood of the model by c-hat. The value of c-hat can influence
the ranking of the models: as c-hat increases, QAIC or QAICc will favor
models with fewer parameters. As an additional check against this
potential problem, one can generate several model selection tables by
incrementing values of c-hat to assess the model selection uncertainty.
If ranking changes little up to the c-hat value observed, one can be
confident in making inference.
In cases of underdispersion (c-hat < 1), it is recommended to keep the value of c-hat to 1. However, note that values of c-hat << 1 can also indicate lack-of-fit and that an alternative model should be investigated.
mb.chisq
returns the following components for single-season and
Royle-Nichols occupancy models:
chisq.table |
the table of observed and expected values for each
detection history and its chi-square component (if |
chi.square |
the Pearson chi-square statistic. This test statistic should be compared against a bootstrap distribution instead of the theoretical chi-square distribution because low expected frequencies invalidate the chi-square assumption. |
model.type |
the model type, either |
mb.chisq
returns the following additional components for dynamic
occupancy models:
tables |
a list containing the season-specific chi-square tables
(if |
all.chisq |
an element containing the season-specific chi-squares. |
n.seasons |
the number of primary periods (seasons). |
n.seasons |
the number of primary periods (seasons). |
missing.seasons |
logical vector indicating whether data were
collected or not during a given season (primary period), where
|
mb.gof.test
returns the following components for single-season
and Royle-Nichols occupancy models:
chisq.table |
the table of observed and expected values for each detection history and its chi-square component. |
chi.square |
the Pearson chi-square statistic. |
t.star |
the bootstrapped chi-square test statistics (i.e., obtained for each of the simulated data sets). |
p.value |
the P-value assessed from the parametric bootstrap, computed as the proportion of the simulated test statistics greater than or equal to the observed test statistic. |
c.hat.est |
the estimate of the overdispersion parameter, c-hat, computed as the observed test statistic divided by the mean of the simulated test statistics. |
nsim |
the number of bootstrap samples. The recommended number of samples varies with the data set, but should be on the order of 1000 or 5000, and in cases with a large number of visits, even 10 000 samples, namely to reduce the effect of unusually small values of the test statistics. |
mb.gof.test
returns the following additional components for
dynamic occupancy models:
chisq.table |
a list including the table of observed and expected values for each detection history and its chi-square component for each primary period (season). |
chi.square |
the chi-square test statistic, as the sum of the chi-squares across the primary periods. |
p.value |
a list of the P-values for each of the primary periods, computed separately as the proportion of the simulated test statistics greater than or equal to the observed test statistic. |
p.global |
the P-value of the chi-square test statistic for the dynamic occupancy model. This P-value is computed as the proportion of the simulated sums of chi-squares greater than or equal to the observed sum of chi-squares across the primary periods. |
Marc J. Mazerolle
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
MacKenzie, D. I., Bailey, L. L. (2004) Assessing the fit of site-occupancy models. Journal of Agricultural, Biological, and Environmental Statistics 9, 300–318.
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., Hines, J. E. (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press: New York.
Royle, J. A., Nichols, J. D. (2003) Estimating abundance from repeated presence-absence data or point counts. Ecology 84, 777–790.
AICc
, c_hat
,
colext
, evidence
,
modavg
, importance
,
modavgPred
, Nmix.gof.test
,
occu
, parboot
##single-season occupancy model example modified from ?occu ## Not run: require(unmarked) ##single season data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ## add some fake covariates for illustration siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = rnorm(numSites(pferUMF))) ## observation covariates are in site-major, observation-minor order obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) ##run model fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF) ##compute observed chi-square obs <- mb.chisq(fm1) obs ##round to 4 digits after decimal point print(obs, digits.vals = 4) ##compute observed chi-square, assess significance, and estimate c-hat obs.boot <- mb.gof.test(fm1, nsim = 3) ##note that more bootstrap samples are recommended ##(e.g., 1000, 5000, or 10 000) obs.boot print(obs.boot, digits.vals = 4, digits.chisq = 4) ##data with missing values mat1 <- matrix(c(0, 0, 0), nrow = 120, ncol = 3, byrow = TRUE) mat2 <- matrix(c(0, 0, 1), nrow = 23, ncol = 3, byrow = TRUE) mat3 <- matrix(c(1, NA, NA), nrow = 42, ncol = 3, byrow = TRUE) mat4 <- matrix(c(0, 1, NA), nrow = 33, ncol = 3, byrow = TRUE) y.mat <- rbind(mat1, mat2, mat3, mat4) y.sim.data <- unmarkedFrameOccu(y = y.mat) m1 <- occu(~ 1 ~ 1, data = y.sim.data) mb.gof.test(m1, nsim = 3) ##note that more bootstrap samples are recommended ##(e.g., 1000, 5000, or 10 000) ##modifying graphical parameters mb.gof.test(m1, nsim = 3, cex.axis = 1.2, #axis annotations are 1.2 the default size cex.lab = 1.2, #axis labels are 1.2 the default size lwd = 2) #line width is twice the default width detach(package:unmarked) ## End(Not run)
##single-season occupancy model example modified from ?occu ## Not run: require(unmarked) ##single season data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ## add some fake covariates for illustration siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = rnorm(numSites(pferUMF))) ## observation covariates are in site-major, observation-minor order obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) ##run model fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF) ##compute observed chi-square obs <- mb.chisq(fm1) obs ##round to 4 digits after decimal point print(obs, digits.vals = 4) ##compute observed chi-square, assess significance, and estimate c-hat obs.boot <- mb.gof.test(fm1, nsim = 3) ##note that more bootstrap samples are recommended ##(e.g., 1000, 5000, or 10 000) obs.boot print(obs.boot, digits.vals = 4, digits.chisq = 4) ##data with missing values mat1 <- matrix(c(0, 0, 0), nrow = 120, ncol = 3, byrow = TRUE) mat2 <- matrix(c(0, 0, 1), nrow = 23, ncol = 3, byrow = TRUE) mat3 <- matrix(c(1, NA, NA), nrow = 42, ncol = 3, byrow = TRUE) mat4 <- matrix(c(0, 1, NA), nrow = 33, ncol = 3, byrow = TRUE) y.mat <- rbind(mat1, mat2, mat3, mat4) y.sim.data <- unmarkedFrameOccu(y = y.mat) m1 <- occu(~ 1 ~ 1, data = y.sim.data) mb.gof.test(m1, nsim = 3) ##note that more bootstrap samples are recommended ##(e.g., 1000, 5000, or 10 000) ##modifying graphical parameters mb.gof.test(m1, nsim = 3, cex.axis = 1.2, #axis annotations are 1.2 the default size cex.lab = 1.2, #axis labels are 1.2 the default size lwd = 2) #line width is twice the default width detach(package:unmarked) ## End(Not run)
This data set consists of counts of anuran larvae as a function of pond type, pond perimeter, and presence of water scorpions (Ranatra sp.).
data(min.trap)
data(min.trap)
A data frame with 24 observations on the following 6 variables.
Type
pond type, denotes the location of ponds in either bog or upland environment
Num_anura
number of anuran larvae in minnow traps
Effort
number of trap nights (i.e., number of traps x days of trapping) in each pond
Perimeter
pond perimeter in meters
Num_ranatra
number of water scorpions trapped in minnow traps
log.Perimeter
natural log of perimeter
Mazerolle (2006) uses this data set to illustrate model selection for Poisson regression with low overdispersion.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
data(min.trap) ## maybe str(min.trap) ; plot(min.trap) ...
data(min.trap) ## maybe str(min.trap) ; plot(min.trap) ...
This function model-averages the estimate of a parameter of interest among a set of candidate models, computes the unconditional standard error and unconditional confidence intervals as described in Buckland et al. (1997) and Burnham and Anderson (2002). This model-averaged estimate is also referred to as a natural average of the estimate by Burnham and Anderson (2002, p. 152).
modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICaov.lm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICbetareg' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICsclm.clm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICclm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICclmm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICcoxme' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICcoxph' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICglm.lm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, gamdisp = NULL, ...) ## S3 method for class 'AICglmmTMB' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, ...) ## S3 method for class 'AICgls' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AIChurdle' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AIClm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AIClme' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AIClmekin' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICmaxlikeFit.list' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, ...) ## S3 method for class 'AICmer' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AIClmerMod' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AIClmerModLmerTest' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICglmerMod' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICmultinom.nnet' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, ...) ## S3 method for class 'AICnegbin.glm.lm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICpolr' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICrlm.lm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICsurvreg' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICvglm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, ...) ## S3 method for class 'AICzeroinfl' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICunmarkedFitOccu' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...)
modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICaov.lm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICbetareg' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICsclm.clm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICclm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICclmm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICcoxme' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICcoxph' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICglm.lm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, gamdisp = NULL, ...) ## S3 method for class 'AICglmmTMB' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, ...) ## S3 method for class 'AICgls' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AIChurdle' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AIClm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AIClme' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AIClmekin' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICmaxlikeFit.list' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, ...) ## S3 method for class 'AICmer' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AIClmerMod' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AIClmerModLmerTest' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICglmerMod' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICmultinom.nnet' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, ...) ## S3 method for class 'AICnegbin.glm.lm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICpolr' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICrlm.lm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICsurvreg' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICvglm' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, ...) ## S3 method for class 'AICzeroinfl' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, ...) ## S3 method for class 'AICunmarkedFitOccu' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1, parm.type = NULL, ...)
cand.set |
a list storing each of the models in the candidate model set. |
parm |
the parameter of interest, enclosed between quotes, for which a model-averaged estimate is required. For a categorical variable, the label of the estimate must be included as it appears in the output (see 'Details' below). |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
second.ord |
logical. If |
nobs |
this argument allows to specify a numeric value other than total sample
size to compute the AICc (i.e., |
uncond.se |
either, |
conf.level |
the confidence level ( |
exclude |
this argument excludes models based on the terms specified for the
computation of a model-averaged estimate of |
warn |
logical. If |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor) such
as that obtained from |
gamdisp |
if gamma GLM is used, the dispersion parameter should be specified here to apply the same value to each model. |
parm.type |
this argument specifies the parameter type on which
the model-averaged estimate of a predictor will be computed and is
only relevant for models of |
... |
additional arguments passed to the function. |
The parameter for which a model-averaged estimate is requested must be
specified with the parm
argument and must be identical to its
label in the model output (e.g., from summary
). For factors, one
must specify the name of the variable and the level of interest.
modavg
includes checks to find variations of interaction terms
specified in the parm
and exclude
arguments. However, to
avoid problems, one should specify interaction terms consistently for
all models: e.g., either a:b
or b:a
for all models, but
not a mixture of both.
You must exercise caution when some models include interaction or
polynomial terms, because main effect terms do not have the same
interpretation when they also appear in an interaction/polynomial term
in the same model. In such cases, one should exclude models containing
interaction terms where the main effect is involved with the
exclude
argument of modavg
. Note that modavg
checks for potential cases of multiple instances of a variable appearing
more than once in a given model (presumably in an interaction) and
issues a warning. To correctly compute the model-averaged estimate of a
main effect involved in interaction/polynomial terms, specify the
interaction terms(s) that should not appear in the same model with the
exclude
argument. This will effectively exclude models from the
computation of the model-averaged estimate.
When warn = TRUE
, modavg
looks for matches among the
labels of the estimates with identical
. It then compares the
results to partial matches with regexpr
, and issues a warning
whenever they are different. As a result, modavg
may issue a
warning when some variables or levels of categorical variables have
nested names (e.g., treat
, treat10
; L
, TL
).
When this warning is only due to the presence of similarly named
variables in the models (and NOT due to interaction terms), you can
suppress this warning by setting warn = FALSE
.
The model-averaging estimator implemented in modavg
is known to
be biased away from 0 when there is substantial model selection
uncertainty (Cade 2015). In such instances, it is recommended to use
the model-averaging shrinkage estimator (i.e., modavgShrink
) for
inference on beta estimates or to focus on model-averaged effect sizes
(modavgEffect
) and model-averaged predictions
(modavgPred
).
modavg
is implemented for a list containing objects of
aov
, betareg
, clm
, clmm
, clogit
,
coxme
, coxph
, glm
, glmmTMB
, gls
,
hurdle
, lm
, lme
, lmekin
, maxlikeFit
,
mer
, glmerMod
, lmerMod
, lmerModLmerTest
,
multinom
, polr
, rlm
, survreg
, vglm
,
zeroinfl
classes as well as various models of unmarkedFit
classes.
modavg
creates an object of class modavg
with the following
components:
Parameter |
the parameter for which a model-averaged estimate was obtained. |
Mod.avg.table |
the reduced model selection table based on models including the parameter of interest. |
Mod.avg.beta |
the model-averaged estimate based on all models including the parameter of interest (see 'Details' above regarding the exclusion of models where parameter of interest is involved in an interaction). |
Uncond.SE |
the unconditional standard error for the model-averaged estimate (as opposed to the conditional SE based on a single model). |
Conf.level |
the confidence level used to compute the confidence interval. |
Lower.CL |
the lower confidence limit. |
Upper.CL |
the upper confidence limit. |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Buckland, S. T., Burnham, K. P., Augustin, N. H. (1997) Model selection: an integral part of inference. Biometrics 53, 603–618.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33, 261–304.
Cade, B. S. (2015) Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case-studies. Ecological Monographs 62, 67–118.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
AICc
, aictab
, c_hat
,
confset
, evidence
, importance
,
modavgCustom
, modavgEffect
,
modavgShrink
, modavgPred
##anuran larvae example modified from Mazerolle (2006) ##these are different models than in the paper data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##set up candidate models Cand.mod <- list( ) ##global model Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter + Type:log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) ##interactive model Cand.mod[[2]] <- glm(Num_anura ~ Type + log.Perimeter + Type:log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) ##additive model Cand.mod[[3]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) ##Predator model Cand.mod[[4]] <- glm(Num_anura ~ Type + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model c_hat(Cand.mod[[1]]) #uses Pearson's chi-square/df ##note the very low overdispersion: in this case, the analysis could be ##conducted without correcting for c-hat as its value is reasonably close ##to 1 ##assign names to each model Modnames <- c("global model", "interactive model", "additive model", "invertpred model") ##model selection aictab(Cand.mod, Modnames) ##compute model-averaged estimates for parameters appearing in top ##models modavg(parm = "Num_ranatra", cand.set = Cand.mod, modnames = Modnames) ##round to 4 digits after decimal point print(modavg(parm = "Num_ranatra", cand.set = Cand.mod, modnames = Modnames), digits = 4) ##model-averaging a variable involved in an interaction ##the following produces an error - because the variable is involved ##in an interaction in some candidate models ## Not run: modavg(parm = "TypeBOG", cand.set = Cand.mod, modnames = Modnames) ## End(Not run) ##exclude models where the variable is involved in an interaction ##to get model-averaged estimate of main effect modavg(parm = "TypeBOG", cand.set = Cand.mod, modnames = Modnames, exclude = list("Type:log.Perimeter")) ##to get model-averaged estimate of interaction modavg(parm = "TypeBOG:log.Perimeter", cand.set = Cand.mod, modnames = Modnames) ##beware of variables that have similar names set.seed(seed = 4) resp <- rnorm(n = 40, mean = 3, sd = 1) size <- rep(c("small", "medsmall", "high", "medhigh"), times = 10) set.seed(seed = 4) mass <- rnorm(n = 40, mean = 2, sd = 0.1) mass2 <- mass^2 age <- rpois(n = 40, lambda = 3.2) agecorr <- rpois(n = 40, lambda = 2) sizecat <- rep(c("a", "ab"), times = 20) data1 <- data.frame(resp = resp, size = size, sizecat = sizecat, mass = mass, mass2 = mass2, age = age, agecorr = agecorr) ##set up models in list Cand <- list( ) Cand[[1]] <- lm(resp ~ size + agecorr, data = data1) Cand[[2]] <- lm(resp ~ size + mass + agecorr, data = data1) Cand[[3]] <- lm(resp ~ age + mass, data = data1) Cand[[4]] <- lm(resp ~ age + mass + mass2, data = data1) Cand[[5]] <- lm(resp ~ mass + mass2 + size, data = data1) Cand[[6]] <- lm(resp ~ mass + mass2 + sizecat, data = data1) Cand[[7]] <- lm(resp ~ sizecat, data = data1) Cand[[8]] <- lm(resp ~ sizecat + mass + sizecat:mass, data = data1) Cand[[9]] <- lm(resp ~ agecorr + sizecat + mass + sizecat:mass, data = data1) ##create vector of model names Modnames <- paste("mod", 1:length(Cand), sep = "") aictab(cand.set = Cand, modnames = Modnames, sort = TRUE) #correct ##as expected, issues warning as mass occurs sometimes with "mass2" or ##"sizecatab:mass" in some of the models ## Not run: modavg(cand.set = Cand, parm = "mass", modnames = Modnames) ##no warning issued, because "age" and "agecorr" never appear in same model modavg(cand.set = Cand, parm = "age", modnames = Modnames) ##as expected, issues warning because warn=FALSE, but it is a very bad ##idea in this example since "mass" occurs with "mass2" and "sizecat:mass" ##in some of the models - results are INCORRECT ## Not run: modavg(cand.set = Cand, parm = "mass", modnames = Modnames, warn = FALSE) ## End(Not run) ##correctly excludes models with quadratic term and interaction term ##results are CORRECT modavg(cand.set = Cand, parm = "mass", modnames = Modnames, exclude = list("mass2", "sizecat:mass")) ##correctly computes model-averaged estimate because no other parameter ##occurs simultaneously in any of the models modavg(cand.set = Cand, parm = "sizesmall", modnames = Modnames) #correct ##as expected, issues a warning because "sizecatab" occurs sometimes in ##an interaction in some models ## Not run: modavg(cand.set = Cand, parm = "sizecatab", modnames = Modnames) ## End(Not run) ##exclude models with "sizecat:mass" interaction - results are CORRECT modavg(cand.set = Cand, parm = "sizecatab", modnames = Modnames, exclude = list("sizecat:mass")) ##example with multiple-season occupancy model modified from ?colext ##this is a bit longer ## Not run: require(unmarked) data(frogs) umf <- formatMult(masspcru) obsCovs(umf) <- scale(obsCovs(umf)) siteCovs(umf) <- rnorm(numSites(umf)) yearlySiteCovs(umf) <- data.frame(year = factor(rep(1:7, numSites(umf)))) ##set up model with constant transition rates fm <- colext(psiformula = ~ 1, gammaformula = ~ 1, epsilonformula = ~ 1, pformula = ~ JulianDate + I(JulianDate^2), data = umf, control = list(trace=1, maxit=1e4)) ##model with with year-dependent transition rates fm.yearly <- colext(psiformula = ~ 1, gammaformula = ~ year, epsilonformula = ~ year, pformula = ~ JulianDate + I(JulianDate^2), data = umf) ##store in list and assign model names Cand.mods <- list(fm, fm.yearly) Modnames <- c("psi1(.)gam(.)eps(.)p(Date + Date2)", "psi1(.)gam(Year)eps(Year)p(Date + Date2)") ##compute model-averaged estimate of occupancy in the first year modavg(cand.set = Cand.mods, modnames = Modnames, parm = "(Intercept)", parm.type = "psi") ##compute model-averaged estimate of Julian Day squared on detectability modavg(cand.set = Cand.mods, modnames = Modnames, parm = "I(JulianDate^2)", parm.type = "detect") ## End(Not run) ##example of model-averaged estimate of area from distance model ##this is a bit longer ## Not run: data(linetran) #example modified from ?distsamp ltUMF <- with(linetran, { unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), siteCovs = data.frame(Length, area, habitat), dist.breaks = c(0, 5, 10, 15, 20), tlength = linetran$Length * 1000, survey = "line", unitsIn = "m") }) ## Half-normal detection function. Density output (log scale). No covariates. fm1 <- distsamp(~ 1 ~ 1, ltUMF) ## Halfnormal. Covariates affecting both density and detection. fm2 <- distsamp(~ area + habitat ~ area + habitat, ltUMF) ## Hazard function. Covariates affecting both density and detection. fm3 <- distsamp(~ habitat ~ area + habitat, ltUMF, keyfun="hazard") ##assemble model list Cands <- list(fm1, fm2, fm3) Modnames <- paste("mod", 1:length(Cands), sep = "") ##model-average estimate of area on abundance modavg(cand.set = Cands, modnames = Modnames, parm = "area", parm.type = "lambda") detach(package:unmarked) ## End(Not run)
##anuran larvae example modified from Mazerolle (2006) ##these are different models than in the paper data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##set up candidate models Cand.mod <- list( ) ##global model Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter + Type:log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) ##interactive model Cand.mod[[2]] <- glm(Num_anura ~ Type + log.Perimeter + Type:log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) ##additive model Cand.mod[[3]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) ##Predator model Cand.mod[[4]] <- glm(Num_anura ~ Type + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model c_hat(Cand.mod[[1]]) #uses Pearson's chi-square/df ##note the very low overdispersion: in this case, the analysis could be ##conducted without correcting for c-hat as its value is reasonably close ##to 1 ##assign names to each model Modnames <- c("global model", "interactive model", "additive model", "invertpred model") ##model selection aictab(Cand.mod, Modnames) ##compute model-averaged estimates for parameters appearing in top ##models modavg(parm = "Num_ranatra", cand.set = Cand.mod, modnames = Modnames) ##round to 4 digits after decimal point print(modavg(parm = "Num_ranatra", cand.set = Cand.mod, modnames = Modnames), digits = 4) ##model-averaging a variable involved in an interaction ##the following produces an error - because the variable is involved ##in an interaction in some candidate models ## Not run: modavg(parm = "TypeBOG", cand.set = Cand.mod, modnames = Modnames) ## End(Not run) ##exclude models where the variable is involved in an interaction ##to get model-averaged estimate of main effect modavg(parm = "TypeBOG", cand.set = Cand.mod, modnames = Modnames, exclude = list("Type:log.Perimeter")) ##to get model-averaged estimate of interaction modavg(parm = "TypeBOG:log.Perimeter", cand.set = Cand.mod, modnames = Modnames) ##beware of variables that have similar names set.seed(seed = 4) resp <- rnorm(n = 40, mean = 3, sd = 1) size <- rep(c("small", "medsmall", "high", "medhigh"), times = 10) set.seed(seed = 4) mass <- rnorm(n = 40, mean = 2, sd = 0.1) mass2 <- mass^2 age <- rpois(n = 40, lambda = 3.2) agecorr <- rpois(n = 40, lambda = 2) sizecat <- rep(c("a", "ab"), times = 20) data1 <- data.frame(resp = resp, size = size, sizecat = sizecat, mass = mass, mass2 = mass2, age = age, agecorr = agecorr) ##set up models in list Cand <- list( ) Cand[[1]] <- lm(resp ~ size + agecorr, data = data1) Cand[[2]] <- lm(resp ~ size + mass + agecorr, data = data1) Cand[[3]] <- lm(resp ~ age + mass, data = data1) Cand[[4]] <- lm(resp ~ age + mass + mass2, data = data1) Cand[[5]] <- lm(resp ~ mass + mass2 + size, data = data1) Cand[[6]] <- lm(resp ~ mass + mass2 + sizecat, data = data1) Cand[[7]] <- lm(resp ~ sizecat, data = data1) Cand[[8]] <- lm(resp ~ sizecat + mass + sizecat:mass, data = data1) Cand[[9]] <- lm(resp ~ agecorr + sizecat + mass + sizecat:mass, data = data1) ##create vector of model names Modnames <- paste("mod", 1:length(Cand), sep = "") aictab(cand.set = Cand, modnames = Modnames, sort = TRUE) #correct ##as expected, issues warning as mass occurs sometimes with "mass2" or ##"sizecatab:mass" in some of the models ## Not run: modavg(cand.set = Cand, parm = "mass", modnames = Modnames) ##no warning issued, because "age" and "agecorr" never appear in same model modavg(cand.set = Cand, parm = "age", modnames = Modnames) ##as expected, issues warning because warn=FALSE, but it is a very bad ##idea in this example since "mass" occurs with "mass2" and "sizecat:mass" ##in some of the models - results are INCORRECT ## Not run: modavg(cand.set = Cand, parm = "mass", modnames = Modnames, warn = FALSE) ## End(Not run) ##correctly excludes models with quadratic term and interaction term ##results are CORRECT modavg(cand.set = Cand, parm = "mass", modnames = Modnames, exclude = list("mass2", "sizecat:mass")) ##correctly computes model-averaged estimate because no other parameter ##occurs simultaneously in any of the models modavg(cand.set = Cand, parm = "sizesmall", modnames = Modnames) #correct ##as expected, issues a warning because "sizecatab" occurs sometimes in ##an interaction in some models ## Not run: modavg(cand.set = Cand, parm = "sizecatab", modnames = Modnames) ## End(Not run) ##exclude models with "sizecat:mass" interaction - results are CORRECT modavg(cand.set = Cand, parm = "sizecatab", modnames = Modnames, exclude = list("sizecat:mass")) ##example with multiple-season occupancy model modified from ?colext ##this is a bit longer ## Not run: require(unmarked) data(frogs) umf <- formatMult(masspcru) obsCovs(umf) <- scale(obsCovs(umf)) siteCovs(umf) <- rnorm(numSites(umf)) yearlySiteCovs(umf) <- data.frame(year = factor(rep(1:7, numSites(umf)))) ##set up model with constant transition rates fm <- colext(psiformula = ~ 1, gammaformula = ~ 1, epsilonformula = ~ 1, pformula = ~ JulianDate + I(JulianDate^2), data = umf, control = list(trace=1, maxit=1e4)) ##model with with year-dependent transition rates fm.yearly <- colext(psiformula = ~ 1, gammaformula = ~ year, epsilonformula = ~ year, pformula = ~ JulianDate + I(JulianDate^2), data = umf) ##store in list and assign model names Cand.mods <- list(fm, fm.yearly) Modnames <- c("psi1(.)gam(.)eps(.)p(Date + Date2)", "psi1(.)gam(Year)eps(Year)p(Date + Date2)") ##compute model-averaged estimate of occupancy in the first year modavg(cand.set = Cand.mods, modnames = Modnames, parm = "(Intercept)", parm.type = "psi") ##compute model-averaged estimate of Julian Day squared on detectability modavg(cand.set = Cand.mods, modnames = Modnames, parm = "I(JulianDate^2)", parm.type = "detect") ## End(Not run) ##example of model-averaged estimate of area from distance model ##this is a bit longer ## Not run: data(linetran) #example modified from ?distsamp ltUMF <- with(linetran, { unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), siteCovs = data.frame(Length, area, habitat), dist.breaks = c(0, 5, 10, 15, 20), tlength = linetran$Length * 1000, survey = "line", unitsIn = "m") }) ## Half-normal detection function. Density output (log scale). No covariates. fm1 <- distsamp(~ 1 ~ 1, ltUMF) ## Halfnormal. Covariates affecting both density and detection. fm2 <- distsamp(~ area + habitat ~ area + habitat, ltUMF) ## Hazard function. Covariates affecting both density and detection. fm3 <- distsamp(~ habitat ~ area + habitat, ltUMF, keyfun="hazard") ##assemble model list Cands <- list(fm1, fm2, fm3) Modnames <- paste("mod", 1:length(Cands), sep = "") ##model-average estimate of area on abundance modavg(cand.set = Cands, modnames = Modnames, parm = "area", parm.type = "lambda") detach(package:unmarked) ## End(Not run)
reverse.parm
and reverse.exclude
reverse the order of
variables in an interaction term.
formatCands
creates new classes for lists containing candidate
models.
formulaShort
prints a succinct formula from an unmarkedFit
object.
reverse.parm(parm) reverse.exclude(exclude) formatCands(cand.set) formulaShort(mod, unmarked.type = NULL)
reverse.parm(parm) reverse.exclude(exclude) formatCands(cand.set) formulaShort(mod, unmarked.type = NULL)
parm |
a parameter to be model-averaged, enclosed between quotes, as it appears in the output of some models. |
exclude |
a list of interaction or polynomial terms appearing in some models, as
they would appear in the call to the model function (i.e., |
cand.set |
a list storing each of the models in the candidate model set. |
mod |
an object storing the result of an |
unmarked.type |
a character string specifying the type of parameter in
an |
These utility functions are used internally by aictab
,
modavg
, and other related functions.
reverse.parm
and reverse.exclude
enable the user to
specify differently interaction terms (e.g., A:B
, B:A
)
across models for model averaging. These functions have been added to
avoid problems when users are not consistent in the specification of
interaction terms across models.
formatCands
creates new classes for the list of candidate
models based on the contents of the list. These new classes are used
for method dispatch.
formulaShort
is used by anovaOD
.
reverse.parm
returns all possible combinations of an interaction
term to identify models that include the parm
of interest and
find the corresponding estimate and standard error in the model object.
reverse.exclude
returns a list of all possible combinations of
exclude
to identify models that should be excluded when
computing a model-averaged estimate.
formatCands
adds a new class to the list of candidate
models based on the classes of the models.
formulaShort
creates a character string for the formula related
to a given parameter type from an unmarkedFit
object.
Marc J. Mazerolle
aictab
, anovaOD
, modavg
,
modavgShrink
, modavgPred
##a main effect reverse.parm(parm = "Ageyoung") #does not return anything ##an interaction term as it might appear in the output reverse.parm(parm = "Ageyoung:time") #returns the reverse ##exclude two interaction terms reverse.exclude(exclude = list("Age*time", "A:B")) ##returns all combinations reverse.exclude(exclude = list("Age:time", "A*B")) ##returns all combinations ##Mazerolle (2006) frog water loss example data(dry.frog) ##setup a subset of models of Table 1 Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) formatCands(Cand.models) ## Not run: require(unmarked) data(bullfrog) bfrog <- unmarkedFrameOccu(y = bullfrog[, c("V1", "V2", "V3", "V4")], siteCovs = bullfrog[, 1:2]) fm1 <- occu(~ 1 ~ Reed.presence, data = bfrog) formulaShort(fm1, unmarked.type = "state") formulaShort(fm1, unmarked.type = "det") ## End(Not run)
##a main effect reverse.parm(parm = "Ageyoung") #does not return anything ##an interaction term as it might appear in the output reverse.parm(parm = "Ageyoung:time") #returns the reverse ##exclude two interaction terms reverse.exclude(exclude = list("Age*time", "A:B")) ##returns all combinations reverse.exclude(exclude = list("Age:time", "A*B")) ##returns all combinations ##Mazerolle (2006) frog water loss example data(dry.frog) ##setup a subset of models of Table 1 Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) formatCands(Cand.models) ## Not run: require(unmarked) data(bullfrog) bfrog <- unmarkedFrameOccu(y = bullfrog[, c("V1", "V2", "V3", "V4")], siteCovs = bullfrog[, 1:2]) fm1 <- occu(~ 1 ~ Reed.presence, data = bfrog) formulaShort(fm1, unmarked.type = "state") formulaShort(fm1, unmarked.type = "det") ## End(Not run)
This function model-averages the estimate of a parameter of interest among a set of candidate models, and computes the unconditional standard error and unconditional confidence intervals as described in Buckland et al. (1997) and Burnham and Anderson (2002).
modavgCustom(logL, K, modnames = NULL, estimate, se, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, useBIC = FALSE)
modavgCustom(logL, K, modnames = NULL, estimate, se, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, useBIC = FALSE)
logL |
a vector of log-likelihood values for the models in the candidate model set. |
K |
a vector containing the number of estimated parameters for each model in the candidate model set. |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
estimate |
a vector of estimates for each of the models in the candidate model set. Estimates can be either beta estimates for a parameter of interest or a single prediction from each model. |
se |
a vector of standard errors for each of the estimates appearing in the
|
second.ord |
logical. If |
nobs |
the sample size required to compute the AICc, QAICc, BIC, or QBIC. |
uncond.se |
either, |
conf.level |
the confidence level ( |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor) such
as that obtained from |
useBIC |
logical. If |
modavgCustom
computes a model-averaged estimate from the vector
of parameter estimates specified in estimate
. Estimates and
their associated standard errors must be specified in the same order as
the log-likelihood, number of estimated parameters, and model names.
Estimates provided may be for a parameter of interest (i.e., beta
estimates) or predictions from each model. This function is most useful
when model input is imported into R from other software (e.g., Program
MARK, PRESENCE) or for model classes that are not yet supported by the
other model averaging functions such as modavg
or
modavgPred
.
modavgCustom
creates an object of class modavgCustom
with
the following components:
Mod.avg.table |
the model selection table |
Mod.avg.est |
the model-averaged estimate |
Uncond.SE |
the unconditional standard error for the model-averaged estimate |
Conf.level |
the confidence level used to compute the confidence interval |
Lower.CL |
the lower confidence limit |
Upper.CL |
the upper confidence limit |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Buckland, S. T., Burnham, K. P., Augustin, N. H. (1997) Model selection: an integral part of inference. Biometrics 53, 603–618.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case-studies. Ecological Monographs 62, 67–118.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
AICcCustom
, aictabCustom
,
bictabCustom
, modavg
,
modavgIC
, modavgShrink
,
modavgPred
## Not run: ##model averaging parameter estimate (natural average) ##vector with model LL's LL <- c(-38.8876, -35.1783, -64.8970) ##vector with number of parameters Ks <- c(7, 9, 4) ##create a vector of names to trace back models in set Modnames <- c("Cm1", "Cm2", "Cm3") ##vector of beta estimates for a parameter of interest model.ests <- c(0.0478, 0.0480, 0.0478) ##vector of SE's of beta estimates for a parameter of interest model.se.ests <- c(0.0028, 0.0028, 0.0034) ##compute model-averaged estimate and unconditional SE based on AICc modavgCustom(logL = LL, K = Ks, modnames = Modnames, estimate = model.ests, se = model.se.ests, nobs = 121) ##compute model-averaged estimate and unconditional SE based on BIC modavgCustom(logL = LL, K = Ks, modnames = Modnames, estimate = model.ests, se = model.se.ests, nobs = 121, useBIC = TRUE) ##model-averaging with shrinkage based on AICc ##set up candidate models data(min.trap) Cand.mod <- list( ) ##global model Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[2]] <- glm(Num_anura ~ Type + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[3]] <- glm(Num_anura ~ log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Model.names <- c("Type + log.Perimeter", "Type + Num_ranatra", "log.Perimeter + Num_ranatra") ##model-averaged estimate with shrinkage (glm model type is already supported) modavgShrink(cand.set = Cand.mod, modnames = Model.names, parm = "log.Perimeter") ##equivalent manual version of model-averaging with shrinkage ##this is especially useful when model classes are not supported ##extract vector of LL LLs <- sapply(Cand.mod, FUN = function(i) logLik(i)[1]) ##extract vector of K Ks <- sapply(Cand.mod, FUN = function(i) attr(logLik(i), "df")) ##extract betas betas <- sapply(Cand.mod, FUN = function(i) coef(i)["log.Perimeter"]) ##second model does not include log.Perimeter betas[2] <- 0 ##extract SE's ses <- sapply(Cand.mod, FUN = function(i) sqrt(diag(vcov(i))["log.Perimeter"])) ses[2] <- 0 ##model-averaging with shrinkage based on AICc modavgCustom(logL = LLs, K = Ks, modnames = Model.names, nobs = nrow(min.trap), estimate = betas, se = ses) ##model-averaging with shrinkage based on BIC modavgCustom(logL = LLs, K = Ks, modnames = Model.names, nobs = nrow(min.trap), estimate = betas, se = ses, useBIC = TRUE) ## End(Not run)
## Not run: ##model averaging parameter estimate (natural average) ##vector with model LL's LL <- c(-38.8876, -35.1783, -64.8970) ##vector with number of parameters Ks <- c(7, 9, 4) ##create a vector of names to trace back models in set Modnames <- c("Cm1", "Cm2", "Cm3") ##vector of beta estimates for a parameter of interest model.ests <- c(0.0478, 0.0480, 0.0478) ##vector of SE's of beta estimates for a parameter of interest model.se.ests <- c(0.0028, 0.0028, 0.0034) ##compute model-averaged estimate and unconditional SE based on AICc modavgCustom(logL = LL, K = Ks, modnames = Modnames, estimate = model.ests, se = model.se.ests, nobs = 121) ##compute model-averaged estimate and unconditional SE based on BIC modavgCustom(logL = LL, K = Ks, modnames = Modnames, estimate = model.ests, se = model.se.ests, nobs = 121, useBIC = TRUE) ##model-averaging with shrinkage based on AICc ##set up candidate models data(min.trap) Cand.mod <- list( ) ##global model Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[2]] <- glm(Num_anura ~ Type + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[3]] <- glm(Num_anura ~ log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) Model.names <- c("Type + log.Perimeter", "Type + Num_ranatra", "log.Perimeter + Num_ranatra") ##model-averaged estimate with shrinkage (glm model type is already supported) modavgShrink(cand.set = Cand.mod, modnames = Model.names, parm = "log.Perimeter") ##equivalent manual version of model-averaging with shrinkage ##this is especially useful when model classes are not supported ##extract vector of LL LLs <- sapply(Cand.mod, FUN = function(i) logLik(i)[1]) ##extract vector of K Ks <- sapply(Cand.mod, FUN = function(i) attr(logLik(i), "df")) ##extract betas betas <- sapply(Cand.mod, FUN = function(i) coef(i)["log.Perimeter"]) ##second model does not include log.Perimeter betas[2] <- 0 ##extract SE's ses <- sapply(Cand.mod, FUN = function(i) sqrt(diag(vcov(i))["log.Perimeter"])) ses[2] <- 0 ##model-averaging with shrinkage based on AICc modavgCustom(logL = LLs, K = Ks, modnames = Model.names, nobs = nrow(min.trap), estimate = betas, se = ses) ##model-averaging with shrinkage based on BIC modavgCustom(logL = LLs, K = Ks, modnames = Model.names, nobs = nrow(min.trap), estimate = betas, se = ses, useBIC = TRUE) ## End(Not run)
This function model-averages the effect size between two groups defined by a categorical variable based on the entire model set and computes the unconditional standard error and unconditional confidence intervals as described in Buckland et al. (1997) and Burnham and Anderson (2002). This can be particularly useful when dealing with data from an experiment (e.g., ANOVA) and when the focus is to determine the effect of a given factor. This is an information-theoretic alternative to multiple comparisons (e.g., Burnham et al. 2011).
modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICaov.lm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICglm.lm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, gamdisp = NULL, ...) ## S3 method for class 'AICgls' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClme' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICmer' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICglmerMod' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AIClmerMod' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClmerModLmerTest' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICnegbin.glm.lm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICrlm.lm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICsurvreg' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICunmarkedFitOccu' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...)
modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICaov.lm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICglm.lm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, gamdisp = NULL, ...) ## S3 method for class 'AICgls' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClme' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICmer' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICglmerMod' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AIClmerMod' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClmerModLmerTest' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICnegbin.glm.lm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICrlm.lm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICsurvreg' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICunmarkedFitOccu' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...)
cand.set |
a list storing each of the models in the candidate model set. |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
newdata |
a data frame with two rows and where the columns correspond to the
explanatory variables specified in the candidate models. Note that this
data set must have the same structure as that of the original data frame
for which we want to make predictions, specifically, the same variable
type and names that appear in the original data set. Each row of the
data set defines one of the two groups compared. The first row in
|
second.ord |
logical. If |
nobs |
this argument allows the specification of a numeric value other than
total sample size to compute the AICc (i.e., |
uncond.se |
either, |
conf.level |
the confidence level ( |
type |
the scale of prediction requested, one of |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor) such
as that obtained from |
gamdisp |
if gamma GLM is used, the dispersion parameter should be specified here to apply the same value to each model. |
parm.type |
this argument specifies the parameter type on which the effect size
will be computed and is only relevant for models of |
... |
additional arguments passed to the function. |
The strategy used here to compute effect sizes is to work from the
newdata
object to create two predictions from a given model and
compute the differences and standard errors between both values. This
step is executed for each model in the candidate model set, to obtain a
model-averaged estimate of the effect size and unconditional standard
error. As a result, the newdata
argument is restricted to two
rows, each for a given prediction. To specify each group, the values
entered in the column for each explanatory variable can be identical,
except for the grouping variable. In such a case, the function will
identify the variable and the assign group names based on the values of
the variable. If more than a single variable has different values in
its respective column, the function will print generic names in the
output to identify the two groups. A sensible choice of value for the
explanatory variables to be held constant is the average of the
variable.
Model-averaging effect sizes is most useful in true experiments (e.g., ANOVA-type designs), where one wants to obtain the best estimate of effect size given the support of each candidate model. This can be considered as a information-theoretic analog of traditional multiple comparisons, except that the information contained in the entire model set is used instead of being restricted to a single model. See 'Examples' below for applications.
modavgEffect
calls the appropriate method depending on the class
of objects in the list. The current classes supported include
aov
, glm
, gls
, lm
, lme
, mer
,
glmerMod
, lmerMod
, lmerModLmerTest
, rlm
,
survreg
, as well as models of unmarkedFitOccu
,
unmarkedFitColExt
, unmarkedFitOccuFP
,
unmarkedFitOccuRN
, unmarkedFitOccuTTD
,
unmarkedFitPCount
, unmarkedFitPCO
, unmarkedFitDS
,
unmarkedFitDSO
, unmarkedFitGDS
, unmarkedFitMPois
,
unmarkedFitGMM
, unmarkedFitMMO
, unmarkedFitGPC
,
unmarkedFitOccuMS
, and unmarkedFitOccuMulti
.
classes.
The result is an object of class modavgEffect
with the following
components:
Group.variable |
the grouping variable defining the two groups compared. |
Group1 |
the first group considered in the comparison. |
Group2 |
the second group considered in the comparison. |
Type |
the scale on which the model-averaged effect size was computed (e.g., response or link). |
Mod.avg.table |
the full model selection table including the entire set of candidate models. |
Mod.avg.eff |
the model-averaged effect size based on the entire candidate model set. |
Uncond.SE |
the unconditional standard error for the model-averaged effect size. |
Conf.level |
the confidence level used to compute the confidence interval. |
Lower.CL |
the lower confidence limit. |
Upper.CL |
the upper confidence limit. |
Matrix.output |
a matrix containing the model-averaged effect size, the unconditional standard error, and the lower and upper confidence limits. |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Buckland, S. T., Burnham, K. P., Augustin, N. H. (1997) Model selection: an integral part of inference. Biometrics 53, 603–618.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33, 261–304.
Burnham, K. P., Anderson, D. R., Huyvaert, K. P. (2011) AIC model selection and multimodel inference in behaviorial ecology: some background, observations and comparisons. Behavioral Ecology and Sociobiology 65, 23–25.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Dunn, O. J. (1961) Multiple comparisons among means. Journal of the American Statistical Association 56, 52–64.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
AICc
, aictab
, c_hat
,
confset
, evidence
, importance
,
modavgShrink
, modavgPred
##heights (cm) of plants grown under two fertilizers, Ex. 9.5 from ##Zar (1984): Biostatistical Analysis. Prentice Hall: New Jersey. heights <- data.frame(Height = c(48.2, 54.6, 58.3, 47.8, 51.4, 52.0, 55.2, 49.1, 49.9, 52.6, 52.3, 57.4, 55.6, 53.2, 61.3, 58.0, 59.8, 54.8), Fertilizer = c(rep("old", 10), rep("new", 8))) ##run linear model hypothesizing an effect of fertilizer m1 <- lm(Height ~ Fertilizer, data = heights) ##run null model (no effect of fertilizer) m0 <- lm(Height ~ 1, data = heights) ##assemble models in list Cands <- list(m1, m0) Modnames <- c("Fert", "null") ##compute model selection table to compare ##both hypotheses aictab(cand.set = Cands, modnames = Modnames) ##note that model with fertilizer effect is much better supported ##than the null ##compute model-averaged effect sizes: one model hypothesizes a ##difference of 0, whereas the other assumes a difference ##prepare newdata object from which differences between groups ##will be computed ##the first row of the newdata data.frame relates to the first group, ##whereas the second row corresponds to the second group pred.data <- data.frame(Fertilizer = c("new", "old")) ##compute best estimate of effect size accounting for model selection ##uncertainty modavgEffect(cand.set = Cands, modnames = Modnames, newdata = pred.data) ##classical one-way ANOVA type-design ## Not run: ##generate data for two groups and control set.seed(seed = 15) y <- round(c(rnorm(n = 15, mean = 10, sd = 5), rnorm(n = 15, mean = 15, sd = 5), rnorm(n = 15, mean = 12, sd = 5)), digits = 2) ##groups group <- c(rep("cont", 15), rep("trt1", 15), rep("trt2", 15)) ##combine in data set aov.data <- data.frame(Y = y, Group = group) rm(y, group) ##run model with group effect lm.eff <- lm(Y ~ Group, data = aov.data) ##null model lm.0 <- lm(Y ~ 1, data = aov.data) ##compare both models Cands <- list(lm.eff, lm.0) Mods <- c("group effect", "no group effect") aictab(cand.set = Cands, modnames = Mods) ##model with group effect has most of the weight ##compute model-averaged effect sizes ##trt1 - control modavgEffect(cand.set = Cands, modnames = Modnames, newdata = data.frame(Group = c("trt1", "cont"))) ##trt1 differs from cont ##trt2 - control modavgEffect(cand.set = Cands, modnames = Modnames, newdata = data.frame(Group = c("trt2", "cont"))) ##trt2 does not differ from cont ## End(Not run) ##two-way ANOVA type design, Ex. 13.1 (Zar 1984) of plasma calcium ##concentration (mg/100 ml) in birds as a function of sex and hormone ##treatment ## Not run: birds <- data.frame(Ca = c(16.87, 16.18, 17.12, 16.83, 17.19, 15.86, 14.92, 15.63, 15.24, 14.8, 19.07, 18.77, 17.63, 16.99, 18.04, 17.2, 17.64, 17.89, 16.78, 16.92, 32.45, 28.71, 34.65, 28.79, 24.46, 30.54, 32.41, 28.97, 28.46, 29.65), Sex = c("M", "M", "M", "M", "M", "F", "F", "F", "F", "F", "M", "M", "M", "M", "M", "F", "F", "F", "F", "F", "M", "M", "M", "M", "M", "F", "F", "F", "F", "F"), Hormone = as.factor(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3))) ##candidate models ##interactive effects m.inter <- lm(Ca ~ Sex + Hormone + Sex:Hormone, data = birds) ##additive effects m.add <- lm(Ca ~ Sex + Hormone, data = birds) ##Sex only m.sex <- lm(Ca ~ Sex, data = birds) ##Hormone only m.horm <- lm(Ca ~ Hormone, data = birds) ##null m.0 <- lm(Ca ~ 1, data = birds) ##model selection Cands <- list(m.inter, m.add, m.sex, m.horm, m.0) Mods <- c("interaction", "additive", "sex only", "horm only", "null") aictab(Cands, Mods) ##there is some support for a hormone only treatment, but also for ##additive effects ##compute model-averaged effects of sex, and set the other variable ##to a constant value ##M - F sex.data <- data.frame(Sex = c("M", "F"), Hormone = c("1", "1")) modavgEffect(Cands, Mods, newdata = sex.data) ##no support for a sex main effect ##hormone 1 - 3, but set Sex to a constant value horm1.data <- data.frame(Sex = c("M", "M"), Hormone = c("1", "3")) modavgEffect(Cands, Mods, newdata = horm1.data) ##hormone 2 - 3, but set Sex to a constant value horm2.data <- data.frame(Sex = c("M", "M"), Hormone = c("2", "3")) modavgEffect(Cands, Mods, newdata = horm2.data) ## End(Not run) ##Poisson regression with anuran larvae example from Mazerolle (2006) ## Not run: data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##set up candidate models Cand.mod <- list( ) ##global model Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[2]] <- glm(Num_anura ~ log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[3]] <- glm(Num_anura ~ Type, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[4]] <- glm(Num_anura ~ 1, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model vif.hat <- c_hat(Cand.mod[[1]]) #uses Pearson's chi-square/df ##assign names to each model Modnames <- c("type + logperim", "type", "logperim", "intercept only") ##compute model-averaged estimate of difference between abundance at bog ##pond and upland pond ##create newdata object to make predictions pred.data <- data.frame(Type = c("BOG", "UPLAND"), log.Perimeter = mean(min.trap$log.Perimeter), Effort = mean(min.trap$Effort)) modavgEffect(Cand.mod, Modnames, newdata = pred.data, c.hat = vif.hat, type = "response") ##little suport for a pond type effect ## End(Not run) ##mixed linear model example from ?nlme ## Not run: library(nlme) Cand.models <- list( ) Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method="ML") Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1, method="ML") Cand.models[[3]] <-lme(distance ~ 1, data = Orthodont, random = ~ 1, method="ML") Cand.models[[4]] <-lme(distance ~ Sex, data = Orthodont, random = ~ 1, method="ML") Modnames <- c("age", "age + sex", "null", "sex") data.other <- data.frame(age = mean(Orthodont$age), Sex = factor(c("Male", "Female"))) modavgEffect(cand.set = Cand.models, modnames = Modnames, newdata = data.other, conf.level = 0.95, second.ord = TRUE, nobs = NULL, uncond.se = "revised") detach(package:nlme) ## End(Not run) ##site occupancy analysis example ## Not run: library(unmarked) ##single season model data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ##create a bogus site group site.group <- c(rep(1, times = nrow(pfer.bin)/2), rep(0, nrow(pfer.bin)/2)) ## add some fake covariates for illustration siteCovs(pferUMF) <- data.frame(site.group, sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = runif(numSites(pferUMF))) ## observation covariates are in site-major, observation-minor order obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) fm1 <- occu(~ obsvar1 ~ site.group, pferUMF) fm2 <- occu(~ obsvar1 ~ 1, pferUMF) Cand.mods <- list(fm1, fm2) Modnames <- c("fm1", "fm2") ##model selection table aictab(cand.set = Cand.mods, modnames = Modnames, second.ord = TRUE) ##model-averaged effect sizes comparing site.group 1 - site.group 0 newer.dat <- data.frame(site.group = c(0, 1)) modavgEffect(cand.set = Cand.mods, modnames = Modnames, type = "response", second.ord = TRUE, newdata = newer.dat, parm.type = "psi") ##no support for an effect of site group ## End(Not run) ##single season N-mixture models ## Not run: data(mallard) ##this variable was created to illustrate the use of modavgEffect ##with detection variables mallard.site$site.group <- c(rep(1, 119), rep(0, 120)) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) siteCovs(mallardUMF) tmp.covs <- obsCovs(mallardUMF) obsCovs(mallardUMF)$date2 <- tmp.covs$date^2 (fm.mall <- pcount(~ site.group ~ length + elev + forest, mallardUMF, K=30)) (fm.mallb <- pcount(~ 1 ~ length + elev + forest, mallardUMF, K=30)) Cands <- list(fm.mall, fm.mallb) Modnames <- c("one", "null") ##model averaged effect size of site.group 1 - site.group 0 on response ##scale (point estimate) modavgEffect(Cands, Modnames, newdata = data.frame(site.group = c(0, 1)), parm.type = "detect", type = "response") ##model averaged effect size of site.group 1 - site.group 0 on link ##scale (here, logit link) modavgEffect(Cands, Modnames, newdata = data.frame(site.group = c(0, 1)), parm.type = "detect", type = "link") detach(package:unmarked) ## End(Not run)
##heights (cm) of plants grown under two fertilizers, Ex. 9.5 from ##Zar (1984): Biostatistical Analysis. Prentice Hall: New Jersey. heights <- data.frame(Height = c(48.2, 54.6, 58.3, 47.8, 51.4, 52.0, 55.2, 49.1, 49.9, 52.6, 52.3, 57.4, 55.6, 53.2, 61.3, 58.0, 59.8, 54.8), Fertilizer = c(rep("old", 10), rep("new", 8))) ##run linear model hypothesizing an effect of fertilizer m1 <- lm(Height ~ Fertilizer, data = heights) ##run null model (no effect of fertilizer) m0 <- lm(Height ~ 1, data = heights) ##assemble models in list Cands <- list(m1, m0) Modnames <- c("Fert", "null") ##compute model selection table to compare ##both hypotheses aictab(cand.set = Cands, modnames = Modnames) ##note that model with fertilizer effect is much better supported ##than the null ##compute model-averaged effect sizes: one model hypothesizes a ##difference of 0, whereas the other assumes a difference ##prepare newdata object from which differences between groups ##will be computed ##the first row of the newdata data.frame relates to the first group, ##whereas the second row corresponds to the second group pred.data <- data.frame(Fertilizer = c("new", "old")) ##compute best estimate of effect size accounting for model selection ##uncertainty modavgEffect(cand.set = Cands, modnames = Modnames, newdata = pred.data) ##classical one-way ANOVA type-design ## Not run: ##generate data for two groups and control set.seed(seed = 15) y <- round(c(rnorm(n = 15, mean = 10, sd = 5), rnorm(n = 15, mean = 15, sd = 5), rnorm(n = 15, mean = 12, sd = 5)), digits = 2) ##groups group <- c(rep("cont", 15), rep("trt1", 15), rep("trt2", 15)) ##combine in data set aov.data <- data.frame(Y = y, Group = group) rm(y, group) ##run model with group effect lm.eff <- lm(Y ~ Group, data = aov.data) ##null model lm.0 <- lm(Y ~ 1, data = aov.data) ##compare both models Cands <- list(lm.eff, lm.0) Mods <- c("group effect", "no group effect") aictab(cand.set = Cands, modnames = Mods) ##model with group effect has most of the weight ##compute model-averaged effect sizes ##trt1 - control modavgEffect(cand.set = Cands, modnames = Modnames, newdata = data.frame(Group = c("trt1", "cont"))) ##trt1 differs from cont ##trt2 - control modavgEffect(cand.set = Cands, modnames = Modnames, newdata = data.frame(Group = c("trt2", "cont"))) ##trt2 does not differ from cont ## End(Not run) ##two-way ANOVA type design, Ex. 13.1 (Zar 1984) of plasma calcium ##concentration (mg/100 ml) in birds as a function of sex and hormone ##treatment ## Not run: birds <- data.frame(Ca = c(16.87, 16.18, 17.12, 16.83, 17.19, 15.86, 14.92, 15.63, 15.24, 14.8, 19.07, 18.77, 17.63, 16.99, 18.04, 17.2, 17.64, 17.89, 16.78, 16.92, 32.45, 28.71, 34.65, 28.79, 24.46, 30.54, 32.41, 28.97, 28.46, 29.65), Sex = c("M", "M", "M", "M", "M", "F", "F", "F", "F", "F", "M", "M", "M", "M", "M", "F", "F", "F", "F", "F", "M", "M", "M", "M", "M", "F", "F", "F", "F", "F"), Hormone = as.factor(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3))) ##candidate models ##interactive effects m.inter <- lm(Ca ~ Sex + Hormone + Sex:Hormone, data = birds) ##additive effects m.add <- lm(Ca ~ Sex + Hormone, data = birds) ##Sex only m.sex <- lm(Ca ~ Sex, data = birds) ##Hormone only m.horm <- lm(Ca ~ Hormone, data = birds) ##null m.0 <- lm(Ca ~ 1, data = birds) ##model selection Cands <- list(m.inter, m.add, m.sex, m.horm, m.0) Mods <- c("interaction", "additive", "sex only", "horm only", "null") aictab(Cands, Mods) ##there is some support for a hormone only treatment, but also for ##additive effects ##compute model-averaged effects of sex, and set the other variable ##to a constant value ##M - F sex.data <- data.frame(Sex = c("M", "F"), Hormone = c("1", "1")) modavgEffect(Cands, Mods, newdata = sex.data) ##no support for a sex main effect ##hormone 1 - 3, but set Sex to a constant value horm1.data <- data.frame(Sex = c("M", "M"), Hormone = c("1", "3")) modavgEffect(Cands, Mods, newdata = horm1.data) ##hormone 2 - 3, but set Sex to a constant value horm2.data <- data.frame(Sex = c("M", "M"), Hormone = c("2", "3")) modavgEffect(Cands, Mods, newdata = horm2.data) ## End(Not run) ##Poisson regression with anuran larvae example from Mazerolle (2006) ## Not run: data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##set up candidate models Cand.mod <- list( ) ##global model Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[2]] <- glm(Num_anura ~ log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[3]] <- glm(Num_anura ~ Type, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[4]] <- glm(Num_anura ~ 1, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model vif.hat <- c_hat(Cand.mod[[1]]) #uses Pearson's chi-square/df ##assign names to each model Modnames <- c("type + logperim", "type", "logperim", "intercept only") ##compute model-averaged estimate of difference between abundance at bog ##pond and upland pond ##create newdata object to make predictions pred.data <- data.frame(Type = c("BOG", "UPLAND"), log.Perimeter = mean(min.trap$log.Perimeter), Effort = mean(min.trap$Effort)) modavgEffect(Cand.mod, Modnames, newdata = pred.data, c.hat = vif.hat, type = "response") ##little suport for a pond type effect ## End(Not run) ##mixed linear model example from ?nlme ## Not run: library(nlme) Cand.models <- list( ) Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method="ML") Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1, method="ML") Cand.models[[3]] <-lme(distance ~ 1, data = Orthodont, random = ~ 1, method="ML") Cand.models[[4]] <-lme(distance ~ Sex, data = Orthodont, random = ~ 1, method="ML") Modnames <- c("age", "age + sex", "null", "sex") data.other <- data.frame(age = mean(Orthodont$age), Sex = factor(c("Male", "Female"))) modavgEffect(cand.set = Cand.models, modnames = Modnames, newdata = data.other, conf.level = 0.95, second.ord = TRUE, nobs = NULL, uncond.se = "revised") detach(package:nlme) ## End(Not run) ##site occupancy analysis example ## Not run: library(unmarked) ##single season model data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ##create a bogus site group site.group <- c(rep(1, times = nrow(pfer.bin)/2), rep(0, nrow(pfer.bin)/2)) ## add some fake covariates for illustration siteCovs(pferUMF) <- data.frame(site.group, sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = runif(numSites(pferUMF))) ## observation covariates are in site-major, observation-minor order obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) fm1 <- occu(~ obsvar1 ~ site.group, pferUMF) fm2 <- occu(~ obsvar1 ~ 1, pferUMF) Cand.mods <- list(fm1, fm2) Modnames <- c("fm1", "fm2") ##model selection table aictab(cand.set = Cand.mods, modnames = Modnames, second.ord = TRUE) ##model-averaged effect sizes comparing site.group 1 - site.group 0 newer.dat <- data.frame(site.group = c(0, 1)) modavgEffect(cand.set = Cand.mods, modnames = Modnames, type = "response", second.ord = TRUE, newdata = newer.dat, parm.type = "psi") ##no support for an effect of site group ## End(Not run) ##single season N-mixture models ## Not run: data(mallard) ##this variable was created to illustrate the use of modavgEffect ##with detection variables mallard.site$site.group <- c(rep(1, 119), rep(0, 120)) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) siteCovs(mallardUMF) tmp.covs <- obsCovs(mallardUMF) obsCovs(mallardUMF)$date2 <- tmp.covs$date^2 (fm.mall <- pcount(~ site.group ~ length + elev + forest, mallardUMF, K=30)) (fm.mallb <- pcount(~ 1 ~ length + elev + forest, mallardUMF, K=30)) Cands <- list(fm.mall, fm.mallb) Modnames <- c("one", "null") ##model averaged effect size of site.group 1 - site.group 0 on response ##scale (point estimate) modavgEffect(Cands, Modnames, newdata = data.frame(site.group = c(0, 1)), parm.type = "detect", type = "response") ##model averaged effect size of site.group 1 - site.group 0 on link ##scale (here, logit link) modavgEffect(Cands, Modnames, newdata = data.frame(site.group = c(0, 1)), parm.type = "detect", type = "link") detach(package:unmarked) ## End(Not run)
This function model-averages the estimate of a parameter of interest among a set of candidate models, and computes the unconditional standard error and unconditional confidence intervals as described in Buckland et al. (1997) and Burnham and Anderson (2002). Computations are based on the values of the information criterion supplied manually by the user.
modavgIC(ic, K, modnames = NULL, estimate, se, uncond.se = "revised", conf.level = 0.95, ic.name = NULL)
modavgIC(ic, K, modnames = NULL, estimate, se, uncond.se = "revised", conf.level = 0.95, ic.name = NULL)
ic |
a vector of information criterion values for each model in the candidate model set. |
K |
a vector containing the number of estimated parameters for each model in the candidate model set. |
modnames |
a character vector of model names to identify each model in the
model selection table. If |
estimate |
a vector of estimates for each of the models in the candidate model set. Estimates can be either beta estimates for a parameter of interest or a single prediction from each model. |
se |
a vector of standard errors for each of the estimates appearing in the
|
uncond.se |
either, |
conf.level |
the confidence level ( |
ic.name |
a character string denoting the name of the information criterion input by the user. This character string will appear in certain column labels of the model selection table. |
modavgIC
computes a model-averaged estimate from the vector
of parameter estimates specified in estimate
. Estimates and
their associated standard errors must be specified in the same order
as the values of the information criterion, the number of estimated
parameters, and the model names. Estimates provided may be for a
parameter of interest (i.e., beta estimates) or predictions from each
model. This function is most useful for information criterion other
than AIC, AICc, QAIC, and QAICc (e.g., WAIC: Watanabe 2010) or for
classes not supported by modavg
, modavgCustom
, or
modavgPred
.
modavgIC
creates an object of class modavgIC
with
the following components:
Mod.avg.table |
the model selection table. |
Mod.avg.est |
the model-averaged estimate. |
Uncond.SE |
the unconditional standard error for the model-averaged estimate. |
Conf.level |
the confidence level used to compute the confidence interval. |
Lower.CL |
the lower confidence limit. |
Upper.CL |
the upper confidence limit. |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Buckland, S. T., Burnham, K. P., Augustin, N. H. (1997) Model selection: an integral part of inference. Biometrics 53, 603–618.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Watanabe, S. (2010) Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research 11, 3571–3594.
aictabCustom
, ictab
,
modavg
, modavgCustom
,
modavgShrink
, modavgPred
## Not run: ##model averaging parameter estimate based on WAIC ##create a vector of names to trace back models in set Modnames <- c("global model", "interactive model", "additive model", "invertpred model") ##WAIC values waic <- c(105.74, 107.36, 108.24, 100.57) ##number of effective parameters effK <- c(7.45, 5.61, 6.14, 6.05) ##vector of predictions Preds <- c(0.106, 0.137, 0.067, 0.050) ##vector of SE's for prediction Ses <- c(0.128, 0.159, 0.054, 0.039) ##compute model-averaged estimate and unconditional SE based on WAIC modavgIC(ic = waic, K = effK, modnames = Modnames, estimate = Preds, se = Ses, ic.name = "WAIC") ## End(Not run)
## Not run: ##model averaging parameter estimate based on WAIC ##create a vector of names to trace back models in set Modnames <- c("global model", "interactive model", "additive model", "invertpred model") ##WAIC values waic <- c(105.74, 107.36, 108.24, 100.57) ##number of effective parameters effK <- c(7.45, 5.61, 6.14, 6.05) ##vector of predictions Preds <- c(0.106, 0.137, 0.067, 0.050) ##vector of SE's for prediction Ses <- c(0.128, 0.159, 0.054, 0.039) ##compute model-averaged estimate and unconditional SE based on WAIC modavgIC(ic = waic, K = effK, modnames = Modnames, estimate = Preds, se = Ses, ic.name = "WAIC") ## End(Not run)
This function computes the model-averaged predictions, unconditional
standard errors, and confidence intervals based on the entire candidate
model set. The function is currently implemented for glm
,
gls
, lm
, lme
, mer
, merMod
,
lmerModLmerTest
, negbin
, rlm
, survreg
object
classes that are stored in a list as well as various models of
unmarkedFit
classes.
modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICaov.lm' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICglm.lm' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, gamdisp = NULL, ...) ## S3 method for class 'AIClm' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICgls' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClme' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICmer' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, ...) ## S3 method for class 'AICglmerMod' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, ...) ## S3 method for class 'AIClmerMod' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClmerModLmerTest' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICnegbin.glm.lm' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICrlm.lm' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICsurvreg' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICunmarkedFitOccu' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...)
modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICaov.lm' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICglm.lm' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, gamdisp = NULL, ...) ## S3 method for class 'AIClm' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICgls' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClme' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICmer' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, ...) ## S3 method for class 'AICglmerMod' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, ...) ## S3 method for class 'AIClmerMod' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClmerModLmerTest' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICnegbin.glm.lm' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICrlm.lm' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICsurvreg' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICunmarkedFitOccu' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...)
cand.set |
a list storing each of the models in the candidate model set. |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
newdata |
a data frame with the same structure as that of the original data frame for which we want to make predictions. |
second.ord |
logical. If |
nobs |
this argument allows to specify a numeric value other than total
sample size to compute the AICc (i.e., |
uncond.se |
either, |
conf.level |
the confidence level ( |
type |
the scale of prediction requested, one of |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor) such
as that obtained from |
gamdisp |
the value of the gamma dispersion parameter. |
parm.type |
this argument specifies the parameter type on which
the predictions will be computed and is only relevant for models of
|
... |
additional arguments passed to the function. |
The candidate models must be stored in a list. Note that a data frame
from which to make predictions must be supplied with the newdata
argument and that all variables appearing in the model set must appear
in this data frame. Variables must be of the same type as in the
original analysis (e.g., factor, numeric).
One can compute unconditional confidence intervals around the
predictions from the elements returned by modavgPred
. The
classic computation based on asymptotic normality of the estimator is
appropriate to estimate confidence intervals on the linear predictor
(i.e., link scale). For predictions of some types of response
variables such as counts or binary variables, the normal approximation
may be inappropriate. In such cases, it is often better to compute
the confidence intervals on the linear predictor scale and then
back-transform the limits to the scale of the response variable.
These are the confidence intervals returned by modavgPred
.
Burnham et al. (1987), Burnham and Anderson (2002, p. 164), and
Williams et al. (2002) suggest alternative methods of computing
confidence intervals for small degrees of freedom with profile
likelihood intervals or bootstrapping, but these approaches are not
yet implemented in modavgPred
.
modavgPred
returns an object of class modavgPred
with the
following components:
type |
the scale of predicted values (response or link) for |
mod.avg.pred |
the model-averaged prediction over the entire candidate model set. |
uncond.se |
the unconditional standard error of each model-averaged prediction. |
conf.level |
the confidence level used to compute the confidence interval. |
lower.CL |
the lower confidence limit. |
upper.CL |
the upper confidence limit. |
matrix.output |
a matrix with rows consisting of the model-averaged predictions, the unconditional standard errors, and the confidence limits. |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R., White, G. C., Brownie, C., Pollock, K. H. (1987) Design and analysis methods for fish survival experiments based on release-recapture. American Fisheries Society Monographs 5, 1–437.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
Williams, B. K., Nichols, J. D., Conroy, M. J. (2002) Analysis and Management of Animal Populations. Academic Press: New York.
AICc
, aictab
, importance
,
c_hat
, confset
, evidence
,
modavg
, modavgCustom
,
modavgEffect
, modavgShrink
,
predict
, predictSE
##example from subset of models in Table 1 in Mazerolle (2006) data(dry.frog) Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) ##setup model names Modnames <- paste("mod", 1:length(Cand.models), sep = "") ##compute model-averaged value and unconditional SE of predicted log of ##mass lost for frogs of average mass in shade for each substrate type ##first create data set to use for predictions new.dat <- data.frame(Shade = c(1, 1, 1), cent_Initial_mass = c(0, 0, 0), Initial_mass2 = c(0, 0, 0), Substrate = c("SOIL", "SPHAGNUM", "PEAT")) ##compare unconditional SE's using both methods modavgPred(cand.set = Cand.models, modnames = Modnames, newdata = new.dat, type = "response", uncond.se = "old") modavgPred(cand.set = Cand.models, modnames = Modnames, newdata = new.dat, type = "response", uncond.se = "revised") ##round to 4 digits after decimal point print(modavgPred(cand.set = Cand.models, modnames = Modnames, newdata = new.dat, type = "response", uncond.se = "revised"), digits = 4) ##Gamma glm ## Not run: ##clotting data example from 'gamma.shape' in MASS package of ##Venables and Ripley (2002, Modern applied statistics with ##S. Springer-Verlag: New York.) clotting <- data.frame(u = c(5, 10, 15, 20, 30, 40, 60, 80, 100), lot1 = c(118, 58, 42, 35, 27, 25, 21, 19, 18), lot2 = c(69, 35, 26, 21, 18, 16, 13, 12, 12)) clot1 <- glm(lot1 ~ log(u), data = clotting, family = Gamma) require(MASS) gamma.dispersion(clot1) #dispersion parameter gamma.shape(clot1) #reciprocal of dispersion parameter == ##shape parameter summary(clot1, dispersion = gamma.dispersion(clot1)) #better ##create list with models Cand <- list( ) Cand[[1]] <- glm(lot1 ~ log(u), data = clotting, family = Gamma) Cand[[2]] <- glm(lot1 ~ 1, data = clotting, family = Gamma) ##create vector of model names Modnames <- paste("mod", 1:length(Cand), sep = "") ##compute model-averaged predictions on scale of response variable for ##all observations modavgPred(cand.set = Cand, modnames = Modnames, newdata = clotting, gamdisp = gamma.dispersion(clot1), type = "response") ##compute model-averaged predictions on scale of linear predictor modavgPred(cand.set = Cand, modnames = Modnames, newdata = clotting, gamdisp = gamma.dispersion(clot1), type = "link") ##compute model-averaged predictions on scale of linear predictor modavgPred(cand.set = Cand, modnames = Modnames, newdata = clotting, gamdisp = gamma.dispersion(clot1), type = "terms") #returns an error ##because type = "terms" is not defined for 'modavgPred' modavgPred(cand.set = Cand, modnames = Modnames, newdata = clotting, type = "terms") #returns an error because ##no gamma dispersion parameter was specified (i.e., 'gamdisp' missing) ## End(Not run) ##example of model-averaged predictions from N-mixture model ##each variable appears twice in the models - this is a bit longer ## Not run: require(unmarked) data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##set up models so that each variable on abundance appears twice fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF, K = 30) fm.mall.two <- pcount(~ ivel + date ~ elev + forest, mallardUMF, K = 30) fm.mall.three <- pcount(~ ivel + date ~ length + elev, mallardUMF, K = 30) fm.mall.four <- pcount(~ ivel + date ~ 1, mallardUMF, K = 30) ##model list Cands <- list(fm.mall.one, fm.mall.two, fm.mall.three, fm.mall.four) Modnames <- c("length + forest", "elev + forest", "length + elev", "null") ##compute model-averaged predictions of abundance for values of elev modavgPred(cand.set = Cands, modnames = Modnames, newdata = data.frame(elev = seq(from = -1.4, to = 2.4, by = 0.1), length = 0, forest = 0), parm.type = "lambda", type = "response") ##compute model-averaged predictions of detection for values of ivel modavgPred(cand.set = Cands, modnames = Modnames, newdata = data.frame(ivel = seq(from = -1.75, to = 5.9, by = 0.5), date = 0), parm.type = "detect", type = "response") detach(package:unmarked) ## End(Not run) ##example of model-averaged abundance from distance model ## Not run: ##this is a bit longer data(linetran) #example from ?distsamp ltUMF <- with(linetran, { unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), siteCovs = data.frame(Length, area, habitat), dist.breaks = c(0, 5, 10, 15, 20), tlength = linetran$Length * 1000, survey = "line", unitsIn = "m") }) ## Half-normal detection function. Density output (log scale). No covariates. fm1 <- distsamp(~ 1 ~ 1, ltUMF) ## Halfnormal. Covariates affecting both density and and detection. fm2 <- distsamp(~area + habitat ~ habitat, ltUMF) ## Hazard function. Covariates affecting both density and and detection. fm3 <- distsamp(~area + habitat ~ habitat, ltUMF, keyfun="hazard") ##assemble model list Cands <- list(fm1, fm2, fm3) Modnames <- paste("mod", 1:length(Cands), sep = "") ##model-average predictions on abundance modavgPred(cand.set = Cands, modnames = Modnames, parm.type = "lambda", type = "link", newdata = data.frame(area = mean(linetran$area), habitat = c("A", "B"))) detach(package:unmarked) ## End(Not run) ##example using Orthodont data set from Pinheiro and Bates (2000) ## Not run: require(nlme) ##set up candidate models m1 <- gls(distance ~ age, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject), data = Orthodont, method = "ML") m2 <- gls(distance ~ 1, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject), data = Orthodont, method = "ML") ##assemble in list Cand.models <- list(m1, m2) ##model names Modnames <- c("age effect", "null model") ##model selection table aictab(cand.set = Cand.models, modnames = Modnames) ##model-averaged predictions modavgPred(cand.set = Cand.models, modnames = Modnames, newdata = data.frame(age = c(8, 10, 12, 14))) detach(package:nlme) ## End(Not run)
##example from subset of models in Table 1 in Mazerolle (2006) data(dry.frog) Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) ##setup model names Modnames <- paste("mod", 1:length(Cand.models), sep = "") ##compute model-averaged value and unconditional SE of predicted log of ##mass lost for frogs of average mass in shade for each substrate type ##first create data set to use for predictions new.dat <- data.frame(Shade = c(1, 1, 1), cent_Initial_mass = c(0, 0, 0), Initial_mass2 = c(0, 0, 0), Substrate = c("SOIL", "SPHAGNUM", "PEAT")) ##compare unconditional SE's using both methods modavgPred(cand.set = Cand.models, modnames = Modnames, newdata = new.dat, type = "response", uncond.se = "old") modavgPred(cand.set = Cand.models, modnames = Modnames, newdata = new.dat, type = "response", uncond.se = "revised") ##round to 4 digits after decimal point print(modavgPred(cand.set = Cand.models, modnames = Modnames, newdata = new.dat, type = "response", uncond.se = "revised"), digits = 4) ##Gamma glm ## Not run: ##clotting data example from 'gamma.shape' in MASS package of ##Venables and Ripley (2002, Modern applied statistics with ##S. Springer-Verlag: New York.) clotting <- data.frame(u = c(5, 10, 15, 20, 30, 40, 60, 80, 100), lot1 = c(118, 58, 42, 35, 27, 25, 21, 19, 18), lot2 = c(69, 35, 26, 21, 18, 16, 13, 12, 12)) clot1 <- glm(lot1 ~ log(u), data = clotting, family = Gamma) require(MASS) gamma.dispersion(clot1) #dispersion parameter gamma.shape(clot1) #reciprocal of dispersion parameter == ##shape parameter summary(clot1, dispersion = gamma.dispersion(clot1)) #better ##create list with models Cand <- list( ) Cand[[1]] <- glm(lot1 ~ log(u), data = clotting, family = Gamma) Cand[[2]] <- glm(lot1 ~ 1, data = clotting, family = Gamma) ##create vector of model names Modnames <- paste("mod", 1:length(Cand), sep = "") ##compute model-averaged predictions on scale of response variable for ##all observations modavgPred(cand.set = Cand, modnames = Modnames, newdata = clotting, gamdisp = gamma.dispersion(clot1), type = "response") ##compute model-averaged predictions on scale of linear predictor modavgPred(cand.set = Cand, modnames = Modnames, newdata = clotting, gamdisp = gamma.dispersion(clot1), type = "link") ##compute model-averaged predictions on scale of linear predictor modavgPred(cand.set = Cand, modnames = Modnames, newdata = clotting, gamdisp = gamma.dispersion(clot1), type = "terms") #returns an error ##because type = "terms" is not defined for 'modavgPred' modavgPred(cand.set = Cand, modnames = Modnames, newdata = clotting, type = "terms") #returns an error because ##no gamma dispersion parameter was specified (i.e., 'gamdisp' missing) ## End(Not run) ##example of model-averaged predictions from N-mixture model ##each variable appears twice in the models - this is a bit longer ## Not run: require(unmarked) data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##set up models so that each variable on abundance appears twice fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF, K = 30) fm.mall.two <- pcount(~ ivel + date ~ elev + forest, mallardUMF, K = 30) fm.mall.three <- pcount(~ ivel + date ~ length + elev, mallardUMF, K = 30) fm.mall.four <- pcount(~ ivel + date ~ 1, mallardUMF, K = 30) ##model list Cands <- list(fm.mall.one, fm.mall.two, fm.mall.three, fm.mall.four) Modnames <- c("length + forest", "elev + forest", "length + elev", "null") ##compute model-averaged predictions of abundance for values of elev modavgPred(cand.set = Cands, modnames = Modnames, newdata = data.frame(elev = seq(from = -1.4, to = 2.4, by = 0.1), length = 0, forest = 0), parm.type = "lambda", type = "response") ##compute model-averaged predictions of detection for values of ivel modavgPred(cand.set = Cands, modnames = Modnames, newdata = data.frame(ivel = seq(from = -1.75, to = 5.9, by = 0.5), date = 0), parm.type = "detect", type = "response") detach(package:unmarked) ## End(Not run) ##example of model-averaged abundance from distance model ## Not run: ##this is a bit longer data(linetran) #example from ?distsamp ltUMF <- with(linetran, { unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), siteCovs = data.frame(Length, area, habitat), dist.breaks = c(0, 5, 10, 15, 20), tlength = linetran$Length * 1000, survey = "line", unitsIn = "m") }) ## Half-normal detection function. Density output (log scale). No covariates. fm1 <- distsamp(~ 1 ~ 1, ltUMF) ## Halfnormal. Covariates affecting both density and and detection. fm2 <- distsamp(~area + habitat ~ habitat, ltUMF) ## Hazard function. Covariates affecting both density and and detection. fm3 <- distsamp(~area + habitat ~ habitat, ltUMF, keyfun="hazard") ##assemble model list Cands <- list(fm1, fm2, fm3) Modnames <- paste("mod", 1:length(Cands), sep = "") ##model-average predictions on abundance modavgPred(cand.set = Cands, modnames = Modnames, parm.type = "lambda", type = "link", newdata = data.frame(area = mean(linetran$area), habitat = c("A", "B"))) detach(package:unmarked) ## End(Not run) ##example using Orthodont data set from Pinheiro and Bates (2000) ## Not run: require(nlme) ##set up candidate models m1 <- gls(distance ~ age, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject), data = Orthodont, method = "ML") m2 <- gls(distance ~ 1, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject), data = Orthodont, method = "ML") ##assemble in list Cand.models <- list(m1, m2) ##model names Modnames <- c("age effect", "null model") ##model selection table aictab(cand.set = Cand.models, modnames = Modnames) ##model-averaged predictions modavgPred(cand.set = Cand.models, modnames = Modnames, newdata = data.frame(age = c(8, 10, 12, 14))) detach(package:nlme) ## End(Not run)
This function computes an alternative version of model-averaging
parameter estimates that consists in shrinking estimates toward 0 to
reduce model selection bias as in Burnham and Anderson (2002, p. 152),
Anderson (2008, pp. 130-132) and Lukacs et al. (2010). Specifically,
models without the parameter of interest have an estimate and variance
of 0. modavgShrink
also returns unconditional standard errors
and unconditional confidence intervals as described in Buckland et
al. (1997) and Burnham and Anderson (2002).
modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICaov.lm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICbetareg' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICsclm.clm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICclm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICclmm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICcoxme' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICcoxph' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICglm.lm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, gamdisp = NULL, ...) ## S3 method for class 'AICgls' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICglmmTMB' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, ...) ## S3 method for class 'AIChurdle' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClme' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClmekin' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICmer' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICglmerMod' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClmerMod' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClmerModLmerTest' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICmaxlikeFit.list' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, ...) ## S3 method for class 'AICmultinom.nnet' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, ...) ## S3 method for class 'AICnegbin.glm.lm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICpolr' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICrlm.lm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICsurvreg' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICvglm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, ...) ## S3 method for class 'AICzeroinfl' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICunmarkedFitOccu' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)
modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICaov.lm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICbetareg' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICsclm.clm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICclm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICclmm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICcoxme' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICcoxph' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICglm.lm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, gamdisp = NULL, ...) ## S3 method for class 'AICgls' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICglmmTMB' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, ...) ## S3 method for class 'AIChurdle' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClme' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClmekin' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICmer' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICglmerMod' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClmerMod' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClmerModLmerTest' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICmaxlikeFit.list' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, ...) ## S3 method for class 'AICmultinom.nnet' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, ...) ## S3 method for class 'AICnegbin.glm.lm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICpolr' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICrlm.lm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICsurvreg' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICvglm' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, ...) ## S3 method for class 'AICzeroinfl' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICunmarkedFitOccu' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)
cand.set |
a list storing each of the models in the candidate model set. |
parm |
the parameter of interest, enclosed between quotes, for which a model-averaged estimate is required. For a categorical variable, the label of the estimate must be included as it appears in the output (see 'Details' below). |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
second.ord |
logical. If |
nobs |
this argument allows to specify a numeric value other than total
sample size to compute the AICc (i.e., |
uncond.se |
either, |
conf.level |
the confidence level ( |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor) such
as that obtained from |
gamdisp |
if gamma GLM is used, the dispersion parameter should be specified here to apply the same value to each model. |
parm.type |
this argument specifies the parameter type on which the
model-averaged estimate of a predictor will be computed and is only
relevant for models of |
... |
additional arguments passed to the function. |
The parameter for which a model-averaged estimate is requested must be
specified with the parm
argument and must be identical to its
label in the model output (e.g., from summary
). For factors, one
must specify the name of the variable and the level of interest. The
shrinkage version of model averaging is only appropriate for cases where
each parameter is given an equal weighting in the model (i.e., each
parameter must appear the same number of times in the models) and has
the same interpretation across all models. As a result, models with
interaction terms or polynomial terms are not supported by
modavgShrink
.
modavgShrink
is implemented for a list containing objects of
aov
, betareg
, clm
, clmm
, clogit
,
coxme
, coxph
, glm
, glmmTMB
, gls
,
hurdle
, lm
, lme
, lmekin
, maxlikeFit
,
mer
, glmerMod
, lmerMod
, lmerModLmerTest
,
multinom
, polr
, rlm
, survreg
, vglm
,
zeroinfl
classes as well as various models of unmarkedFit
classes.
modavgShrink
creates an object of class modavgShrink
with the following components:
Parameter |
the parameter for which a model-averaged estimate with shrinkage was obtained. |
Mod.avg.table |
the model selection table based on models including the parameter of interest. |
Mod.avg.beta |
the model-averaged estimate based on all models. |
Uncond.SE |
the unconditional standard error for the model-averaged estimate (as opposed to the conditional SE based on a single model). |
Conf.level |
the confidence level used to compute the confidence interval. |
Lower.CL |
the lower confidence limit. |
Upper.CL |
the upper confidence limit. |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Buckland, S. T., Burnham, K. P., Augustin, N. H. (1997) Model selection: an integral part of inference. Biometrics 53, 603–618.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33, 261–304.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Lukacs, P. M., Burnham, K. P., Anderson, D. R. (2010) Model selection bias and Freedman's paradox. Annals of the Institute of Statistical Mathematics 62, 117–125.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
AICc
, aictab
, c_hat
,
importance
, confset
, evidence
,
modavg
, modavgCustom
,
modavgPred
##cement example in Burnham and Anderson 2002 data(cement) ##setup same model set as in Table 3.2, p. 102 Cand.models <- list( ) Cand.models[[1]] <- lm(y ~ x1 + x2, data = cement) Cand.models[[2]] <- lm(y ~ x1 + x2 + x4, data = cement) Cand.models[[3]] <- lm(y ~ x1 + x2 + x3, data = cement) Cand.models[[4]] <- lm(y ~ x1 + x4, data = cement) Cand.models[[5]] <- lm(y ~ x1 + x3 + x4, data = cement) Cand.models[[6]] <- lm(y ~ x2 + x3 + x4, data = cement) Cand.models[[7]] <- lm(y ~ x1 + x2 + x3 + x4, data = cement) Cand.models[[8]] <- lm(y ~ x3 + x4, data = cement) Cand.models[[9]] <- lm(y ~ x2 + x3, data = cement) Cand.models[[10]] <- lm(y ~ x4, data = cement) Cand.models[[11]] <- lm(y ~ x2, data = cement) Cand.models[[12]] <- lm(y ~ x2 + x4, data = cement) Cand.models[[13]] <- lm(y ~ x1, data = cement) Cand.models[[14]] <- lm(y ~ x1 + x3, data = cement) Cand.models[[15]] <- lm(y ~ x3, data = cement) ##vector of model names Modnames <- paste("mod", 1:15, sep="") ##AICc aictab(cand.set = Cand.models, modnames = Modnames) ##compute model-averaged estimate with shrinkage - each parameter ##appears 8 times in the models modavgShrink(cand.set = Cand.models, modnames = Modnames, parm = "x1") ##compare against classic model-averaging modavg(cand.set = Cand.models, modnames = Modnames, parm = "x1") ##note that model-averaged estimate with shrinkage is closer to 0 than ##with the classic version ##remove a few models from the set and run again Cand.unbalanced <- Cand.models[-c(3, 14, 15)] ##set up model names Modnames <- paste("mod", 1:length(Cand.unbalanced), sep="") ##issues an error because some parameters appear more often than others ## Not run: modavgShrink(cand.set = Cand.unbalanced, modnames = Modnames, parm = "x1") ## End(Not run) ##example on Orthodont data set in nlme ## Not run: require(nlme) ##set up candidate model list ##age and sex parameters appear in the same number of models ##same number of models with and without these parameters Cand.models <- list( ) Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method = "ML") ##random is ~ age | Subject as it is a grouped data frame Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1, method = "ML") Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont, random = ~ 1, method = "ML") Cand.models[[4]] <- lme(distance ~ Sex, data = Orthodont, random = ~ 1, method = "ML") ##create a vector of model names Modnames <- paste("mod", 1:length(Cand.models), sep = "") ##compute importance values for age imp.age <- importance(cand.set = Cand.models, parm = "age", modnames = Modnames, second.ord = TRUE, nobs = NULL) ##compute shrinkage version of model averaging on age mod.avg.age.shrink <- modavgShrink(cand.set = Cand.models, parm = "age", modnames = Modnames, second.ord = TRUE, nobs = NULL) ##compute classic version of model averaging on age mod.avg.age.classic <- modavg(cand.set = Cand.models, parm = "age", modnames = Modnames, second.ord = TRUE, nobs = NULL) ##correspondence between shrinkage version and classic version of ##model averaging mod.avg.age.shrink$Mod.avg.beta/imp.age$w.plus mod.avg.age.classic$Mod.avg.beta detach(package:nlme) ## End(Not run) ##example of N-mixture model modified from ?pcount ## Not run: require(unmarked) data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##set up models so that each variable on abundance appears twice fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF, K = 30) fm.mall.two <- pcount(~ ivel + date ~ elev + forest, mallardUMF, K = 30) fm.mall.three <- pcount(~ ivel + date ~ length + elev, mallardUMF, K = 30) ##model list and names Cands <- list(fm.mall.one, fm.mall.two, fm.mall.three) Modnames <- c("length + forest", "elev + forest", "length + elev") ##compute model-averaged estimate with shrinkage for elev on abundance modavgShrink(cand.set = Cands, modnames = Modnames, parm = "elev", parm.type = "lambda") detach(package:unmarked) ## End(Not run)
##cement example in Burnham and Anderson 2002 data(cement) ##setup same model set as in Table 3.2, p. 102 Cand.models <- list( ) Cand.models[[1]] <- lm(y ~ x1 + x2, data = cement) Cand.models[[2]] <- lm(y ~ x1 + x2 + x4, data = cement) Cand.models[[3]] <- lm(y ~ x1 + x2 + x3, data = cement) Cand.models[[4]] <- lm(y ~ x1 + x4, data = cement) Cand.models[[5]] <- lm(y ~ x1 + x3 + x4, data = cement) Cand.models[[6]] <- lm(y ~ x2 + x3 + x4, data = cement) Cand.models[[7]] <- lm(y ~ x1 + x2 + x3 + x4, data = cement) Cand.models[[8]] <- lm(y ~ x3 + x4, data = cement) Cand.models[[9]] <- lm(y ~ x2 + x3, data = cement) Cand.models[[10]] <- lm(y ~ x4, data = cement) Cand.models[[11]] <- lm(y ~ x2, data = cement) Cand.models[[12]] <- lm(y ~ x2 + x4, data = cement) Cand.models[[13]] <- lm(y ~ x1, data = cement) Cand.models[[14]] <- lm(y ~ x1 + x3, data = cement) Cand.models[[15]] <- lm(y ~ x3, data = cement) ##vector of model names Modnames <- paste("mod", 1:15, sep="") ##AICc aictab(cand.set = Cand.models, modnames = Modnames) ##compute model-averaged estimate with shrinkage - each parameter ##appears 8 times in the models modavgShrink(cand.set = Cand.models, modnames = Modnames, parm = "x1") ##compare against classic model-averaging modavg(cand.set = Cand.models, modnames = Modnames, parm = "x1") ##note that model-averaged estimate with shrinkage is closer to 0 than ##with the classic version ##remove a few models from the set and run again Cand.unbalanced <- Cand.models[-c(3, 14, 15)] ##set up model names Modnames <- paste("mod", 1:length(Cand.unbalanced), sep="") ##issues an error because some parameters appear more often than others ## Not run: modavgShrink(cand.set = Cand.unbalanced, modnames = Modnames, parm = "x1") ## End(Not run) ##example on Orthodont data set in nlme ## Not run: require(nlme) ##set up candidate model list ##age and sex parameters appear in the same number of models ##same number of models with and without these parameters Cand.models <- list( ) Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method = "ML") ##random is ~ age | Subject as it is a grouped data frame Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1, method = "ML") Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont, random = ~ 1, method = "ML") Cand.models[[4]] <- lme(distance ~ Sex, data = Orthodont, random = ~ 1, method = "ML") ##create a vector of model names Modnames <- paste("mod", 1:length(Cand.models), sep = "") ##compute importance values for age imp.age <- importance(cand.set = Cand.models, parm = "age", modnames = Modnames, second.ord = TRUE, nobs = NULL) ##compute shrinkage version of model averaging on age mod.avg.age.shrink <- modavgShrink(cand.set = Cand.models, parm = "age", modnames = Modnames, second.ord = TRUE, nobs = NULL) ##compute classic version of model averaging on age mod.avg.age.classic <- modavg(cand.set = Cand.models, parm = "age", modnames = Modnames, second.ord = TRUE, nobs = NULL) ##correspondence between shrinkage version and classic version of ##model averaging mod.avg.age.shrink$Mod.avg.beta/imp.age$w.plus mod.avg.age.classic$Mod.avg.beta detach(package:nlme) ## End(Not run) ##example of N-mixture model modified from ?pcount ## Not run: require(unmarked) data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##set up models so that each variable on abundance appears twice fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF, K = 30) fm.mall.two <- pcount(~ ivel + date ~ elev + forest, mallardUMF, K = 30) fm.mall.three <- pcount(~ ivel + date ~ length + elev, mallardUMF, K = 30) ##model list and names Cands <- list(fm.mall.one, fm.mall.two, fm.mall.three) Modnames <- c("length + forest", "elev + forest", "length + elev") ##compute model-averaged estimate with shrinkage for elev on abundance modavgShrink(cand.set = Cands, modnames = Modnames, parm = "elev", parm.type = "lambda") detach(package:unmarked) ## End(Not run)
This function is an alternative to traditional multiple comparison
tests in designed experiments. It creates a model selection table based
on different grouping patterns of a factor and computes model-averaged
predictions for each of the factor levels. The current version works
with objects of aov
, glm
, gls
, lm
,
lme
, mer
, merMod
, lmerModLmerTest
,
negbin
, and rlm
, survreg
classes.
multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...) ## S3 method for class 'aov' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...) ## S3 method for class 'lm' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...) ## S3 method for class 'gls' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...) ## S3 method for class 'glm' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", type = "response", c.hat = 1, gamdisp = NULL, ...) ## S3 method for class 'lme' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...) ## S3 method for class 'negbin' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", type = "response", ...) ## S3 method for class 'rlm' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...) ## S3 method for class 'survreg' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", type = "response", ...) ## S3 method for class 'mer' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", type = "response", ...) ## S3 method for class 'merMod' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", type = "response", ...) ## S3 method for class 'lmerModLmerTest' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...)
multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...) ## S3 method for class 'aov' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...) ## S3 method for class 'lm' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...) ## S3 method for class 'gls' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...) ## S3 method for class 'glm' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", type = "response", c.hat = 1, gamdisp = NULL, ...) ## S3 method for class 'lme' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...) ## S3 method for class 'negbin' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", type = "response", ...) ## S3 method for class 'rlm' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...) ## S3 method for class 'survreg' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", type = "response", ...) ## S3 method for class 'mer' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", type = "response", ...) ## S3 method for class 'merMod' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", type = "response", ...) ## S3 method for class 'lmerModLmerTest' multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised", conf.level = 0.95, correction = "none", ...)
mod |
a model of one of the above-mentioned classes that includes at least one factor as an explanatory variable. |
factor.id |
the factor of interest, on which the groupings (multiple comparisons) are based. The user must supply the name of the categorical variable between quotes as it appears in the model formula. |
letter.labels |
logical. If |
second.ord |
logical. If |
nobs |
this argument allows to specify a numeric value other than total sample
size to compute the AICc (i.e., |
sort |
logical. If |
newdata |
a data frame with the same structure as that of the original data
frame for which we want to make predictions. This data frame should
hold all variables constant other than the |
uncond.se |
either, |
conf.level |
the confidence level ( |
correction |
the type of correction applied to obtain confidence
intervals for simultaneous inference (i.e., corrected for multiple
comparisons). Current corrections include |
type |
the scale of prediction requested, one of |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor)
such as that obtained from |
gamdisp |
the value of the gamma dispersion parameter in a gamma GLM. |
... |
additional arguments passed to the function. |
A number of pairwise comparison tests are available for traditional experimental designs, some controlling for the experiment-wise error and others for comparison-wise errors (Day and Quinn 1991). With the advent of information-theoretic approaches, there has been a need for methods analogous to multiple comparison tests in a model selection framework. Dayton (1998) and Burnham et al. (2011) suggested using different parameterizations or grouping patterns of a factor to perform multiple comparisons with model selection. As such, it is possible to assess the support in favor of certain grouping patterns based on a factor.
For example, a factor with three levels has four possible grouping
patterns: {abc} (all groups are different), {abb} (the first group
differs from the other two), {aab} (the first two groups differ from the
third), and {aaa} (all groups are equal). multComp
implements
such an approach by pooling groups of the factor variable in a model and
updating the model, for each grouping pattern possible. The models are
ranked according to one of four information criteria (AIC, AICc, QAIC,
and QAICc), and the labels in the table correspond to the grouping
pattern. Note that the factor levels are sorted according to their means
for the response variable before being assigned to a group. The
function also returns model-averaged predictions and unconditional
standard errors for each level of the factor.id
variable based on
the support in favor of each model (i.e., grouping pattern).
The number of grouping patterns increases substantially with the number
of factor levels, as , where
is the number of
factor levels.
multComp
supports factors with a maximum of 6
levels. Also note that multComp
does not handle models where
the factor.id
variable is involved in an interaction. In such
cases, one should create the interaction variable manually before
fitting the model (see Examples).
multComp
currently implements three methods of computing
confidence intervals. The default unconditional confidence intervals
do not account for multiple comparisons (correction = "none"
).
With a large number of potential pairwise comparisons among
levels of
factor.id
, there is an increased risk of type I
error. For pairwise comparisons and a given
level,
correction = "bonferroni"
computes the unconditional
confidence intervals based on
(Dunn 1961). When
correction = "sidak"
, multComp
reports Sidak-adjusted confidence intervals, i.e., .
multComp
creates a list of class multComp
with the
following components:
factor.id |
the factor for which grouping patterns are investigated. |
models |
a list with the output of each model representing a different grouping pattern for the factor of interest. |
model.names |
a vector of model names denoting the grouping pattern for each level of the factor. |
model.table |
the model selection table for the models corresponding to each grouping pattern for the factor of interest. |
ordered.levels |
the levels of the factor ordered according to the mean of the response variable. The grouping patterns (and model names) in the model selection table are based on the same order. |
model.avg.est |
a matrix with the model-averaged prediction, unconditional standard error, and confidence intervals for each level of the factor. |
conf.level |
the confidence level used for the confidence intervals. |
correction |
the type of correction applied to the confidence intervals to account for potential pairwise comparisons. |
Marc J. Mazerolle
Burnham, K. P., Anderson, D. R., Huyvaert, K. P. (2011) AIC model selection and multimodel inference in behaviorial ecology: some background, observations and comparisons. Behavioral Ecology and Sociobiology 65, 23–25.
Day, R. W., Quinn, G. P. (1989) Comparisons of treatments after an analysis of variance in ecology. Ecological Monographs 59, 433–463.
Dayton, C. M. (1998) Information criteria for the paired-comparisons problem. American Statistician, 52 144–151.
Dunn, O. J. (1961) Multiple comparisons among means. Journal of the American Statistical Association 56, 52–64.
Sidak, Z. (1967) Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association 62, 626–633.
aictab
, confset
, c_hat
,
evidence
, glht
, fit.contrast
##one-way ANOVA example data(turkey) ##convert diet to factor turkey$Diet <- as.factor(turkey$Diet) ##run one-way ANOVA m.aov <- lm(Weight.gain ~ Diet, data = turkey) ##compute models with different grouping patterns ##and also compute model-averaged group means out <- multComp(m.aov, factor.id = "Diet", correction = "none") ##look at results out ##look at grouping structure of a given model ##and compare with original variable cbind(model.frame(out$models[[2]]), turkey$Diet) ##evidence ratio evidence(out$model.table) ##compute Bonferroni-adjusted confidence intervals multComp(m.aov, factor.id = "Diet", correction = "bonferroni") ##two-way ANOVA with interaction ## Not run: data(calcium) m.aov2 <- lm(Calcium ~ Hormone + Sex + Hormone:Sex, data = calcium) ##multiple comparisons multComp(m.aov2, factor.id = "Hormone") ##returns an error because 'Hormone' factor is ##involved in an interaction ##create interaction variable calcium$inter <- interaction(calcium$Hormone, calcium$Sex) ##run model with interaction m.aov.inter <- lm(Calcium ~ inter, data = calcium) ##compare both logLik(m.aov2) logLik(m.aov.inter) ##both are identical ##multiple comparisons multComp(m.aov.inter, factor.id = "inter") ## End(Not run) ##Poisson regression ## Not run: ##example from ?glm ##Dobson (1990) Page 93: Randomized Controlled Trial : counts <- c(18,17,15,20,10,20,25,13,12) outcome <- gl(3,1,9) treatment <- gl(3,3) print(d.AD <- data.frame(treatment, outcome, counts)) glm.D93 <- glm(counts ~ outcome + treatment, data = d.AD, family = poisson) multComp(mod = glm.D93, factor.id = "outcome") ## End(Not run) ##example specifying 'newdata' ## Not run: data(dry.frog) m1 <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) multComp(m1, factor.id = "Substrate", newdata = data.frame( Substrate = c("PEAT", "SOIL", "SPHAGNUM"), Shade = 0, cent_Initial_mass = 0, Initial_mass2 = 0)) ## End(Not run)
##one-way ANOVA example data(turkey) ##convert diet to factor turkey$Diet <- as.factor(turkey$Diet) ##run one-way ANOVA m.aov <- lm(Weight.gain ~ Diet, data = turkey) ##compute models with different grouping patterns ##and also compute model-averaged group means out <- multComp(m.aov, factor.id = "Diet", correction = "none") ##look at results out ##look at grouping structure of a given model ##and compare with original variable cbind(model.frame(out$models[[2]]), turkey$Diet) ##evidence ratio evidence(out$model.table) ##compute Bonferroni-adjusted confidence intervals multComp(m.aov, factor.id = "Diet", correction = "bonferroni") ##two-way ANOVA with interaction ## Not run: data(calcium) m.aov2 <- lm(Calcium ~ Hormone + Sex + Hormone:Sex, data = calcium) ##multiple comparisons multComp(m.aov2, factor.id = "Hormone") ##returns an error because 'Hormone' factor is ##involved in an interaction ##create interaction variable calcium$inter <- interaction(calcium$Hormone, calcium$Sex) ##run model with interaction m.aov.inter <- lm(Calcium ~ inter, data = calcium) ##compare both logLik(m.aov2) logLik(m.aov.inter) ##both are identical ##multiple comparisons multComp(m.aov.inter, factor.id = "inter") ## End(Not run) ##Poisson regression ## Not run: ##example from ?glm ##Dobson (1990) Page 93: Randomized Controlled Trial : counts <- c(18,17,15,20,10,20,25,13,12) outcome <- gl(3,1,9) treatment <- gl(3,3) print(d.AD <- data.frame(treatment, outcome, counts)) glm.D93 <- glm(counts ~ outcome + treatment, data = d.AD, family = poisson) multComp(mod = glm.D93, factor.id = "outcome") ## End(Not run) ##example specifying 'newdata' ## Not run: data(dry.frog) m1 <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) multComp(m1, factor.id = "Substrate", newdata = data.frame( Substrate = c("PEAT", "SOIL", "SPHAGNUM"), Shade = 0, cent_Initial_mass = 0, Initial_mass2 = 0)) ## End(Not run)
This is a capture-mark-recapture data set on adult male and female Red-spotted Newts (Notophthalmus viridescens) recorded by Gill (1985). A total of 1079 unique individuals were captured in pitfall traps at a breeding site (White Oak Flat pond, Virginia) between 1975 and 1983.
data(newt)
data(newt)
A data frame with 78 observations on the following 11 variables.
T1975
a binary variable, either 1 (captured) or 0 (not captured) during the 1975 breeding season.
T1976
a binary variable, either 1 (captured) or 0 (not captured) during the 1976 breeding season.
T1977
a binary variable, either 1 (captured) or 0 (not captured) during the 1977 breeding season.
T1978
a binary variable, either 1 (captured) or 0 (not captured) during the 1978 breeding season.
T1979
a binary variable, either 1 (captured) or 0 (not captured) during the 1979 breeding season.
T1980
a binary variable, either 1 (captured) or 0 (not captured) during the 1980 breeding season.
T1981
a binary variable, either 1 (captured) or 0 (not captured) during the 1981 breeding season.
T1982
a binary variable, either 1 (captured) or 0 (not captured) during the 1982 breeding season.
T1983
a binary variable, either 1 (captured) or 0 (not captured) during the 1983 breeding season.
Males
a numeric variable indicating the total number of males with a given capture history.
Females
a numeric variable indicating the total number of females with a given capture history.
A single cohort of individuals was followed throughout the study, as all individuals were marked in 1975 and no new individuals were added during the subsequent years. This data set is used to illustrate classic Cormack-Jolly-Seber and related models (Cormack 1964, Jolly 1965, Seber 1965, Lebreton et al. 1992, Mazerolle 2015).
Cormack, R. M. (1964) Estimates of survival from the sighting of marked animals. Biometrika 51, 429–438.
Gill, D. E. (1985) Interpreting breeding patterns from census data: a solution to the Husting dilemma. Ecology 66, 344–354.
Jolly, G. M. (1965) Explicit estimates from capture-recapture data with both death and immigration: stochastic model. Biometrika 52, 225–247.
Laake, J. L. (2013) RMark: an R interface for analysis of capture-recapture data with MARK. Alaska Fisheries Science Center (AFSC), National Oceanic and Atmospheric Administration, National Marine Fisheries Service, AFSC Report 2013-01.
Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case-studies. Ecological Monographs 62, 67-118.
Mazerolle, M. J. (2015) Estimating detectability and biological parameters of interest with the use of the R environment. Journal of Herpetology 49, 541–559.
Seber, G. A. F. (1965) A note on the multiple-recapture census. Biometrika 52, 249–259.
data(newt) str(newt) ##convert raw capture data to capture histories captures <- newt[, c("T1975", "T1976", "T1977", "T1978", "T1979", "T1980", "T1981", "T1982", "T1983")] newt.ch <- apply(captures, MARGIN = 1, FUN = function(i) paste(i, collapse = "")) ##organize as a data frame readable by RMark package (Laake 2013) ##RMark requires at least one column called "ch" ##and another "freq" if summarized captures are provided newt.full <- data.frame(ch = rep(newt.ch, 2), freq = c(newt$Males, newt$Females), Sex = c(rep("male", length(newt.ch)), rep("female", length(newt.ch)))) str(newt.full) newt.full$ch <- as.character(newt.full$ch) ##delete rows with 0 freqs newt.full.orig <- newt.full[which(newt.full$freq != 0), ]
data(newt) str(newt) ##convert raw capture data to capture histories captures <- newt[, c("T1975", "T1976", "T1977", "T1978", "T1979", "T1980", "T1981", "T1982", "T1983")] newt.ch <- apply(captures, MARGIN = 1, FUN = function(i) paste(i, collapse = "")) ##organize as a data frame readable by RMark package (Laake 2013) ##RMark requires at least one column called "ch" ##and another "freq" if summarized captures are provided newt.full <- data.frame(ch = rep(newt.ch, 2), freq = c(newt$Males, newt$Females), Sex = c(rep("male", length(newt.ch)), rep("female", length(newt.ch)))) str(newt.full) newt.full$ch <- as.character(newt.full$ch) ##delete rows with 0 freqs newt.full.orig <- newt.full[which(newt.full$freq != 0), ]
These functions compute a goodness-of-fit test for N-mixture models based on Pearson's chi-square.
##methods for 'unmarkedFitPCount', 'unmarkedFitPCO', ##'unmarkedFitDS', 'unmarkedFitGDS', 'unmarkedFitGMM', ##'unmarkedFitGPC', and 'unmarkedFitMPois' classes Nmix.chisq(mod, ...) Nmix.gof.test(mod, nsim = 5, plot.hist = TRUE, report = NULL, parallel = TRUE, ncores, cex.axis = 1, cex.lab = 1, cex.main = 1, lwd = 1, ...)
##methods for 'unmarkedFitPCount', 'unmarkedFitPCO', ##'unmarkedFitDS', 'unmarkedFitGDS', 'unmarkedFitGMM', ##'unmarkedFitGPC', and 'unmarkedFitMPois' classes Nmix.chisq(mod, ...) Nmix.gof.test(mod, nsim = 5, plot.hist = TRUE, report = NULL, parallel = TRUE, ncores, cex.axis = 1, cex.lab = 1, cex.main = 1, lwd = 1, ...)
mod |
the N-mixture model of |
nsim |
the number of bootstrapped samples. |
plot.hist |
logical. Specifies that a histogram of the bootstrapped test statistic is to be included in the output. |
report |
If |
parallel |
logical. If |
ncores |
integer indicating the number of cores to use when
bootstrapping in parallel during the analysis of simulated data sets.
If |
cex.axis |
expansion factor influencing the size of axis annotations on plots produced by the function. |
cex.lab |
expansion factor influencing the size of axis labels on plots produced by the function. |
cex.main |
expansion factor influencing the size of the main title above plots produced by the function. |
lwd |
expansion factor of line width on plots produced by the function. |
... |
additional arguments passed to the function. |
The Pearson chi-square can be used to assess the fit of N-mixture
models. Instead of relying on the theoretical distribution of the
chi-square, a parametric bootstrap approach is implemented to obtain
P-values with the parboot
function of the unmarked
package. Nmix.chisq
computes the observed chi-square statistic
based on the observed and expected counts from the model.
Nmix.gof.test
calls internally Nmix.chisq
and
parboot
to generate simulated data sets based on the model and
compute the chi-square test statistic.
It is also possible to obtain an estimate of the overdispersion parameter (c-hat) for the model at hand by dividing the observed chi-square statistic by the mean of the statistics obtained from simulation (MacKenzie and Bailey 2004, McKenny et al. 2006). This method of estimating c-hat is similar to the one implemented for capture-mark-recapture models in program MARK (White and Burnham 1999).
Note that values of c-hat > 1 indicate overdispersion (variance > mean). Values much higher than 1 (i.e., > 4) probably indicate lack-of-fit. In cases of moderate overdispersion, one can multiply the variance-covariance matrix of the estimates by c-hat. As a result, the SE's of the estimates are inflated (c-hat is also known as a variance inflation factor).
In model selection, c-hat should be estimated from the global model and the same value of c-hat applied to the entire model set. Specifically, a global model is the most complex model which can be simplified to yield all the other (nested) models of the set. When no single global model exists in the set of models considered, such as when sample size does not allow a complex model, one can estimate c-hat from 'subglobal' models. Here, 'subglobal' models denote models from which only a subset of the models of the candidate set can be derived. In such cases, one can use the smallest value of c-hat for model selection (Burnham and Anderson 2002).
Note that c-hat counts as an additional parameter estimated and should
be added to K. All functions in package AICcmodavg
automatically add 1 when the c.hat
argument > 1 and apply the
same value of c-hat for the entire model set. When c-hat > 1, functions
compute quasi-likelihood information criteria (either QAICc or QAIC,
depending on the value of the second.ord
argument) by scaling the
log-likelihood of the model by c-hat. The value of c-hat can influence
the ranking of the models: as c-hat increases, QAIC or QAICc will favor
models with fewer parameters. As an additional check against this
potential problem, one can generate several model selection tables by
incrementing values of c-hat to assess the model selection uncertainty.
If ranking changes only slightly up to the c-hat value observed, one can
be confident in making inference.
In cases of underdispersion (c-hat < 1), it is recommended to keep the value of c-hat to 1. However, note that values of c-hat << 1 can also indicate lack-of-fit and that an alternative model should be investigated.
Nmix.chisq
returns two value:
chi.square |
the Pearson chi-square statistic. |
model.type |
the class of the fitted model. |
Nmix.gof.test
returns the following components:
model.type |
the class of the fitted model. |
chi.square |
the Pearson chi-square statistic. |
t.star |
the bootstrapped chi-square test statistics (i.e., obtained for each of the simulated data sets). |
p.value |
the P-value assessed from the parametric bootstrap, computed as the proportion of the simulated test statistics greater than or equal to the observed test statistic. |
c.hat.est |
the estimate of the overdispersion parameter, c-hat, computed as the observed test statistic divided by the mean of the simulated test statistics. |
nsim |
the number of bootstrap samples. The recommended number of samples varies with the data set, but should be on the order of 1000 or 5000, and in cases with a large number of visits, even 10 000 samples, namely to reduce the effect of unusually small values of the test statistics. |
Marc J. Mazerolle
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
MacKenzie, D. I., Bailey, L. L. (2004) Assessing the fit of site-occupancy models. Journal of Agricultural, Biological, and Environmental Statistics 9, 300–318.
McKenny, H. C., Keeton, W. S., Donovan, T. M. (2006). Effects of structural complexity enhancement on eastern red-backed salamander (Plethodon cinereus) populations in northern hardwood forests. Forest Ecology and Management 230, 186–196.
White, G. C., Burnham, K. P. (1999). Program MARK: Survival estimation from populations of marked animals. Bird Study 46 (Supplement), 120–138.
AICc
, c_hat
, evidence
,
modavg
, importance
,
mb.gof.test
, modavgPred
,
pcount
, pcountOpen
,
parboot
##N-mixture model example modified from ?pcount ## Not run: require(unmarked) ##single season data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##run model fm.mallard <- pcount(~ ivel+ date + I(date^2) ~ length + elev + forest, mallardUMF, K=30) ##compute observed chi-square obs <- Nmix.chisq(fm.mallard) obs ##round to 4 digits after decimal point print(obs, digits.vals = 4) ##compute observed chi-square, assess significance, and estimate c-hat obs.boot <- Nmix.gof.test(fm.mallard, nsim = 10) ##note that more bootstrap samples are recommended ##(e.g., 1000, 5000, or 10 000) obs.boot print(obs.boot, digits.vals = 4, digits.chisq = 4) detach(package:unmarked) ## End(Not run)
##N-mixture model example modified from ?pcount ## Not run: require(unmarked) ##single season data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##run model fm.mallard <- pcount(~ ivel+ date + I(date^2) ~ length + elev + forest, mallardUMF, K=30) ##compute observed chi-square obs <- Nmix.chisq(fm.mallard) obs ##round to 4 digits after decimal point print(obs, digits.vals = 4) ##compute observed chi-square, assess significance, and estimate c-hat obs.boot <- Nmix.gof.test(fm.mallard, nsim = 10) ##note that more bootstrap samples are recommended ##(e.g., 1000, 5000, or 10 000) obs.boot print(obs.boot, digits.vals = 4, digits.chisq = 4) detach(package:unmarked) ## End(Not run)
This data set consists of the strength of pine wood as a function of density or density adjusted for resin content.
data(pine)
data(pine)
A data frame with 42 observations on the following 3 variables.
y
pine wood strength.
x
pine wood density.
z
pine wood density adjusted for resin content.
Burnham and Anderson (2002, p. 183) use this data set originally from Carlin and Chib (1995) to illustrate model selection for two competing and non-nested models.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Carlin, B. P., Chib, S. (1995) Bayesian model choice via Markov chain Monte Carlo methods. Journal of the Royal Statistical Society, Series B 57, 473–484.
data(pine) ## maybe str(pine) ; plot(pine) ...
data(pine) ## maybe str(pine) ; plot(pine) ...
Function to compute predicted values based on linear predictor and associated standard errors from various fitted models.
predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, ...) ## S3 method for class 'gls' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, ...) ## S3 method for class 'lme' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, level = 0, ...) ## S3 method for class 'mer' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, level = 0, type = "response", ...) ## S3 method for class 'merMod' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, level = 0, type = "response", ...) ## S3 method for class 'lmerModLmerTest' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, level = 0, ...) ## S3 method for class 'unmarkedFitPCount' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, type = "response", c.hat = 1, parm.type = "lambda", ...) ## S3 method for class 'unmarkedFitPCO' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, type = "response", c.hat = 1, parm.type = "lambda", ...)
predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, ...) ## S3 method for class 'gls' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, ...) ## S3 method for class 'lme' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, level = 0, ...) ## S3 method for class 'mer' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, level = 0, type = "response", ...) ## S3 method for class 'merMod' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, level = 0, type = "response", ...) ## S3 method for class 'lmerModLmerTest' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, level = 0, ...) ## S3 method for class 'unmarkedFitPCount' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, type = "response", c.hat = 1, parm.type = "lambda", ...) ## S3 method for class 'unmarkedFitPCO' predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, type = "response", c.hat = 1, parm.type = "lambda", ...)
mod |
an object of class |
newdata |
a data frame with the same structure as that of the original data frame for which we want to make predictions. |
se.fit |
logical. If |
print.matrix |
logical. If |
level |
the level for which predicted values and standard errors are to be
computed. The current version of the function only supports
predictions for the populations excluding random effects (i.e.,
|
type |
specifies the type of prediction requested. This argument can take
the value |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor)
such as that obtained from |
parm.type |
the parameter for which predictions are made based on the
N-mixture model of class |
... |
additional arguments passed to the function. |
predictSE
computes predicted values and associated standard
errors. Standard errors are approximated using the delta method
(Oehlert 1992). Predictions and standard errors for objects of
gls
class and mixed models of lme
, mer
,
merMod
, lmerModLmerTest
classes exclude the
correlation or variance structure of the model.
predictSE
computes predicted values on abundance and standard
errors based on the estimates from an unmarkedFitPCount
or
unmarkedFitPCO
object. Currently, only predictions on
abundance (i.e., parm.type = "lambda"
) with the zero-inflated
Poisson distribution is supported. For other parameters or
distributions for models of unmarkedFit
classes, use
predict
from the unmarked
package.
predictSE
returns requested values either as a matrix
(print.matrix = TRUE
) or list (print.matrix = FALSE
)
with components:
fit |
the predicted values. |
se.fit |
the standard errors of the predicted values (if |
For standard errors with better properties, especially for small samples, one can opt for simulations (see Gelman and Hill 2007), or nonparametric bootstrap (Efron and Tibshirani 1998).
Marc J. Mazerolle
Efron, B., Tibshirani, R. J. (1998) An Introduction to the Bootstrap. Chapman & Hall/CRC: New York.
Gelman, A., Hill, J. (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press: New York.
Oehlert, G. W. (1992) A note on the delta method. American Statistician 46, 27–29.
gls
, lme
, glmer
,
simulate.merMod
, boot
,
parboot
, nonparboot
,
pcount
, pcountOpen
,
unmarkedFit-class
##Orthodont data from Pinheiro and Bates (2000) revisited ## Not run: require(nlme) m1 <- gls(distance ~ age, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject), data = Orthodont, method= "ML") ##compare against lme fit logLik(m1) logLik(lme(distance ~ age, random = ~1 | Subject, data = Orthodont, method= "ML")) ##both are identical ##compute predictions and SE's for different ages predictSE(m1, newdata = data.frame(age = c(8, 10, 12, 14))) detach(package:nlme) ## End(Not run) ##example with mallard data set from unmarked package ## Not run: require(unmarked) data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##run model with zero-inflated Poisson abundance fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF, K=30, mixture = "ZIP") ##make prediction predictSE(fm.mall.one, type = "response", parm.type = "lambda", newdata = data.frame(length = 0, forest = 0, elev = 0)) ##compare against predict predict(fm.mall.one, type = "state", backTransform = TRUE, newdata = data.frame(length = 0, forest = 0, elev = 0)) ##add offset in model to scale abundance per transect length fm.mall.off <- pcount(~ ivel + date ~ forest + offset(length), mallardUMF, K=30, mixture = "ZIP") ##make prediction predictSE(fm.mall.off, type = "response", parm.type = "lambda", newdata = data.frame(length = 10, forest = 0, elev = 0)) ##compare against predict predict(fm.mall.off, type = "state", backTransform = TRUE, newdata = data.frame(length = 10, forest = 0, elev = 0)) detach(package:unmarked) ## End(Not run)
##Orthodont data from Pinheiro and Bates (2000) revisited ## Not run: require(nlme) m1 <- gls(distance ~ age, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject), data = Orthodont, method= "ML") ##compare against lme fit logLik(m1) logLik(lme(distance ~ age, random = ~1 | Subject, data = Orthodont, method= "ML")) ##both are identical ##compute predictions and SE's for different ages predictSE(m1, newdata = data.frame(age = c(8, 10, 12, 14))) detach(package:nlme) ## End(Not run) ##example with mallard data set from unmarked package ## Not run: require(unmarked) data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##run model with zero-inflated Poisson abundance fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF, K=30, mixture = "ZIP") ##make prediction predictSE(fm.mall.one, type = "response", parm.type = "lambda", newdata = data.frame(length = 0, forest = 0, elev = 0)) ##compare against predict predict(fm.mall.one, type = "state", backTransform = TRUE, newdata = data.frame(length = 0, forest = 0, elev = 0)) ##add offset in model to scale abundance per transect length fm.mall.off <- pcount(~ ivel + date ~ forest + offset(length), mallardUMF, K=30, mixture = "ZIP") ##make prediction predictSE(fm.mall.off, type = "response", parm.type = "lambda", newdata = data.frame(length = 10, forest = 0, elev = 0)) ##compare against predict predict(fm.mall.off, type = "state", backTransform = TRUE, newdata = data.frame(length = 10, forest = 0, elev = 0)) detach(package:unmarked) ## End(Not run)
This is a capture-mark-recapture data set on male and female Spotted Salamanders (Ambystoma maculatum) recorded by Husting (1965). A total of 1244 unique individuals were captured in pitfall traps at a breeding site between 1959 and 1963.
data(salamander)
data(salamander)
A data frame with 36 observations on the following 7 variables.
T1959
a binary variable, either 1 (captured) or 0 (not captured) during the 1959 breeding season.
T1960
a binary variable, either 1 (captured) or 0 (not captured) during the 1960 breeding season.
T1961
a binary variable, either 1 (captured) or 0 (not captured) during the 1961 breeding season.
T1962
a binary variable, either 1 (captured) or 0 (not captured) during the 1962 breeding season.
T1963
a binary variable, either 1 (captured) or 0 (not captured) during the 1963 breeding season.
Males
a numeric variable indicating the total number of males with a given capture history. Negative values indicate losses on capture (animals not released on last capture).
Females
a numeric variable indicating the total number of females with a given capture history. Negative values indicate losses on capture (animals not released on last capture).
This data set is used to illustrate classic Cormack-Jolly-Seber and related models (Cormack 1964, Jolly 1965, Seber 1965, Lebreton et al. 1992).
Cormack, R. M. (1964) Estimates of survival from the sighting of marked animals. Biometrika 51, 429–438.
Husting, E. L. (1965) Survival and breeding structure in a population of Ambystoma maculatum. Copeia 1965, 352–362.
Jolly, G. M. (1965) Explicit estimates from capture-recapture data with both death and immigration: stochastic model. Biometrika 52, 225–247.
Laake, J. L. (2013) RMark: an R interface for analysis of capture-recapture data with MARK. Alaska Fisheries Science Center (AFSC), National Oceanic and Atmospheric Administration, National Marine Fisheries Service, AFSC Report 2013-01.
Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case-studies. Ecological Monographs 62, 67-118.
Seber, G. A. F. (1965) A note on the multiple-recapture census. Biometrika 52, 249–259.
data(salamander) str(salamander) ##convert raw capture data to capture histories captures <- salamander[, c("T1959", "T1960", "T1961", "T1962", "T1963")] salam.ch <- apply(captures, MARGIN = 1, FUN = function(i) paste(i, collapse = "")) ##organize as a data frame readable by RMark package (Laake 2013) ##RMark requires at least one column called "ch" ##and another "freq" if summarized captures are provided salam.full <- data.frame(ch = rep(salam.ch, 2), freq = c(salamander$Males, salamander$Females), Sex = c(rep("male", length(salam.ch)), rep("female", length(salam.ch)))) str(salam.full) salam.full$ch <- as.character(salam.full$ch) ##delete rows with 0 freqs salam.full.orig <- salam.full[which(salam.full$freq != 0), ]
data(salamander) str(salamander) ##convert raw capture data to capture histories captures <- salamander[, c("T1959", "T1960", "T1961", "T1962", "T1963")] salam.ch <- apply(captures, MARGIN = 1, FUN = function(i) paste(i, collapse = "")) ##organize as a data frame readable by RMark package (Laake 2013) ##RMark requires at least one column called "ch" ##and another "freq" if summarized captures are provided salam.full <- data.frame(ch = rep(salam.ch, 2), freq = c(salamander$Males, salamander$Females), Sex = c(rep("male", length(salam.ch)), rep("female", length(salam.ch)))) str(salam.full) salam.full$ch <- as.character(salam.full$ch) ##delete rows with 0 freqs salam.full.orig <- salam.full[which(salam.full$freq != 0), ]
This function displays the estimates of a model with standard errors corrected for overdispersion for a variety of model classes. The output includes either confidence intervals based on the normal approximation or Wald hypothesis tests corrected for overdispersion.
summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'glm' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitOccu' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitColExt' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitOccuRN' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitPCount' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitPCO' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitDS' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitGDS' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitOccuFP' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitMPois' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitGMM' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitGPC' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitOccuMulti' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitOccuMS' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitOccuTTD' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitMMO' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitDSO' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'glmerMod' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'maxlikeFit' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'multinom' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'vglm' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...)
summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'glm' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitOccu' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitColExt' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitOccuRN' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitPCount' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitPCO' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitDS' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitGDS' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitOccuFP' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitMPois' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitGMM' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitGPC' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitOccuMulti' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitOccuMS' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitOccuTTD' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitMMO' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'unmarkedFitDSO' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'glmerMod' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'maxlikeFit' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'multinom' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...) ## S3 method for class 'vglm' summaryOD(mod, c.hat = 1, conf.level = 0.95, out.type = "confint", ...)
mod |
an object of class |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor)
such as that obtained from |
conf.level |
the confidence level ( |
out.type |
the type of summary requested for each parameter estimate. If
|
... |
additional arguments passed to the function. |
Overdispersion occurs when the variance in the data exceeds that
expected from a theoretical distribution such as the Poisson or
binomial (McCullagh and Nelder 1989, Burnham and Anderson 2002).
When the model is correct, small values of c-hat (1 < c-hat < 4) can
reflect minor deviations from model assumptions (Burnham and Anderson
2002). In such cases, it is possible to adjust standard errors of
parameter estimates by multiplying with sqrt(c.hat)
(McCullagh
and Nelder 1989). This is the correction applied by
summaryOD
.
Depending on the type of summary requested, i.e.,
out.type = "confint"
or out.type = "nhst"
,
summaryOD
will return either confidence intervals based on the
normal approximation or Wald tests for each parameter estimate
(Agresti 1990).
For binomial distributions, note that values of c.hat
> 1 are
only appropriate with trials > 1 (i.e., success/trial
or
cbind(success, failure)
syntax). The function supports
different model types such as Poisson GLM's and GLMM's, single-season
occupancy models (MacKenzie et al. 2002), dynamic occupancy models
(MacKenzie et al. 2003), or N-mixture models (Royle 2004, Dail
and Madsen 2011).
summaryOD
returns an object of class summaryOD
as a list with
the following components:
out.type |
the type of output requested by the user. |
c.hat |
the |
conf.level |
the confidence level used to compute confidence intervals around the estimates. |
outMat |
the output of the model corrected for overdispersion organized in a matrix. |
Marc J. Mazerolle
Agresti, A. (2002) Categorical Data Analysis. Second edition. John Wiley and Sons: New Jersey.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
McCullagh, P., Nelder, J. A. (1989) Generalized Linear Models. Second edition. Chapman and Hall: New York.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
c_hat
, mb.gof.test
,
Nmix.gof.test
, anovaOD
##anuran larvae example from Mazerolle (2006) data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##run model m1 <- glm(Num_anura ~ Type + log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model c_hat(m1) #uses Pearson's chi-square/df ##display results corrected for overdispersion summaryOD(m1, c_hat(m1)) summaryOD(m1, c_hat(m1), out.type = "nhst") ##example with occupancy model ## Not run: ##load unmarked package if(require(unmarked)){ data(bullfrog) ##detection data detections <- bullfrog[, 3:9] ##assemble in unmarkedFrameOccu bfrog <- unmarkedFrameOccu(y = detections) ##run model fm <- occu(~ 1 ~ 1, data = bfrog) ##check GOF ##GOF <- mb.gof.test(fm, nsim = 1000) ##estimate of c-hat: 1.89 ##display results after overdispersion adjustment summaryOD(fm, c.hat = 1.89) summaryOD(fm, c.hat = 1.89, out.type = "nhst") detach(package:unmarked) } ## End(Not run)
##anuran larvae example from Mazerolle (2006) data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##run model m1 <- glm(Num_anura ~ Type + log.Perimeter + Num_ranatra, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model c_hat(m1) #uses Pearson's chi-square/df ##display results corrected for overdispersion summaryOD(m1, c_hat(m1)) summaryOD(m1, c_hat(m1), out.type = "nhst") ##example with occupancy model ## Not run: ##load unmarked package if(require(unmarked)){ data(bullfrog) ##detection data detections <- bullfrog[, 3:9] ##assemble in unmarkedFrameOccu bfrog <- unmarkedFrameOccu(y = detections) ##run model fm <- occu(~ 1 ~ 1, data = bfrog) ##check GOF ##GOF <- mb.gof.test(fm, nsim = 1000) ##estimate of c-hat: 1.89 ##display results after overdispersion adjustment summaryOD(fm, c.hat = 1.89) summaryOD(fm, c.hat = 1.89, out.type = "nhst") detach(package:unmarked) } ## End(Not run)
This simulated data set by Mazerolle (2015) is based on the biological
parameters for the Gopher Tortoise (Gopherus polyphemus) reported
by Smith et al. (2009). A half-normal distribution with a scale of 10
and without an adjustment factor was used to simulate the distance data
for a study area of 120 . An effort of 500 m in 300 line
transects was deployed. A density of 72 individuals per
was
used in the simulation using the approach outlined in Buckland et
al. (2001).
data(tortoise)
data(tortoise)
A data frame with 410 observations on the following 5 variables.
Region.Label
a numeric identifier for the study area.
Area
a numeric variable for the surface area of the study area in square meters.
Sample.Label
a numeric identifier for each line transect relating each observation to its corresponding transect.
Effort
Effort in meters expended in each line transect.
distance
a numeric variable for the perpendicular distances in meters relative to the transect line for each of the individuals detected during the survey. Note that transects without detections have a value of NA for this variable.
This data set is used to illustrate classic distance sampling (Buckland et al. 2001, Mazerolle 2015).
Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., Thomas, L. (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press: Oxford.
Mazerolle, M. J. (2015) Estimating detectability and biological parameters of interest with the use of the R environment. Journal of Herpetology 49, 541–559.
Smith, L. L., Linehan, J. M., Stober, J. M., Elliott, M. J., Jensen, J. B. (2009) An evaluation of distance sampling for large-scale gopher tortoise surveys in Georgia, USA. Applied Herpetology 6, 355–368.
data(tortoise) str(tortoise) ##plot distance data to determine if truncation is required ##(Buckland et al. 2001, pp. 15--17) hist(tortoise$distance)
data(tortoise) str(tortoise) ##plot distance data to determine if truncation is required ##(Buckland et al. 2001, pp. 15--17) hist(tortoise$distance)
This one-way ANOVA data set presents turkey weight gain in pounds across five diets.
data(turkey)
data(turkey)
A data frame with 30 rows and 2 variables.
Diet
diet factor with 5 levels.
Weight.gain
weight gain in pounds.
Heiberger and Holland (2004) and Ott (1993) analyze this data set to illustrate one-way ANOVA.
Heiberger, R. M., Holland, B. (2004) Statistical Analysis and Data Display: an intermediate course with examples in S-Plus, R, and SAS. Springer: New York.
Ott, R. L. (1993) An Introduction to Statistical Methods and Data Analysis. Fourth edition. Duxbury: Pacific Grove, CA.
data(turkey) str(turkey)
data(turkey) str(turkey)
Functions to compute the Bayesian information criterion (BIC) or a quasi-likelihood analogue (QBIC).
useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'aov' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'betareg' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'clm' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'clmm' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'coxme' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'coxph' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'fitdist' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'fitdistr' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'glm' useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'glmmTMB' useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'gls' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'gnls' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'hurdle' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'lavaan' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'lm' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'lme' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'lmekin' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'maxlikeFit' useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'mer' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'merMod' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'lmerModLmerTest' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'multinom' useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'nlme' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'nls' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'polr' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'rlm' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'survreg' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'unmarkedFit' useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'vglm' useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'zeroinfl' useBIC(mod, return.K = FALSE, nobs = NULL, ...)
useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'aov' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'betareg' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'clm' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'clmm' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'coxme' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'coxph' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'fitdist' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'fitdistr' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'glm' useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'glmmTMB' useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'gls' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'gnls' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'hurdle' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'lavaan' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'lm' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'lme' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'lmekin' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'maxlikeFit' useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'mer' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'merMod' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'lmerModLmerTest' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'multinom' useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'nlme' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'nls' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'polr' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'rlm' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'survreg' useBIC(mod, return.K = FALSE, nobs = NULL, ...) ## S3 method for class 'unmarkedFit' useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'vglm' useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1, ...) ## S3 method for class 'zeroinfl' useBIC(mod, return.K = FALSE, nobs = NULL, ...)
mod |
an object of class |
return.K |
logical. If |
nobs |
this argument allows to specify a numeric value other than total
sample size to compute the BIC (i.e., |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor)
such as that obtained from |
... |
additional arguments passed to the function. |
useBIC
computes the Bayesian information criterion (BIC,
Schwarz 1978):
where the log-likelihood is the maximum log-likelihood of the model, K corresponds to the number of estimated parameters, and n corresponds to the sample size of the data set.
In the presence of overdispersion, a quasi-likelihood analogue of the BIC (QBIC) will be computed, as
where c-hat is the
overdispersion parameter specified by the user with the argument
c.hat
. Note that BIC or QBIC values are meaningful to select
among gls
or lme
models fit by maximum likelihood.
BIC or QBIC based on REML are valid to select among different models
that only differ in their random effects (Pinheiro and Bates 2000).
useBIC
returns the BIC or the number of estimated parameters,
depending on the values of the arguments.
The actual (Q)BIC values are not really interesting in themselves, as they depend directly on the data, parameters estimated, and likelihood function. Furthermore, a single value does not tell much about model fit. Information criteria become relevant when compared to one another for a given data set and set of candidate models.
Marc J. Mazerolle
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Pinheiro, J. C., Bates, D. M. (2000) Mixed-effect models in S and S-PLUS. Springer Verlag: New York.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics 6, 461–464.
AICc
, bictab
,
bictabCustom
, useBICCustom
##cement data from Burnham and Anderson (2002, p. 101) data(cement) ##run multiple regression - the global model in Table 3.2 glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement) ##compute BIC with full likelihood useBIC(glob.mod, return.K = FALSE) ##compute BIC for mixed model on Orthodont data set in Pinheiro and ##Bates (2000) ## Not run: require(nlme) m1 <- lme(distance ~ age, random = ~1 | Subject, data = Orthodont, method= "ML") useBIC(m1, return.K = FALSE) ## End(Not run)
##cement data from Burnham and Anderson (2002, p. 101) data(cement) ##run multiple regression - the global model in Table 3.2 glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement) ##compute BIC with full likelihood useBIC(glob.mod, return.K = FALSE) ##compute BIC for mixed model on Orthodont data set in Pinheiro and ##Bates (2000) ## Not run: require(nlme) m1 <- lme(distance ~ age, random = ~1 | Subject, data = Orthodont, method= "ML") useBIC(m1, return.K = FALSE) ## End(Not run)
This function computes the Bayesian information criterion (BIC) or a
quasi-likelihood counterpart (QBIC) from user-supplied input instead
of extracting the values automatically from a model object. This
function is particularly useful for output imported from other
software or for model classes that are not currently supported by
useBIC
.
useBICCustom(logL, K, return.K = FALSE, nobs = NULL, c.hat = 1)
useBICCustom(logL, K, return.K = FALSE, nobs = NULL, c.hat = 1)
logL |
the value of the model log-likelihood. |
K |
the number of estimated parameters in the model. |
return.K |
logical. If |
nobs |
the sample size required to compute the BIC or QBIC. |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor)
such as that obtained from |
useBICCustom
computes one of the following two information
criteria:
the Bayesian information criterion (BIC, Schwarz 1978) or the quasi-likelihood BIC (QBIC).
useBICCustom
returns the BIC or QBIC depending on the values of
the c.hat
argument.
The actual (Q)BIC values are not really interesting in themselves, as they depend directly on the data, parameters estimated, and likelihood function. Furthermore, a single value does not tell much about model fit. Information criteria become relevant when compared to one another for a given data set and set of candidate models.
Marc J. Mazerolle
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case-studies. Ecological Monographs 62, 67–118.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics 6, 461–464.
AICc
, aictabCustom
, useBIC
,
bictab
, evidence
, modavgCustom
##cement data from Burnham and Anderson (2002, p. 101) data(cement) ##run multiple regression - the global model in Table 3.2 glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement) ##extract log-likelihood LL <- logLik(glob.mod)[1] ##extract number of parameters ##including residual variance K.mod <- length(coef(glob.mod)) + 1 ##compute BIC with full likelihood useBICCustom(LL, K.mod, nobs = nrow(cement)) ##compare against useBIC useBIC(glob.mod)
##cement data from Burnham and Anderson (2002, p. 101) data(cement) ##run multiple regression - the global model in Table 3.2 glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement) ##extract log-likelihood LL <- logLik(glob.mod)[1] ##extract number of parameters ##including residual variance K.mod <- length(coef(glob.mod)) + 1 ##compute BIC with full likelihood useBICCustom(LL, K.mod, nobs = nrow(cement)) ##compare against useBIC useBIC(glob.mod)
Functions to format various objects following model selection and
multimodel inference to LaTeX or HTML tables. These functions extend the
methods from the xtable
package (Dahl 2014).
## S3 method for class 'aictab' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.AICc = TRUE, include.LL = TRUE, include.Cum.Wt = FALSE, ...) ## S3 method for class 'anovaOD' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, ...) ## S3 method for class 'bictab' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.BIC = TRUE, include.LL = TRUE, include.Cum.Wt = FALSE, ...) ## S3 method for class 'boot.wt' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.AICc = TRUE, include.AICcWt = FALSE, ...) ## S3 method for class 'countDist' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, table.countDist = "distance", ...) ## S3 method for class 'checkParms' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.variable = TRUE, include.max.se = TRUE, include.n.high.se = TRUE, ...) ## S3 method for class 'countHist' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, table.countHist = "count", ...) ## S3 method for class 'detHist' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, table.detHist = "freq", ...) ## S3 method for class 'detTime' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, table.detTime = "freq", ...) ## S3 method for class 'dictab' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.DIC = TRUE, include.Cum.Wt = FALSE, ...) ## S3 method for class 'ictab' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.IC = TRUE, include.Cum.Wt = FALSE, ...) ## S3 method for class 'mb.chisq' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.detection.histories = TRUE, ...) ## S3 method for class 'modavg' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, print.table = FALSE, ...) ## S3 method for class 'modavgCustom' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, print.table = FALSE, ...) ## S3 method for class 'modavgEffect' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, print.table = FALSE, ...) ## S3 method for class 'modavgIC' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, print.table = FALSE, ...) ## S3 method for class 'modavgPred' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, ...) ## S3 method for class 'modavgShrink' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, print.table = FALSE, ...) ## S3 method for class 'multComp' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, print.table = FALSE, ...) ## S3 method for class 'summaryOD' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, ...)
## S3 method for class 'aictab' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.AICc = TRUE, include.LL = TRUE, include.Cum.Wt = FALSE, ...) ## S3 method for class 'anovaOD' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, ...) ## S3 method for class 'bictab' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.BIC = TRUE, include.LL = TRUE, include.Cum.Wt = FALSE, ...) ## S3 method for class 'boot.wt' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.AICc = TRUE, include.AICcWt = FALSE, ...) ## S3 method for class 'countDist' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, table.countDist = "distance", ...) ## S3 method for class 'checkParms' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.variable = TRUE, include.max.se = TRUE, include.n.high.se = TRUE, ...) ## S3 method for class 'countHist' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, table.countHist = "count", ...) ## S3 method for class 'detHist' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, table.detHist = "freq", ...) ## S3 method for class 'detTime' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, table.detTime = "freq", ...) ## S3 method for class 'dictab' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.DIC = TRUE, include.Cum.Wt = FALSE, ...) ## S3 method for class 'ictab' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.IC = TRUE, include.Cum.Wt = FALSE, ...) ## S3 method for class 'mb.chisq' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, include.detection.histories = TRUE, ...) ## S3 method for class 'modavg' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, print.table = FALSE, ...) ## S3 method for class 'modavgCustom' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, print.table = FALSE, ...) ## S3 method for class 'modavgEffect' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, print.table = FALSE, ...) ## S3 method for class 'modavgIC' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, print.table = FALSE, ...) ## S3 method for class 'modavgPred' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, ...) ## S3 method for class 'modavgShrink' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, print.table = FALSE, ...) ## S3 method for class 'multComp' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, print.table = FALSE, ...) ## S3 method for class 'summaryOD' xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE, ...)
x |
an object of class |
caption |
a character vector of length 1 or 2 storing the caption or title of
the table. If the vector is of length 2, the second item is the
short caption used when LaTeX generates a list of tables. The
default value is |
label |
a character vector storing the LaTeX label or HTML anchor. The default
value is |
align |
a character vector of length equal to the number of columns of the table specifying the alignment of the elements. Note that the rownames are considered as an additional column and require an alignment value. |
digits |
a numeric vector of length one or equal to the number of columns in the table (including the rownames) specifying the number of digits to display in each column. |
display |
a character vector of length equal to the number of columns
(including the rownames) specifying the format of each column. For
example, use |
auto |
Logical, indicating whether to apply automatic format when no value
is passed to |
nice.names |
logical. If |
include.AICc |
logical. If |
include.BIC |
logical. If |
include.DIC |
logical. If |
include.IC |
logical. If |
include.LL |
logical. If |
include.Cum.Wt |
logical. If |
include.AICcWt |
logical. If |
include.detection.histories |
logical. If |
include.variable |
logical. If |
include.max.se |
logical. If |
include.n.high.se |
logical. If |
print.table |
logical. If |
table.detHist |
character string specifying, either |
table.detTime |
character string specifying, either |
table.countDist |
character string specifying, either
|
table.countHist |
character string specifying, either
|
... |
additional arguments passed to the function. |
xtable
creates an object of the xtable
class inheriting
from the data.frame
class. This object can then be used with
print.xtable
for added flexibility such as suppressing row names,
modifying caption placement, and format tables in LaTeX or HTML
format.
Marc J. Mazerolle
Dahl, D. B. (2014) xtable: Export tables to LaTeX or HTML. R package version 1.7-3. https://cran.r-project.org/package=xtable.
aictab
, boot.wt
, dictab
,
formatC
, ictab
, mb.chisq
,
modavg
, modavgCustom
,
modavgIC
, modavgEffect
,
modavgPred
, modavgShrink
,
multComp
, summaryOD
, anovaOD
,
xtable
, print.xtable
if(require(xtable)) { ##model selection example data(dry.frog) ##setup candidate models Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Model.names <- c("additive", "interaction", "no shade") ##model selection table - AICc out <- aictab(cand.set = Cand.models, modnames = Model.names) xtable(out) ##exclude AICc and LL xtable(out, include.AICc = FALSE, include.LL = FALSE) ##remove row names and add caption print(xtable(out, caption = "Model selection based on AICc"), include.rownames = FALSE, caption.placement = "top") ##model selection table - BIC out2 <- bictab(cand.set = Cand.models, modnames = Model.names) xtable(out2) ##exclude AICc and LL xtable(out2, include.BIC = FALSE, include.LL = FALSE) ##remove row names and add caption print(xtable(out2, caption = "Model selection based on BIC"), include.rownames = FALSE, caption.placement = "top") ##model-averaged estimate of Initial_mass2 mavg.mass <- modavg(cand.set = Cand.models, parm = "Initial_mass2", modnames = Model.names) #model-averaged estimate xtable(mavg.mass, print.table = FALSE) #table with contribution of each model xtable(mavg.mass, print.table = TRUE) ##model-averaged predictions for first 10 observations preds <- modavgPred(cand.set = Cand.models, modnames = Model.names, newdata = dry.frog[1:10, ]) xtable(preds) } ##example of diagnostics ## Not run: if(require(unmarked)){ ##distance sampling example from ?distsamp data(linetran) ltUMF <- with(linetran, { unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), siteCovs = data.frame(Length, area, habitat), dist.breaks = c(0, 5, 10, 15, 20), tlength = linetran$Length * 1000, survey = "line", unitsIn = "m") }) ##summarize counts across distance classes xtable(countDist(ltUMF), table.countDist = "distance") ##summarize counts across all sites xtable(countDist(ltUMF), table.countDist = "count") ##Half-normal detection function fm1 <- distsamp(~ 1 ~ 1, ltUMF) ##determine parameters with highest SE's xtable(checkParms(fm1)) } ## End(Not run)
if(require(xtable)) { ##model selection example data(dry.frog) ##setup candidate models Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Model.names <- c("additive", "interaction", "no shade") ##model selection table - AICc out <- aictab(cand.set = Cand.models, modnames = Model.names) xtable(out) ##exclude AICc and LL xtable(out, include.AICc = FALSE, include.LL = FALSE) ##remove row names and add caption print(xtable(out, caption = "Model selection based on AICc"), include.rownames = FALSE, caption.placement = "top") ##model selection table - BIC out2 <- bictab(cand.set = Cand.models, modnames = Model.names) xtable(out2) ##exclude AICc and LL xtable(out2, include.BIC = FALSE, include.LL = FALSE) ##remove row names and add caption print(xtable(out2, caption = "Model selection based on BIC"), include.rownames = FALSE, caption.placement = "top") ##model-averaged estimate of Initial_mass2 mavg.mass <- modavg(cand.set = Cand.models, parm = "Initial_mass2", modnames = Model.names) #model-averaged estimate xtable(mavg.mass, print.table = FALSE) #table with contribution of each model xtable(mavg.mass, print.table = TRUE) ##model-averaged predictions for first 10 observations preds <- modavgPred(cand.set = Cand.models, modnames = Model.names, newdata = dry.frog[1:10, ]) xtable(preds) } ##example of diagnostics ## Not run: if(require(unmarked)){ ##distance sampling example from ?distsamp data(linetran) ltUMF <- with(linetran, { unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), siteCovs = data.frame(Length, area, habitat), dist.breaks = c(0, 5, 10, 15, 20), tlength = linetran$Length * 1000, survey = "line", unitsIn = "m") }) ##summarize counts across distance classes xtable(countDist(ltUMF), table.countDist = "distance") ##summarize counts across all sites xtable(countDist(ltUMF), table.countDist = "count") ##Half-normal detection function fm1 <- distsamp(~ 1 ~ 1, ltUMF) ##determine parameters with highest SE's xtable(checkParms(fm1)) } ## End(Not run)